BFP410 Low Noise Silicon Bipolar RF Transistor • Low current device suitable e.g. for handhelds 3 • For high frequency oscillators e.g. DRO for LNB 2 4 • For ISM band applications like 1 Automatic Meter Reading, Sensors etc. • Transit frequency fT = 25 GHz • Pb-free (RoHS compliant) and halogen-free package with visible leads • Qualification report according to AEC-Q101 available ESD (Electrostatic discharge) sensitive device, observe handling precaution! Type BFP410 Marking AKs 1=B Pin Configuration 2=E 3=C 4=E - Package - SOT343 Maximum Ratings at TA = 25 °C, unless otherwise specified Parameter Symbol Collector-emitter voltage VCEO Value Unit V TA = 25 °C 4.5 TA = -55 °C 4.1 Collector-emitter voltage VCES 13 Collector-base voltage VCBO 13 Emitter-base voltage VEBO 1.5 Collector current IC 40 Base current IB 6 Total power dissipation1) Ptot 150 mW Junction temperature TJ 150 °C Storage temperature TStg mA TS ≤ 100 °C 1T S is -55 ... 150 measured on the emitter lead at the soldering point to the pcb 1 2013-08-16 BFP410 Thermal Resistance Parameter Symbol Junction - soldering point1) RthJS Value Unit 335 K/W Values Unit Electrical Characteristics at TA = 25 °C, unless otherwise specified Parameter Symbol min. typ. max. 4.5 5 - DC Characteristics Collector-emitter breakdown voltage V(BR)CEO V IC = 1 mA, IB = 0 Collector-emitter cutoff current nA ICES VCE = 2 V, VBE = 0 - 1 30 VCE = 5 V, VBE = 0 , TA = 85 °C - 2 50 ICBO - 1 30 IEBO - 0.001 0.6 µA hFE 60 95 130 - (verified by random sampling) Collector-base cutoff current VCB = 2 V, IE = 0 Emitter-base cutoff current VEB = 0.5 V, IC = 0 DC current gain IC = 13 mA, VCE = 2 V, pulse measured 1For the definition of RthJS please refer to Application Note AN077 (Thermal Resistance Calculation) 2 2013-08-16 BFP410 Electrical Characteristics at TA = 25 °C, unless otherwise specified Symbol Values Parameter Unit min. typ. max. 18 25 - Ccb - 0.09 0.17 Cce - 0.35 - Ceb - 0.45 - NFmin - 1.2 - dB Gms - 21.5 - dB |S21|2 - 18.5 - IP3 - 23.5 - P-1dB - 10.5 - AC Characteristics (verified by random sampling) Transition frequency fT GHz IC = 20 mA, VCE = 2 V, f = 2 GHz Collector-base capacitance pF VCB = 2 V, f = 1 MHz, VBE = 0 , emitter grounded Collector emitter capacitance VCE = 2 V, f = 1 MHz, VBE = 0 , base grounded Emitter-base capacitance VEB = 0.5 V, f = 1 MHz, VCB = 0 , collector grounded Minimum noise figure IC = 2 mA, VCE = 2 V, f = 2 GHz, ZS = ZSopt Power gain, maximum stable1) IC = 20 mA, VCE = 2 V, ZS = ZSopt, ZL = ZLopt , f = 2 GHz Insertion power gain VCE = 2 V, IC = 20 mA, f = 2 GHz, ZS = ZL = 50 Ω Third order intercept point at output2) dBm VCE = 2 V, IC = 20 mA, f = 2 GHz, ZS = ZL = 50 Ω 1dB compression point at output IC = 20 mA, VCE = 2 V, ZS = ZL = 50 Ω, f = 2 GHz 1G ms = |S21 / S12 | value depends on termination of all intermodulation frequency components. Termination used for this measurement is 50Ω from 0.1 MHz to 6 GHz 2IP3 3 2013-08-16 BFP410 Total power dissipation P tot = ƒ(TS) Collector-base capacitance Ccb = ƒ(VCB ) f = 1MHz 0.3 180 mW pF 120 CCB Ptot 140 0.2 100 0.15 80 0.1 60 40 0.05 20 0 0 20 40 60 80 100 120 °C TS 0 0 160 0.5 1 1.5 2 2.5 3 V 4 VCB Transition frequency fT = ƒ(IC) Power gain Gma, Gms, |S21|2 = ƒ (f) f = 2 GHz VCE = 2 V, IC = 13 mA VCE = parameter in V 26 45 3 to 4V GHz dB 2V 1V 22 35 20 30 G fT 18 16 25 Gms 14 0.5V 12 20 15 10 |S21|² 8 Gma 10 6 5 4 2 0 4 8 12 16 20 24 mA 0 0 32 IC 2 4 6 GHz 10 f 4 2013-08-16 BFP410 Power gain Gma, Gms = ƒ (IC) Power gain Gma, Gms = ƒ (VCE ) VCE = 2V IC = 13 mA f = parameter in GHz f = parameter in GHz 40 40 0.15GHz dB 0.45GHz 32 0.9GHz 28 1.5GHz 24 G G dB 0.15GHz 32 0.45GHz 28 0.9GHz 24 1.5GHz 1.9GHz 1.9GHz 20 2.4GHz 20 2.4GHz 16 3.5GHz 16 3.5GHz 12 5.5GHz 12 5.5GHz 8 10GHz 8 10GHz 4 0 0 4 4 8 12 16 20 24 28 mA 0 0 36 1 2 3 V 4 IC VCE Noise figure F = ƒ(IC ) VCE = 2 V, ZS = ZSopt Noise figure F = ƒ(IC) VCE = 2 V, f = 2 GHz 4.5 4 dB dB 3.5 3 3 F Fmin 6 2.5 2.5 2 2 1.5 1.5 f= 10.0 GHz f= 5.5 GHz f= 2.4 GHz f= 1.8 GHz f= 0.9 GHz f= 0.45 GHz 1 0.5 0 0 4 8 12 16 20 24 mA ZS=50Ohm ZS=ZSopt 1 0.5 0 0 30 IC 4 8 12 16 mA 24 IC 5 2013-08-16 BFP410 Collector current IC = ƒ(VBE) Collector current IC = ƒ(VCE) VCE =2 V Parameter IB 10 2 mA 25 10 1 mA 160µA IC IC 10 0 15 10 -1 90µA 10 10 -2 5 10 -3 20µA 10 -4 0.2 0.4 0.6 V 0.8 0 0 1.2 VBE 1 2 3 V 5 VCE DC current gain hFE = ƒ(IC) VCE = 2 V hFE 10 3 10 2 10 1 10 0 -1 10 10 0 10 1 mA 10 2 IC 6 2013-08-16 Package SOT343 7 BFP410 2013-08-16 BFP410 Edition 2009-11-16 Published by Infineon Technologies AG 81726 Munich, Germany 2009 Infineon Technologies AG All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (<www.infineon.com>). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. 8 2013-08-16