Infineon BFP740F Npn silicon germanium rf transistor Datasheet

BFP740F
NPN Silicon Germanium RF Transistor
• High gain ultra low noise RF transistor
3
• Provides outstanding performance for
2
4
1
a wide range of wireless applications
up to 10 GHz and more
• Ideal for CDMA and WLAN applications
• Outstanding noise figure F = 0.5 dB at 1.8 GHz
Outstanding noise figure F = 0.75 dB at 6 GHz
Top View
4
• High maximum stable gain
3
XYs
Gms = 27.5 dB at 1.8 GHz
1
• Gold metallization for extra high reliability
2
Direction of Unreeling
• 150 GHz fT-Silicon Germanium technology
ESD (Electrostatic discharge) sensitive device, observe handling precaution!
Type
BFP740F
Marking
R7s
1=B
Pin Configuration
2=E
3=C
4=E
-
Package
-
TSFP-4
Maximum Ratings
Parameter
Symbol
Collector-emitter voltage
VCEO
Value
Unit
V
TA > 0°C
4
TA ≤ 0°C
3.5
Collector-emitter voltage
VCES
13
Collector-base voltage
VCBO
13
Emitter-base voltage
VEBO
1.2
Collector current
IC
30
Base current
IB
3
Total power dissipation1)
Ptot
160
mW
Junction temperature
Tj
150
°C
Ambient temperature
TA
-65 ... 150
Storage temperature
T stg
-65 ... 150
mA
TS ≤ 90°C
1T is measured on the collector lead at the soldering point to the pcb
S
2005-11-08
1
BFP740F
Thermal Resistance
Parameter
Symbol
Value
Unit
Junction - soldering point1)
RthJS
≤ 370
K/W
Electrical Characteristics at TA = 25°C, unless otherwise specified
Symbol
Values
Parameter
Unit
min.
typ.
max.
V(BR)CEO
4
4.7
-
V
ICES
-
-
30
µA
ICBO
-
-
100
nA
IEBO
-
-
3
µA
hFE
160
250
400
DC Characteristics
Collector-emitter breakdown voltage
IC = 1 mA, I B = 0
Collector-emitter cutoff current
VCE = 13 V, VBE = 0
Collector-base cutoff current
VCB = 5 V, IE = 0
Emitter-base cutoff current
VEB = 0.5 V, IC = 0
DC current gain
-
IC = 25 mA, VCE = 3 V, pulse measured
1For calculation of R
thJA please refer to Application Note Thermal Resistance
2005-11-08
2
BFP740F
Electrical Characteristics at TA = 25°C, unless otherwise specified
Symbol
Values
Unit
Parameter
min.
typ. max.
AC Characteristics (verified by random sampling)
Transition frequency
fT
-
42
-
Ccb
-
0.08
0.14
Cce
-
0.2
-
Ceb
-
0.44
-
GHz
IC = 25 mA, VCE = 3 V, f = 1 GHz
Collector-base capacitance
pF
VCB = 3 V, f = 1 MHz, V BE = 0 ,
emitter grounded
Collector emitter capacitance
VCE = 3 V, f = 1 MHz, V BE = 0 ,
base grounded
Emitter-base capacitance
VEB = 0.5 V, f = 1 MHz, VCB = 0 ,
collector grounded
Noise figure
dB
F
IC = 8 mA, VCE = 3 V, f = 1.8 GHz, ZS = ZSopt
-
0.5
-
IC = 8 mA, VCE = 3 V, f = 6 GHz, ZS = ZSopt
-
0.75
-
G ms
-
27.5
-
dB
G ma
-
19
-
dB
Power gain, maximum stable1)
IC = 25 mA, VCE = 3 V, ZS = ZSopt,
ZL = ZLopt , f = 1.8 GHz
Power gain, maximum available1)
IC = 25 mA, VCE = 3 V, ZS = ZSopt,
ZL = ZLopt, f = 6 GHz
|S21e|2
Transducer gain
dB
IC = 25 mA, VCE = 3 V, ZS = ZL = 50 Ω,
f = 1.8 GHz
-
25
-
f = 6 GHz
-
15
-
IP 3
-
25
-
P-1dB
-
11
-
Third order intercept point at output2)
dBm
VCE = 3 V, I C = 25 mA, ZS =ZL=50 Ω, f = 1.8 GHz
1dB Compression point at output
IC = 25 mA, VCE = 3 V, ZS =ZL=50 Ω, f = 1.8 GHz
1G
1/2
ma = |S21e / S12e| (k-(k²-1) ), Gms = |S21e / S12e|
2IP3 value depends on termination of all intermodulation frequency components.
Termination used for this measurement is 50Ω from 0.1 MHz to 6 GHz
2005-11-08
3
BFP740F
SPICE Parameter (Gummel-Poon Model, Berkley-SPICE 2G.6 Syntax):
Transitor Chip Data:
IS =
VAF =
NE =
VAR =
NC =
RBM =
CJE =
TF =
ITF =
VJC =
TR =
MJS =
XTI =
AF =
384.4
400
1.586
1.28
1.5
1.69
220
2.1
290
550
13
180
910
aA
V
V
-
1
-
BF =
IKF =
BR =
IKR =
RB =
RE =
VJE =
XTF =
PTF =
MJC =
CJS =
XTB =
FC =
KF =
Ω
fF
ps
mA
mV
ps
m
m
k
mA
mA
1.1
512.1
62
5
3.23
90
590
3
100
152
79.7
-2.2
950
0
Ω
mΩ
mV
mdeg
m
fF
m
NF =
ISE =
NR =
ISC =
IRB =
RC =
MJE =
VTF =
CJC =
XCJC =
VJS =
EG =
TNOM
1.018
4.296
1
3.85
10
6.88
70
1.32
99.5
10
570
1.11
298
fA
fA
A
Ω
m
V
fF
m
mV
eV
K
-
All parameters are ready to use, no scalling is necessary. Extracted on behalf of Infineon Technologies AG by:
Institut für Mobil- und Satellitentechnik (IMST)
Package Equivalent Circuit:
CBS
RBS
CBCC
LCC
C
BFP740F_Chip
S
B
B
LBB
LBC
RCS CCS
CBEC
E
LCB
RES
CES
LEC
REC
CBEI
CCEI
LEB
CBEO
CCEO
E
For examples and ready to use parameters
please contact your local Infineon Technologies
distributor or sales office to obtain a Infineon
Technologies CD-ROM or see Internet:
http://www.infineon.com
C
LBC =
LCC =
LEC =
LBB =
LCB =
LEB =
CBEC =
CBCC =
CES =
CBS =
CCS =
CCEO =
CBEO =
CCEI =
CBEI =
REC =
RBS =
RCS =
RES =
0.1
0.2
20
0.411
0.696
21
0.1
1
0.34
39
75
0.177
92
0.217
52
2
3.5
1.65
90
nH
nH
pH
nH
nH
pH
pF
fF
pF
fF
fF
pF
fF
pF
fF
Ω
mΩ
mΩ
Ω
Valid up to 6GHz
2005-11-08
4
BFP740F
Total power dissipation Ptot = ƒ(TS)
Permissible Pulse Load RthJS = ƒ(t p)
10 3
180
mW
K/W
RthJS
Ptot
140
120
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0
10 2
80
60
40
20
0
0
15
30
45
60
75
90 105 120 °C
10 1 -7
10
150
10
-6
10
-5
10
-4
10
-3
10
-2
s
TS
10
0
tp
Permissible Pulse Load
Collector-base capacitance Ccb = ƒ (V CB)
Ptotmax/P totDC = ƒ(tp)
f = 1 MHz
10 2
0.18
-
0.16
0.14
10
D=0
0.005
0.01
0.02
0.05
0.1
0.2
0.5
1
0.12
Ccb [pF]
Ptotmax /PtotDC
0.2
0.1
0.08
0.06
0.04
0.02
10
0
10
-7
10
-6
10
-5
10
-4
10
-3
10
-2
s
10
0
0
tp
0
2
4
6
8
10
12
VCB [V]
2005-11-08
5
BFP740F
Third order Intercept Point IP3 = ƒ (IC)
Transition frequency fT = ƒ(IC)
(Output, ZS = ZL = 50 Ω )
VCE = parameter in V, f = 2 GHz
VCE = parameter, f = 900 MHz
30
50
27
4.00V
3.00V
45
24
2.00V
40
2V to 4V
1.00V
21
35
30
1.00V
fT [GHz]
IP3 [dBm]
18
15
25
0.75V
12
20
9
15
6
10
3
5
0.50V
0
0
5
10
15
20
25
30
0
35
0
5
10
15
I [mA]
20
25
30
35
I [mA]
C
C
Power gain Gma, Gms = ƒ (f)
Power gain Gma, Gms = ƒ (IC)
VCE = 3 V, I C = 25 mA
VCE = 3 V
f = parameter in GHz
55
34
32
50
0.90GHz
30
45
28
1.80GHz
40
2.40GHz
26
3.00GHz
24
G [dB]
G [dB]
35
30
G
4.00GHz
22
5.00GHz
ms
20
25
6.00GHz
Gma
18
20
|S |2
16
21
15
14
10
5
12
0
1
2
3
4
5
10
6
0
5
10
15
20
25
30
35
IC [mA]
f [GHz]
[GHz]
2005-11-08
6
BFP740F
Power gain Gma, Gms = ƒ (VCE)
Noise figure F = ƒ(I C)
IC = 25 mA
VCE = 3 V, f = parameter in GHz
f = parameter in GHz
ZS = ZSopt
2
36
1.8
32
0.90GHz
1.6
28
1.80GHz
2.40GHz
3.00GHz
24
f = 6GHz
f = 5GHz
f = 3GHz
f = 2.4GHz
f = 1.8GHz
f = 0.9GHz
1.4
4.00GHz
1.2
5.00GHz
20
F [dB]
G [dB]
6.00GHz
1
16
0.8
12
0.6
8
0.4
4
0
0.2
0
0.5
1
1.5
2
2.5
V
CE
3
3.5
4
4.5
0
5
0
5
10
15
[V]
20
25
30
I [mA]
c
Noise figure F = ƒ(IC )
VCE = 3 V, f = 1.8 GHz
Noise figure F = ƒ(f)
VCE = 3 V, ZS = ZSopt
2
1.4
1.8
1.2
1.6
1
1.4
0.8
ZS = 50Ω
1
F [dB]
F [dB]
1.2
Z =Z
S
Sopt
0.6
0.8
0.6
0.4
IC = 25mA
0.4
IC = 8mA
0.2
0.2
0
0
5
10
15
20
25
0
30
I [mA]
0
1
2
3
4
5
6
7
f [GHz]
c
2005-11-08
7
BFP740F
Source impedance for min.
noise figure vs. frequency
VCE = 3 V, I C = 8 mA / 25 mA
1
1.5
2
0.5
0.4
3
0.3
4
Ic = 8mA
0.2
5
4GHz
5GHz
0.1
0.2
0
6GHz
0.4
1
3GHz
10
2.4GHz
1.8GHz
2
4
0.9GHz
−0.1
−10
−0.2
−5
−4
Ic = 25mA
−0.3
−3
−0.4
−0.5
−2
−1
−1.5
2005-11-08
8
Package TSFP-4
BFP740F
Package Outline
0.55 ±0.04
0.2 ±0.05
3
1
1.2 ±0.05
0.2 ±0.05
4
2
0.2 ±0.05
10˚ MAX.
0.8 ±0.05
1.4 ±0.05
0.15 ±0.05
0.5 ±0.05
0.5 ±0.05
Foot Print
0.9
0.45
0.35
0.5
0.5
Marking Layout
Manufacturer
Pin 1
Type code
BFP420F
Example
Standard Packing
Reel ø180 mm = 3.000 Pieces/Reel
Reel ø330 mm = 10.000 Pieces/Reel
0.2
1.4
8
4
Pin 1
0.7
1.55
2005-11-08
9
BFP740F
Published by Infineon Technologies AG,
St.-Martin-Strasse 53,
81669 München
© Infineon Technologies AG 2005.
All Rights Reserved.
Attention please!
The information herein is given to describe certain components and shall not be
considered as a guarantee of characteristics.
Terms of delivery and rights to technical change reserved.
We hereby disclaim any and all warranties, including but not limited to warranties of
non-infringement, regarding circuits, descriptions and charts stated herein.
Information
For further information on technology, delivery terms and conditions and prices
please contact your nearest Infineon Technologies Office (www.Infineon.com).
Warnings
Due to technical requirements components may contain dangerous substances.
For information on the types in question please contact your nearest Infineon
Technologies Office.
Infineon Technologies Components may only be used in life-support devices or
systems with the express written approval of Infineon Technologies, if a failure of
such components can reasonably be expected to cause the failure of that life-support
device or system, or to affect the safety or effectiveness of that device or system.
Life support devices or systems are intended to be implanted in the human body, or
to support and/or maintain and sustain and/or protect human life. If they fail, it is
reasonable to assume that the health of the user or other persons may be endangered.
2005-11-08
10
Similar pages