Mitsubishi CM150DU-12H Igbt modules high power switching use insulated type Datasheet

MITSUBISHI IGBT MODULES
CM150DU-12H
HIGH POWER SWITCHING USE
INSULATED TYPE
CM150DU-12H
● IC ................................................................... 150A
● VCES .......................................................... 600V
● Insulated Type
● 2-elements in a pack
APPLICATION
UPS, NC machine, AC-Drive control, Servo, Welders
OUTLINE DRAWING & CIRCUIT DIAGRAM
Dimensions in mm
TC measured point
94
80 ±0.25
4
G1E1
12
4
4 11
18
E2 G2
C1
E2
C2E1
2–φ6.5
MOUNTING HOLES
23
23
48
CM
24
17
13
7
13.5
2.5 16
TAB
C2E1
E2
21.2
+1
30 –0.5
LABEL
#110. t=0.5
C1
G1 E1
25
7.5
16 2.5
E2 G2
3–M5NUTS
12mm deep
CIRCUIT DIAGRAM
Feb. 2009
1
MITSUBISHI IGBT MODULES
CM150DU-12H
HIGH POWER SWITCHING USE
INSULATED TYPE
MAXIMUM RATINGS
Symbol
VCES
VGES
IC
ICM
IE (Note 2)
IEM (Note 2)
PC (Note 3)
Tj
Tstg
Viso
(Tj = 25°C, unless otherwise specified)
Item
Collector current
Emitter current
Maximum collector dissipation
Junction temperature
Storage temperature
Isolation voltage
—
Mounting torque
—
Weight
ELECTRICAL CHARACTERISTICS
Symbol
Conditions
Collector-emitter voltage
Gate-emitter voltage
Note 1.
2.
3.
4.
5.
6.
(Note 1)
Ratings
Unit
600
±20
150
300
150
300
600
–40 ~ +150
–40 ~ +125
2500
2.5 ~ 3.5
3.5 ~ 4.5
310
V
V
A
A
A
A
W
°C
°C
Vrms
N·m
N·m
g
(Tj = 25°C, unless otherwise specified)
Collector cutoff current
Gate-emitter
VGE(th)
threshold voltage
Gate-leakage current
IGES
Collector-emitter
VCE(sat)
saturation voltage
Input capacitance
Cies
Output capacitance
Coes
Reverse transfer capacitance
Cres
QG
Total gate charge
td (on)
Turn-on delay time
tr
Turn-on rise time
td (off)
Turn-off delay time
tf
Turn-off fall time
V EC(Note 2) Emitter-collector voltage
t rr (Note 2) Reverse recovery time
Q rr (Note 2) Reverse recovery charge
Rth(j-c)Q
Thermal resistance (Note 5)
Rth(j-c)R
Contact thermal resistance
(Note 1)
—
—
Charged part to base plate, f = 60Hz, AC 1 minute
Main terminals M5 screw
Mounting M6 screw
Typical value
VCE = VCES, VGE = 0V
Min
—
Limits
Typ
—
Max
1
IC = 15mA, VCE = 10V
4.5
6
7.5
V
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
2.4
2.6
—
—
—
300
—
—
—
—
—
—
0.36
—
—
0.5
3.0
—
13.2
7.2
2
—
100
350
300
300
2.6
160
—
0.21
0.47
µA
nF
nF
nF
nC
ns
ns
ns
ns
V
ns
µC
K/W
K/W
—
0.07
—
K/W
Item
ICES
Rth(c-f)
VGE = 0V
VCE = 0V
TC = 25°C
Pulse
TC = 25°C
Pulse
TC = 25°C
Test Conditions
±VGE = VGES, VCE = 0V
IC = 150A, VGE = 15V
(Note 4)
Tj = 25°C
Tj = 125°C
VCE = 10V
VGE = 0V
VCC = 300V, IC = 150A, VGE = 15V
VCC = 300V, IC = 150A
VGE = ±15V
RG = 4.2Ω
Resistive load
IE = 150A, VGE = 0V
IE = 150A,
die / dt = –300A / µs
Junction to case, IGBT part (Per 1/2 module)
Junction to case, FWDi part (Per 1/2 module)
Case to heat sink, conductive grease applied
(Per 1/2 module)
(Note 6)
Unit
mA
V
Pulse width and repetition rate should be such that the device junction temperature (Tj) does not exceed Tjmax rating.
IE, VEC, trr, Qrr & die/dt represent characteristics of the anti-parallel, emitter-collector free-wheel diode.
Junction temperature (Tj) should not increase beyond 150°C.
Pulse width and repetition rate should be such as to cause negligible temperature rise.
Case temperature (TC) measured point is shown in page OUTLINE DRAWING.
Typical value is measured by using thermally conductive grease of λ = 0.9[W/(m • K)].
Feb. 2009
2
MITSUBISHI IGBT MODULES
CM150DU-12H
HIGH POWER SWITCHING USE
INSULATED TYPE
PERFORMANCE CURVES
TRANSFER CHARACTERISTICS
(TYPICAL)
OUTPUT CHARACTERISTICS
(TYPICAL)
300
VGE=20
(V)
250
14
13
COLLECTOR CURRENT IC (A)
COLLECTOR CURRENT IC (A)
300
Tj=25°C
15
200
12
150
11
100
10
50
9
VCE = 10V
250
200
150
100
50
Tj = 25°C
Tj = 125°C
8
0
2
4
6
0
10
8
4
8
12
20
16
GATE-EMITTER VOLTAGE VGE (V)
COLLECTOR-EMITTER SATURATION
VOLTAGE CHARACTERISTICS
(TYPICAL)
COLLECTOR-EMITTER SATURATION
VOLTAGE CHARACTERISTICS
(TYPICAL)
5
VGE = 15V
Tj = 25°C
Tj = 125°C
4
3
2
1
0
0
40
80 120 160 200 240 280 300
8
6
IC = 300A
4
IC = 150A
2
IC = 60A
0
4
8
12
20
16
GATE-EMITTER VOLTAGE VGE (V)
FREE-WHEEL DIODE
FORWARD CHARACTERISTICS
(TYPICAL)
CAPACITANCE CHARACTERISTICS
(TYPICAL)
102
Tj = 25°C
3
2
101
7
5
3
2
100
Tj = 25°C
COLLECTOR CURRENT IC (A)
CAPACITANCE Cies, Coes, Cres (nF)
7
5
10
0
102
EMITTER CURRENT IE (A)
0
COLLECTOR-EMITTER VOLTAGE VCE (V)
COLLECTOR-EMITTER
SATURATION VOLTAGE VCE(sat) (V)
COLLECTOR-EMITTER
SATURATION VOLTAGE VCE(sat) (V)
0
1.0
1.4
1.8
2.2
2.6
7
5
3
2
101
7
5
Cies
3
2
100
7
5
Coes
3
2
Cres
VGE = 0V
10–1 –1
10 2 3 5 7 100 2 3 5 7 101 2 3 5 7 102
COLLECTOR-EMITTER VOLTAGE VCE (V)
EMITTER-COLLECTOR VOLTAGE VEC (V)
Feb. 2009
3
MITSUBISHI IGBT MODULES
CM150DU-12H
HIGH POWER SWITCHING USE
INSULATED TYPE
3
td(off)
2
102
7
5
td(on)
3
tr
2
VCC = 300V
VGE = ±15V
RG = 4.2Ω
2 3
5 7 103
101
7
NORMALIZED TRANSIENT
THERMAL IMPEDANCE Zth(j – c)
101
2
3
5 7 102
2
5
5
3
3
2
2
trr
102
7
5
101
7
5
lrr
3
3
2
2
101 1
10
2
3
5 7 102
100
2
3
5 7 103
COLLECTOR CURRENT IC (A)
EMITTER CURRENT IE (A)
TRANSIENT THERMAL
IMPEDANCE CHARACTERISTICS
(IGBT part)
TRANSIENT THERMAL
IMPEDANCE CHARACTERISTICS
(FWDi part)
10–3 2 3 5 710–2 2 3 5 710–1 2 3 5 7 100 2 3 5 7 101
101
7 Single Pulse
5
3 TC = 25°C
Per unit base = Rth(j – c) = 0.21K/W
100
REVERSE RECOVERY CHARACTERISTICS
OF FREE-WHEEL DIODE
(TYPICAL)
102
103
–di/dt = 300A/µs
7
7
Tj = 25°C
7
5
3
2
3
2
10–1
10–1
10–2
10–2
10–3
10–3
10–5 2 3 5 710–4 2 3 5 7 10–3
7
5
3
2
7
5
3
2
7
5
3
2
7
5
3
2
TIME (s)
REVERSE RECOVERY CURRENT Irr (A)
tf
NORMALIZED TRANSIENT
THERMAL IMPEDANCE Zth(j – c)
SWITCHING TIMES (ns)
7
5 Tj = 125°C
REVERSE RECOVERY TIME trr (ns)
HALF-BRIDGE
SWITCHING TIME CHARACTERISTICS
(TYPICAL)
10–3 2 3 5 710–2 2 3 5 710–1 2 3 5 7 100 2 3 5 7 101
101
7 Single Pulse
5
3 TC = 25°C
2
100
Per unit base = Rth(j – c) = 0.47K/W
7
5
3
2
3
2
10–1
10–1
10–2
10–2
10–3
10–3
10–5 2 3 5 710–4 2 3 5 7 10–3
7
5
3
2
7
5
3
2
7
5
3
2
7
5
3
2
TIME (s)
GATE CHARGE CHARACTERISTICS
(TYPICAL)
GATE-EMITTER VOLTAGE VGE (V)
20
IC = 150A
15
VCC = 200V
VCC = 300V
10
5
0
0
100
200
300
400
GATE CHARGE QG (nC)
Feb. 2009
4
Similar pages