System LED Drivers for Mobile Phones 13LEDs ALC* Flash and Illumination (*ALC : Auto Luminous Control) BD6086GU No.11041EAT16 ●Description BD6086GU is a composite LED driver best-suited for mobile phone display. With an analog illumination intensity sensor connected, this LED driver mounts an auto luminous control (ALC) function capable of automatically adjusting the backlight current depending on an ambient illumination intensity to reduce the set power consumption. With a key backlight driver mounted, this driver enables the ON/OFF setting to be made depending on the ambient illumination intensity. In addition, this driver realizes an eye-catching display through the use of two RGB LED drivers supporting a slope control function. With two channels of variable output type regulators mounted, this driver can be used for LCD and camera. This driver eliminates the need for additional wirings on a flexible substrate through the GPIO mounted. 2 The DC/DC module adopts a charge pump system and rarely uses a coil. Furthermore, it employs a VCSP85H4 (4.5mm 0.5mm pitch) chip size package for compaction and thinness. ●Futures 1) LED Driver (7ch) for LCD Backlight ・Incorporates 4 channels for main settings and 3 channels optionally selectable for either independent control or main setting depending on register settings. ・Provides a driver assigned for main settings with various functions such as an automatic current value adjustment function by an illumination intensity sensor, a slope control function against current value variation, an LED current value adjustment function for reflecting a setting value in a register through external pin synchronization and an LED current value adjustment function through external pin PWM input. 2) RGB LED driver (dual driver) ・Incorporates a slope control function (capable of controlling dual drivers independently) ・Capable of selecting (setting) a battery or DC/DC output module as a destination (register setting) ・Capable of using one driver for GOP output mode (register setting) 3) Illumination intensity sensor interface ・Incorporates various functions such as a sensor bias adjustment function, an ADC with an average filter, a gain/offset adjustment function and an LOG conversion function so that options can be increased for illumination intensity sensors (Photo Diode, Photo Transistor, Photo IC (Linear/LOG)). ・Incorporates an auto gain switching function for suppressing an illumination intensity sensor current at high illumination intensity and improving sensitivity at low illumination intensity ・Capable of customizing an LED current value according to a table setting. 4) Built-in regulator (2 channels) ・REG1 2.8V Iomax=150mA Low power consumption mode available ・REG2 1.5V/1.8V Iomax=150mA Low power consumption mode available ・REG1, REG2 Both can be controlled independently via external pins. 5) Charge pump system DC/DC ・Supports an output voltage fixed mode function (3.9V/4.2V/4.5V/4.8V) ・Mounts a soft start function, an overvoltage protection function (auto recovery type) and an overcurrent protection (auto recovery) 6) Key backlight controller ・Capable of ON/OFF control depending on an ambient illumination intensity ・Capable of adjusting key backlight brightness via MAX DUTY setting ・Capable of making an fade-in/fade-out setting via PWM 7) Built-in general-purpose port (4 channels) ・GPIO4ch ・Permits the selection of a complementary or open drain for output. 8) Thermal shutdown 2 9) I C BUS Fast mode support (max. 400 kHz) * Radiation-proof is not designed. * This Description is subject to change without a prior notice. * This Description is not a delivery specification. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 1/80 2011.04 - Rev.A BD6086GU Technical Note ●Absolute Maximum Ratings (Ta=25 ℃) Parameter Maximum Applied voltage Power Dissipation Symbol Limits Unit VMAX 7 V Pd 1900 Note1) mW Operating Temperature Range Topr -25 ~ +85 ℃ Storage Temperature Range Tstg -55 ~ +150 ℃ Note1) Power dissipation deleting is 15.2mW/ ℃, when it’s used in over 25 ℃. (It’s deleting is on the board that is ROHM’s standard) ●Operating conditions(VBAT≧VIO, VBAT≧VGPIO, Ta=-25~85℃) Parameter VBAT input voltage VIO pin voltage VGPIO pin voltage Symbol Limits Unit VBAT 2.7 ~ 5.5 V VIO 1.65 ~ 3.3 V VGPIO 1.65 ~ 3.3 V ●Electrical Characteristics(Unless otherwise specified, Ta=25℃, VBAT=3.6V, VIO=VGPIO=1.8V) Parameter Symbol Limits Min. Typ. Max. Unit Condition 【Circuit Current】 VBAT Circuit current 1 IBAT1 - 0.1 3.0 μA RESETB=0V, VIO=VGPIO=0V VBAT Circuit current 2 IBAT2 - 0.5 3.0 μA RESETB=0V, VIO=1.8V, VGPIO=0V VBAT Circuit current 3 IBAT3 - 7.5 11.3 μA VBAT Circuit current 4 IBAT4 - 110 165 μA VBAT Circuit current 5 IBAT5 - 61 65 mA VBAT Circuit current 6 IBAT6 - 92 102 mA VBAT Circuit current 7 IBAT7 - 123 140 mA VBAT Circuit current 8 IBAT8 - 0.35 1.0 mA REG1,REG2 Low consumption mode Io=0mA,VIO=1.8V, VGPIO=0V (control is rejistor setup) REG1,REG2 Nomal mode Io=0mA (control is rejistor setup) DC/DC x1mode, Io=60mA VBAT=4.0V DC/DC x1.5mode, Io=60mA VBAT=3.6V DC/DC x2mode, Io=60mA VBAT=2.7V ALC operating , Setup of ALCEN=1, AD cycle =0.5s Sensor current removes 【LED Driver】 LED current Step (Current Setup) ILEDSTPW1 128 ILEDSTPRGB1 128 LED current Step (At slope) ILEDSTPW2 256 ILEDSTPRGB2 128 step step LED Maximum setup current 1 IMAX1 - - 25.6 mA LED Maximum setup current 2 IMAX2 - - 30.48 mA LED current accurate 1 ILED1 18 20 22 mA LED current accurate 2 ILED2 18 20 22 mA LED current Matching ILEDMT - 5 10 % L Level output voltage VOL2 - - 0.2 V LED OFF Leak current ILKL - - 1.0 μA www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 2/80 WLED1~7 RGB1 group, RGB2 group WLED1~7 RGB1 group, RGB2 group WLED1~7, LED terminal voltage =1V RGB1 group, RGB2 group, LED terminal voltage =1V RGBISET=100kΩ WLED1~7, ILED=20mA setup, LED terminal voltage =1V RGB1 group, RGB2 group ILED=20mA, RGBISET =120kΩ LED terminal voltage =1V WLED1~7, RGB1 group, RGB2 group RGB2 group GPO setup, IOL=1mA 2011.04 - Rev.A BD6086GU Technical Note ●Electrical Characteristics(Unless otherwise specified, Ta=25℃, VBAT=3.6V, VIO=VGPIO=1.8V) Parameter Symbol Limits Min. Typ. Max. Unit Condition 【DC/DC (Charge Pump)】 Output voltage 1 Output voltage 2 VOCP1 VOCP2 - Vf+0.2 Vf+0.25 V 3.705 3.9 4.095 V 3.99 4.2 4.41 V 4.275 4.5 4.725 V Vf is forward direction of LED At fixed voltage output mode, Io=60mA VBAT≧3.2V 4.56 4.8 5.04 V Load stability Iout - - 255 mA Oscillator frequency fosc 0.8 1.0 1.2 MHz OVP - 6.0 6.5 V OCP - 250 375 mA VOUT=0V 2.85 3.0 3.15 V Io=200µA 2.47 2.6 2.73 V Io=200µA IomaxS 30 - - mA ROFFS - 1.0 1.5 kΩ VISS 0 - VoS× 255/256 V Over voltage protection detect voltage Over current protection detect current 【Sensor interface】 SBIAS Output voltage SBIAS Maximum OutputCurrent SBIAS Discharge resister at OFF SSENSinput voltage range ADC resolution ADC integral calculus non-linearity ADC differential calculus non-linearity SSENS Input impedance VoS ADRES 8 VBAT≧3.2V, VOUT=4V Vo=2.6Vsetup bit ADINL -3 - +3 LSB ADDNL -1 - +1 LSB RSSENS 1 - - MΩ Output voltage 1 Vo11 2.716 2.80 2.884 V Output voltage 2 Vo12 2.668 2.80 2.912 V I/O voltage difference Vsat1 - 0.2 0.3 V Load stability ΔVo1 - 10 60 mV Input stability ΔVi1 - 10 60 mV Ripple Rejection Ratio RR1 40 50 - dB Short circuit current limit Ilim01 - 225 450 mA Discharge resister at OFF ROFF1 - 1.0 1.5 kΩ 【REG1】 Io=150mA, VBAT≧3.1V (Normal mode) Io=100µA, VBAT≧3.1V (At low consumption mode) VBAT=2.5V, Io=150mA (Normal mode) Io=1~150mA (Normal mode) VBAT=3.2~5.5V, Io=150mA (Normal mode) f=100Hz, Vin=200mVp-p (Normal mode) Vo=0V (Normal mode) 【REG2】 Output voltage 1 Vo21 Output voltage 2 Vo22 Load stability 1.74 1.80 1.86 V 1.44 1.50 1.56 V 1.71 1.80 1.89 V 1.425 1.50 1.575 V ΔVo2 - 10 60 mV Input stability ΔVi2 - 10 60 mV Ripple Rejection Ratio RR2 45 55 - dB Short circuit current limit Ilim02 - 225 450 mA Discharge resister at OFF ROFF2 - 1.0 1.5 kΩ www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 3/80 Io=150mA (Normal mode) Io=100µA (At low consumption mode) Vo21=1.8V setup Io=1~150mA (Normal mode) Vo21=1.8V setup, VBAT=3.2~5.5V, Io=150mA (Normal mode) Vo21=1.8V setup f=100Hz Vin=200mVp-p (Normal mode) Vo=0V (Normal mode) 2011.04 - Rev.A BD6086GU Technical Note ●Electrical Characteristics(Unless otherwise specified, Ta=25℃, VBAT=3.6V, VIO=VGPIO=1.8V) Parameter Symbol Limits Min. Typ. -0.3 - Max. Unit Condition 【SDA, SCL】(I2C Interface) L level input voltage VILI H level input voltage VIHI 0.25 × VIO VBAT +0.3 V VOLI 0.75 × VIO 0.05 × VIO 0 - 0.3 V SDA pin, IOL=3 mA linI -10 - 10 μA Input voltage = 0.1×VIO~0.9×VIO L level input voltage VILV -0.3 - H level input voltage VIHV Hysteresis of Schmitt trigger input L level output voltage Input current VhysI - - V V 【REG2VSEL】(CMOS input pin) Input current IinV 0.75 × VBAT -10 - 0.25 × VBAT VBAT +0.3 10 V V μA 【RGB1CNT, RGB2CNT】(CMOS input pin with the Pull-down resistance) 0.25 × L level input voltage VILL -0.3 V VIO 0.75 × VBAT H level input voltage VIHL V VIO +0.3 Input current IinL 3.6 10 μA Input voltag= 0.1×VBAT~0.9×VBAT Input voltag = 1.8V 【OSYNC, WPWMIN】(NMOS input pin with the Pull-down resistance) L level input voltage VILA -0.3 - H level input voltage VIHA 1.4 - IinA - fwpwm - Input current PWM Input frequency range 3.6 0.3 VBAT +0.3 10 V μA Input voltage =1.8V 200 - Hz WPWMIN pin V 【REG1EN, REG2EN, REG1MD, REG2MD】(NMOS input pin with the Pull-down resistance) L level input voltage VILC -0.3 - H level input voltage VIHC 1.4 - IinC - 1 Input current 0.3 VBAT +0.3 10 V V μA Input voltage =1.8V 0.2 V IOL=1mA - V At complementary output, IOH=1mA 【GPIO1~4】(CMOS input and CMOS/ NMOS open drain output pin) L level input voltage VOLG H level input voltage VOHG VGPIO -0.2 - 0.25 × VGPIO VGPIO +0.3 L level input voltage VILG -0.3 - V H level input voltage VIHG 0.75 × VGPIO - Input current IinG -10 - 10 μA Output leak Current ILKG - 3.3 10 μA Clock output frequency fcko 25.00 31.25 37.50 kHz V At setup of input mode Input voltage =0.1×VGPIO~0.9×VGPIO At open drain output, Vout=3.3V At GPIO1 terminal, illumination standard clock on 【KBLT】(Key backlight control CMOS/ NMOS open drain output pin) L level input voltage VOLK H level input voltage VOHK Output leak Current ILKK VGPIO -0.2 - - 0.2 V IOL=1mA - - V At complementary output, IOH=1mA 3.3 10 μA At complementary output, VGPIO =3.3V - 0.2 V IOL=1mA - - V IOH=1mA 【GC1, GC2】(Sensor gain control CMOS output pin) L level input voltage VOLS H level input voltage VOHS VoS -0.2 【INTB】(NMOS open drain output pin) L level input voltage VOLO - - 0.2 V IOL=1mA Output leak Current ILKO - - 1.0 μA Vout=3.3V www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 4/80 2011.04 - Rev.A BD6086GU Technical Note ●Block Diagram / Application Circuit example CPGND C2P C2N 1μF C1P C1N 1μF VBAT VOUT Charge Pump VBATCP VBAT1 VBAT2 VOUTM x1 / x1.5 / x2 Charge Pump Mode Control 1μF WLED1 VBAT3 OVP WLED2 LED port voltage Feedback VIO WLED3 Main LCD Back Light Main Control RESETB WLED4 SCL WLED5 SDA MAIN WLED6 RGB1CNT W5-7LED Individual Control Main Control RGB2CNT WLED7 WGND VBAT REG1EN GPO G1LED REG1MD I/O REG2EN LEVEL SHIFT I2C CONTROL B1LED RGB1 LED Slope Control (RGB1) RGB1 REG2MD REG2VSEL R1LED G2LED Slope Control (RGB2) GPO(Open Drain) RGB2 WPWMIN B2LED RGB2 LED REG OSYNC R2LED RG BGND 32KI N VBAT DGND VBATREG REG1 SBIAS 2.8V REG1O Io=150mA 1μF 1μF REG2 BH1600FVC Sensor I/F SSENS GC1 REG2O 1.5V/1.8V Io =150mA ALC 1μF VGPIO GC2 GPIO1 GPIO2 SGND GPIO GPIO3 GPIO4 WIREF TSD RGBIREF VREF INT B VBAT Key Pad LED ・・ RGBISET Key Backlight Controller T4 T3 T2 T1 GND2 GND1 120kΩ KBLT Block Diagram / Application Circuit example www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 5/80 2011.04 - Rev.A BD6086GU Technical Note ●Pin Arrangement [Bottom View] H T4 REG2O VBATREG G VGPIO INTB F GND1 KBLT GPIO1 E WLED7 WLED6 GPIO2 REG1O VBAT2 VBAT3 SBIAS T3 OSYNC GND2 SGND SSENS REG1EN GC1 GC2 RESETB VIO REG2VSEL 32KIN SDA SCL DGND REG2EN WPWMIN (INDEX) D WLED5 WLED4 GPIO3 C WGND WLED3 GPIO4 B WLED2 WLED1 R1LED B1LED R2LED A T1 VBAT1 G1LED RGBGND 1 2 3 4 www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. RGB1CNT RGB2CNT VOUTM RGBISET REG1MD REG2MD 6/80 VOUT C1P C2P B2LED C1N VBATCP G2LED CPGND C2N T2 5 6 7 8 2011.04 - Rev.A BD6086GU Technical Note ●Outside size figure VCSP85H4 CSP small Package SIZE : 4.5mm×4.5mm (Tolerance : ± 0.1mm each side) height 1.0mm max Ball pitch : 0.5 mm (Unit : mm) www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 7/80 2011.04 - Rev.A BD6086GU Technical Note ●Pin Functions No Pin No. Pin Name I/O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 B8 A2 H5 H6 H3 A1 A8 H8 H1 F8 G1 F7 E6 E7 A6 F1 VBATCP VBAT1 VBAT2 VBAT3 VBATREG T1 T2 T3 T4 VIO VGPIO RESETB SDA SCL CPGND GND1 I I/O I - 17 G6 GND2 - Input Level For Power For Ground GND GND GND GND GND VBAT VBAT GND VBAT GND VBAT GND VBAT GND VBAT GND VBAT GND VBAT GND VBAT GND VBAT VBAT VBAT - 18 C1 WGND VBAT 19 A4 RGBGND VBAT 20 E8 DGND VBAT 21 B7 C1N I/O VBAT GND 22 C7 C1P I/O GND 23 A7 C2N I/O VBAT GND 24 C8 C2P I/O GND 25 D8 VOUT O GND 26 D7 VOUTM O GND 27 C4 RGBISET I VBAT GND 28 H4 REG1O O VBAT GND 29 H2 REG2O O VBAT GND 30 B2 WLED1 I GND 31 B1 WLED2 I GND 32 C2 WLED3 I GND 33 D2 WLED4 I GND 34 D1 WLED5 I GND 35 E2 WLED6 I GND 36 E1 WLED7 I GND 37 B3 R1LED I GND 38 A3 G1LED I GND 39 B4 B1LED I GND 40 B5 R2LED I GND 41 A5 G2LED I GND 42 B6 B2LED I GND 43 D5 RGB1CNT I VBAT GND 44 D6 RGB2CNT I VBAT GND 45 F4 REG1EN I VBAT GND 46 G3 REG2EN I VBAT GND 47 H7 SBIAS O VBAT GND 48 G8 SSENS I VBAT GND 49 F5 GC1 O VBAT GND 50 F6 GC2 O VBAT GND 51 G5 OSYNC I VBAT GND 52 G7 SGND VBAT 53 F3 GPIO1 I/O VBAT GND 54 E3 GPIO2 I/O VBAT GND 55 D3 GPIO3 I/O VBAT GND 56 C3 GPIO4 I/O VBAT GND 57 F2 KBLT O VBAT GND 58 G2 INTB O VBAT GND 59 E5 32KIN I VBAT GND 60 C5 REG1MD I VBAT GND 61 C6 REG2MD I VBAT GND 62 G4 WPWMIN I VBAT GND 63 E4 REG2VSEL I VBAT GND *A setup of a register is separately necessary to validate it. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. ESD Diode Functions Battery is connected Battery is connected Battery is connected Battery is connected Battery is connected Test Pin (short to GND) Test Pin (short to GND) Test Pin (short to GND) Test Pin (OPEN) I/O voltage source is connected GPIO voltage source is connected Reset input (L: RESET, H: RESET cancel) I2C data input I2C clock input Ground Ground A A A A A B S S N C C H I H B B Ground B Ground Ground Ground Charge Pump capacitor is connected Charge Pump capacitor is connected Charge Pump capacitor is connected Charge Pump capacitor is connected Charge Pump output pin Charge Pump output pin RGB LED standard current REG1 output pin REG2 output pin LCD Back Light LED is connected 1 LCD Back Light LED is connected 2 LCD Back Light LED is connected 3 LCD Back Light LED is connected 4 LCD Back Light LED is connected 5 LCD Back Light LED is connected 6 LCD Back Light LED is connected 7 Red LED1 connected Green LED1 connected Blue LED1 connected Red LED2 connected Green LED2 connected Blue LED2 connected RGB1 LED external ON/OFF Synchronism(L:OFF, H:ON)* RGB2 LED external ON/OFF Synchronism(L:OFF, H:ON)* REG1 ON/OFF control Pin (L: OFF, H: ON) REG2 ON/OFF control Pin (L: OFF, H: ON) Bias output for the AmbientLight Sensor AmbientLight Sensor input AmbientLight Sensor gain control output 1 AmbientLight Sensor gain control output 2 Current offset external synchronization Ground General purpose output port 1 General purpose output port 2 General purpose output port 3 General purpose output port 4 Key back light control output General-purpose port interrupts, output pin General-purpose port clock input pin REG1 mode changeover terminal (L : low consumption, H:Normal) REG2 mode changeover terminal (L : low consumption, H:Normal) Back light outside pulse width modulation output pin (L : OFF and H: on) * REG2 output voltage switching (L : 1.8V and H:1.5V) B B B F A F A A A O Q Q E E E E E E E E E E E E E J J L L Q N X X L B V V V V W U H L L L R 8/80 2011.04 - Rev.A BD6086GU Technical Note ●Equivalent circuit diagram A B VBAT G C VBAT E VIO I VBAT VBAT O VBAT U F VBAT J VBAT VIO L VBAT VBAT N Q VBAT VBAT R VBAT VBAT S VBAT VBAT V VBAT W VBAT VGPIO X VoS VBAT VGPIO VGPIO H www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. VBAT 9/80 VIO VBAT 2011.04 - Rev.A BD6086GU Technical Note ●I2C BUS format 2 The writing/reading operation is based on the I C slave standard. ・Slave address A7 A6 A5 A4 A3 A2 1 1 1 0 1 1 A1 0 R/W 1/0 ・Bit Transfer SCL transfers 1-bit data during H. SCL cannot change signal of SDA during H at the time of bit transfer. If SDA changes while SCL is H, START conditions or STOP conditions will occur and it will be interpreted as a control signal. SDA SCL SDA a state of stability: SDA It can change Data are effective ・START and STOP condition When SDA and SCL are H, data is not transferred on the I2C- bus. This condition indicates, if SDA changes from H to L while SCL has been H, it will become START (S) conditions, and an access start, if SDA changes from L to H while SCL has been H, it will become STOP (P) conditions and an access end. SDA SCL S P STOP condition START condition ・Acknowledge It transfers data 8 bits each after the occurrence of START condition. A transmitter opens SDA after transfer 8bits data, and a receiver returns the acknowledge signal by setting SDA to L. DATA OUTPUT BY TRANSMITTER not acknowledge DATA OUTPUT BY RECEIVER acknowledge SCL S 1 8 9 clock pulse for acknowledgement START condition www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 2 10/80 2011.04 - Rev.A BD6086GU Technical Note ・Writing protocol A register address is transferred by the next 1 byte that transferred the slave address and the write-in command. The 3rd byte writes data in the internal register written in by the 2nd byte, and after 4th byte or, the increment of register address is carried out automatically. However, when a register address turns into the last address, it is set to 00h by the next transmission. After the transmission end, the increment of the address is carried out. *1 S X X X X X X X 0 A A7 A6 A5 A4 A3 A2 A1 A0 A D7 D6 D5 D4 D3 D2 D1 D0 A slave address register address *1 D7 D6 D5 D4 D3 D2 D1 D0 A P DATA DATA register address increment register address increment R/W=0(write) A=acknowledge(SDA LOW) A=not acknowledge(SDA HIGH) S=START condition P=STOP condition *1: Write Timing from master to slave from slave to master ・Reading protocol It reads from the next byte after writing a slave address and R/W bit. The register to read considers as the following address accessed at the end, and the data of the address that carried out the increment is read after it. If an address turns into the last address, the next byte will read out 00h. After the transmission end, the increment of the address is carried out. S X X X X X X X 1 A D7 D6 D5 D4 D3 D2 D1 D0 A slave address D7 D6 D5 D4 D3 D2 D1 D0 A P DATA DATA register address increment R/W=1(read) register address increment A=acknowledge(SDA LOW) A=not acknowledge(SDA HIGH) S=START condition P=STOP condition from master to slave from slave to master ・Multiple reading protocols After specifying an internal address, it reads by repeated START condition and changing the data transfer direction. The data of the address that carried out the increment is read after it. If an address turns into the last address, the next byte will read out 00h. After the transmission end, the increment of the address is carried out. S X X X X X X X 0 A A7 A6 A5 A4 A3 A2 A1 A0 A Sr X X X X X X X 1 A slave address register address slave address R/W=0(write) R/W=1(read) D7 D6 D5 D4 D3D2 D1D0 A DATA D7D6 D5D4D3D2D1D0 A P DATA register address increment register address increment A=acknowledge(SDA LOW) A=not acknowledge(SDA HIGH) S=START condition P=STOP condition Sr=repeated START condition from master to slave from slave to master As for reading protocol and multiple reading protocols, please do A(not acknowledge) after doing the final reading operation. It stops with read when ending by A(acknowledge), and SDA stops in the state of Low when the reading data of that time is 0. However, this state returns usually when SCL is moved, data is read, and A(not acknowledge) is done. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 11/80 2011.04 - Rev.A BD6086GU Technical Note ●Timing diagram SDA t BUF t SU;DAT t LOW t HD;STA SCL t HD;STA S t SU;STO t SU;STA t HD;DAT Sr t HIGH P ●Electrical Characteristics(Unless otherwise specified, Ta=25 ℃, VBAT=3.6V, VIO=1.8V) Standard-mode Parameter Symbol Min. Typ. Max. 【I2C BUS format】 Min. S Fast-mode Typ. Max. Unit SCL clock frequency fSCL 0 - 100 0 - 400 kHz LOW period of the SCL clock tLOW 4.7 - - 1.3 - - μs HIGH period of the SCL clock tHIGH 4.0 - - 0.6 - - μs Hold time (repeated) START condition After this period, the first clock is generated tHD;STA 4.0 - - 0.6 - - μs Set-up time for a repeated START condition tSU;STA 4.7 - - 0.6 - - μs Data hold time tHD;DAT 0 - 3.45 0 - 0.9 μs Data set-up time tSU;DAT 250 - - 100 - - ns Set-up time for STOP condition tSU;STO 4.0 - - 0.6 - - μs Bus free time between a STOP and START condition tBUF 4.7 - - 1.3 - - μs www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 12/80 2011.04 - Rev.A BD6086GU Technical Note ●Register List Resister data Address W/R 00h W Function D7 D6 D5 D4 D3 D2 D1 D0 VOUT(1) VOUT(0) DCDCMD DCDCFON - - - SFTRST Soft Reset DC/DC driver function 01h W W7MD W6MD W5MD MLEDMD LED driver function 02h W RGB2PW(1) RGB2PW(0) RGB1PW(1) RGB1PW(0) W7EN W6EN W5EN MLEDEN REG2CNT REG2ON REG1CNT REG1ON Power control 03h W - IMLED(6) IMLED(5) IMLED(4) IMLED(3) IMLED(2) IMLED(1) IMLED(0) 04h W - IW5(6) IW5(5) IW5(4) IW5(3) IW5(2) IW5(1) IW5(0) WLED5 current 05h W - IW6(6) IW6(5) IW6(4) IW6(3) IW6(2) IW6(1) IW6(0) WLED6 current 06h W - IW7(6) IW7(5) IW7(4) IW7(3) IW7(2) IW7(1) IW7(0) WLED7 current 07h W THL (3) THL (2) THL (1) THL (0) TLH (3) TLH (2) TLH (1) TLH (0) Main current transition 08h W - - IOFS(5) IOFS(4) IOFS(3) IOFS(2) IOFS(1) IOFS(0) Main current offset Main current 09h W WPWMEN SBIASON - OSYNCEN - OSSLP(2) OSSLP(1) OSSLP(0) OSYNC current transition 0Ah R - IALED(6) IALED(5) IALED(4) IALED(3) IALED(2) IALED(1) IALED(0) Main current data read 0Bh W 0Ch W ADCYC (1) ADCYC (0) SOFS (3) SOFS (2) GAIN (1) GAIN(0) STYPE VSB MDCIR ALCEN SOFS (1) SOFS (0) SGAIN (3) SGAIN (2) SGAIN (1) SGAIN (0) Measurement mode setup Measurement data adjustment 0Dh R - - - - AMB (3) AMB (2) AMB (1) AMB (0) Brightness data output 0Eh W - IU0 (6) IU0 (5) IU0 (4) IU0 (3) IU0 (2) IU0 (1) IU0 (0) Brightness 0 : LED current setup 0Fh W - IU1 (6) IU1 (5) IU1 (4) IU1 (3) IU1 (2) IU1 (1) IU1 (0) Brightness 1 : LED current setup 10h W - IU2 (6) IU2 (5) IU2 (4) IU2 (3) IU2 (2) IU2 (1) IU2 (0) Brightness 2 : LED current setup 11h W - IU3 (6) IU3 (5) IU3 (4) IU3 (3) IU3 (2) IU3 (1) IU3 (0) Brightness 3 : LED current setup 12h W - IU4 (6) IU4 (5) IU4 (4) IU4 (3) IU4 (2) IU4 (1) IU4 (0) Brightness 4 : LED current setup 13h W - IU5 (6) IU5 (5) IU5 (4) IU5 (3) IU5 (2) IU5 (1) IU5 (0) Brightness 5 : LED current setup 14h W - IU6 (6) IU6 (5) IU6 (4) IU6 (3) IU6 (2) IU6 (1) IU6 (0) Brightness 6 : LED current setup 15h W - IU7 (6) IU7 (5) IU7 (4) IU7 (3) IU7 (2) IU7 (1) IU7 (0) Brightness 7 : LED current setup 16h W - IU8 (6) IU8 (5) IU8 (4) IU8 (3) IU8 (2) IU8 (1) IU8 (0) Brightness 8 : LED current setup 17h W - IU9 (6) IU9 (5) IU9 (4) IU9 (3) IU9 (2) IU9 (1) IU9 (0) Brightness 9 : LED current setup 18h W - IUA (6) IUA (5) IUA (4) IUA (3) IUA (2) IUA (1) IUA (0) Brightness A : LED current setup 19h W - IUB (6) IUB (5) IUB (4) IUB (3) IUB (2) IUB (1) IUB (0) Brightness B : LED current setup 1Ah W - IUC (6) IUC (5) IUC (4) IUC (3) IUC (2) IUC (1) IUC (0) Brightness C : LED current setup 1Bh W - IUD (6) IUD (5) IUD (4) IUD (3) IUD (2) IUD (1) IUD (0) Brightness D : LED current setup 1Ch W - IUE (6) IUE (5) IUE (4) IUE (3) IUE (2) IUE (1) IUE (0) Brightness E : LED current setup Brightness F : LED current setup 1Dh W - IUF (6) IUF (5) IUF (4) IUF (3) IUF (2) IUF (1) IUF (0) 1Eh W - - KBSLP(1) KBSLP(0) MDTY(3) MDTY(2) MDTY(1) MDTY(0) Key driver control 1Fh W - - CHYS (1) CHYS (0) CTH (3) CTH (2) CTH (1) CTH (0) Key driver 2 Value judging control setup 20h W B2GPO G2GPO R2GPO KBFIX GP4DIR GP3DIR GP2DIR GP1DIR GPIO Input/output setup 21h W GPO1OSC - - KBOD GPO4OD GPO3OD GPO2OD GPO1OD GPIO output mode setup 22h W B2LV G2LV R2LV - GPO4LV GPO3LV GPO2LV GPO1LV GPIO output data setup 23h W GPCLR - - - GP4MSK GP3MSK GP2MSK GP1MSK GPIO Interrupt mask setup 24h R GP4INT GP3INT GP2INT GP1INT GP4DAT GP3DAT GP2DAT GP1DAT GPIO Interruption factor read-out GPIO data read-out Input "0” for "-". Vacancy address may be use for test. Prohibit to accessing the address that isn’t mentioned and the register for test. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 13/80 2011.04 - Rev.A BD6086GU Address W/R 25h W Technical Note Resister data D7 D6 D5 D4 - RGB2MEL RGB2OS RGB2EN SFRGB1(1) SFRGB1(0) SRRGB1(1) SRRGB1(0) D1 D0 Function D3 D2 - RGB1MEL RGB1OS RGB1EN - TRGB1(2) TRGB1(1) TRGB1(0) RGB1-hour setup RGB LED control 26h W 27h W - IR11(6) IR11(5) IR11(4) IR11(3) IR11(2) IR11(1) IR11(0) R1 current 1 setup 28h W - IR12(6) IR12(5) IR12(4) IR12(3) IR12(2) IR12(1) IR12(0) R1 current 2 setup 29h W - - - - PR1(3) PR1(2) PR1(1) PR1(0) R1 Wave patturn setup 2Ah W - IG11(6) IG11(5) IG11(4) IG11(3) IG11(2) IG11(1) IG11(0) G1 current 1 setup 2Bh W - IG12(6) IG12(5) IG12(4) IG12(3) IG12(2) IG12(1) IG12(0) G1 current 2 setup 2Ch W - - - - PG1(3) PG1(2) PG1(1) PG1(0) G1 Wave patturn setup 2Dh W - IB11(6) IB11(5) IB11(4) IB11(3) IB11(2) IB11(1) IB11(0) B1 current 1 setup 2Eh W - IB12(6) IB12(5) IB12(4) IB12(3) IB12(2) IB12(1) IB12(0) B1 current 2 setup 2Fh W - - - - PB1(3) PB1(2) PB1(1) PB1(0) B1 Wave patturn setup - TRGB2(2) TRGB2(1) SFRGB2(1) SFRGB2(0) SRRGB2(1) SRRGB2(0) TRGB2(0) RGB2-hour setup 30h W 31h W - IR21(6) IR21(5) IR21(4) IR21(3) IR21(2) IR21(1) IR21(0) R2 current 1 setup 32h W - IR22(6) IR22(5) IR22(4) IR22(3) IR22(2) IR22(1) IR22(0) R2 current 2 setup 33h W - - - - PR2(3) PR2(2) PR2(1) PR2(0) R2 Wave patturn 34h W - IG21(6) IG21(5) IG21(4) IG21(3) IG21(2) IG21(1) IG21(0) G2 current 1 setup 35h W - IG22(6) IG22(5) IG22(4) IG22(3) IG22(2) IG22(1) IG22(0) G2 current 2 setup 36h W - - - - PG2(3) PG2(2) PG2(1) PG2(0) G2 Wave patturn setup 37h W - IB21(6) IB21(5) IB21(4) IB21(3) IB21(2) IB21(1) IB21(0) B2 current 1 setup 38h W - IB22(6) IB22(5) IB22(4) IB22(3) IB22(2) IB22(1) IB22(0) B2 current 2 setup 39h W - - - - PB2(3) PB2(2) PB2(1) PB2(0) B2 Wave patturn setup Input "0” for "-". Vacancy address may be use for test. Prohibit to accessing the address that isn’t mentioned and the register for test. The time indicated by register explanation is the TYP time made by dividing of the built-in OSC. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 14/80 2011.04 - Rev.A BD6086GU Technical Note ●Register Map Address 00h < Software Reset, DC/DC Function Setup > Address R/W Bit7 Bit6 Bit5 00h W VOUT(1) VOUT(0) Initial Value 00h 0 0 Bit4 Bit3 Bit2 Bit1 Bit0 - - - SFTRST - - - 0 DCDCMD DCDCFON 0 0 Bit [7:6] : VOUT (1:0) VOUT Output Voltage Setting “00” : VOUT Output Voltage 3.9V “01” : VOUT Output Voltage 4.2V “10” : VOUT Output Voltage 4.5V “11” : VOUT Output Voltage 4.8V Refer to “●Description of DC/DC Operations” for detail. Bit [5:4] : DCDCMD, DCDCFON DC/DC Setting <DC/DC Return Mode> <DC/DC ON/OFF Control> “00” : LED Pin Return Depend on LED ON/OFF “01” : LEDPin Return Depend on LED ON/OFF “10” : Output Voltage Fixation Depend on LED ON/OFF “11” : Output Voltage Fixation Forced ON Refer to “●Description of DC/DC Operations” for detail. Bit [3:1] : (Not used) Bit0 : SFTRST Software Reset Command “0” : Reset cancel “1” : Reset (All register initializing) Refer to “1.Reset “ of “●Description of other operations” for detail. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 15/80 2011.04 - Rev.A BD6086GU Address 01h Technical Note < LED Pin Function Setup > Address R/W 01h W Initial Value 00h Bit7 Bit6 Bit5 Bit4 RGB2PW(1) RGB2PW(0) RGB1PW(1)RGB1PW(0) 0 Bit [7:6] : RGB2PW(1:0) 0 0 0 Bit3 Bit2 Bit1 Bit0 W7MD W6MD W5MD MLEDMD 0 0 0 0 RGB2 Connection Select (VBAT/VOUT) R2LED connection G2LED connection B2LED connnection “00” : VBAT VBAT VBAT “01” : VBAT VBAT VOUT “10” : VBAT VOUT VOUT “11” : VOUT VOUT VOUT Refer to “●RGB LED Driver Operation Description” for detail. Bit [5:4] : RGB1PW(1:0) RGB1 Connection Select (VBAT/VOUT) R1LED connection G1LED connection B1LED connnection “00” : VBAT VBAT VBAT “01” : VBAT VBAT VOUT “10” : VBAT VOUT VOUT “11” : VOUT VOUT VOUT Refer to “●RGB LED Driver Operation Description” for detail. Bit3 : W7MD LED7 Control Setting (Individual / Main allocation) “0” : LED7 Individual Control “1” : LED7 Main group allocation Refer to “●Description of white LED Driver Operations” for detail. Bit2 : W6MD LED6 Control Setting (Individual / Main allocation) “0” : LED6 Individual Control “1” : LED6 Main group allocation Refer to “●Description of white LED Driver Operations” for detail. Bit1 : W5MD LED5 Control Setting (Individual / Main allocation) “0” : LED5 Individual Control “1” : LED5 Main group allocation Refer to “●Description of white LED Driver Operations” for detail. Bit0 : MLEDMD “Main Group” LED Mode Select (Non ALC / with ALC) “0” : Non ALC mode “1” : ALC mode Refer to “●Description of white LED Driver Operations” for detail. Refer to “●The explanation of Auto Lighting Control” for detail. RGB*PW (1:0) does not assume to change dynamically. Please perform a fixed setup per design. And, do the setup of RGB*PW (1:0) when each LED is Off. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 16/80 2011.04 - Rev.A BD6086GU Address 02h Technical Note < Power Control > Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 02h W W7EN W6EN W5EN MLEDEN REG2CNT REG2ON REG1CNT REG1ON Initial Value 00h 0 0 0 0 0 0 0 0 Bit7 : W7EN LED7 Control (ON/OFF) “0” : LED7 OFF “1” : LED7 ON (individual control) Refer to “●Description of DC/DC Operations” for detail. Bit6 : W6EN LED6 Control (ON/OFF) “0” : LED6 OFF “1” : LED6 ON (individual control) Refer to “●Description of DC/DC Operations” for detail. Bit5 : W5EN LED5 Control (ON/OFF) “0” : LED5 OFF “1” : LED5 ON (individual control) Refer to “●Description of DC/DC Operations” for detail. Bit4 : MLEDEN Main Group LED Control (ON/OFF) “0” : Main group OFF “1” : Main group ON Refer to “●Description of DC/DC Operations” for detail. Bit3 : REG2CNT REG2 Mode Setting (Normal/Low Consumption) “0” : REG2 Low Consumption Mode “1” : REG2 Normal Mode Refer to ●Description of REG Operations” for detail. Bit2 : REG2ON REG2 Control (ON/OFF) “0” : REG2 OFF “1” : REG2 ON Refer to ●Description of REG Operations” for detail. Bit1 : REG1CNT REG1 Mode Setting (Normal/Low Consumption) “0” : REG1 Low Consumption Mode “1” : REG1 Normal Mode Refer to ●Description of REG Operations” for detail. Bit0 : REG1ON REG1 Control (ON/OFF) “0” : REG1 OFF “1” : REG1 ON Refer to ●Description of REG Operations” for detail. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 17/80 2011.04 - Rev.A BD6086GU Address 03h Technical Note < “Main Group” LED Current Setting at non-ALC mode > Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 03h W - IMLED(6) IMLED(5) IMLED(4) IMLED(3) IMLED(2) IMLED(1) IMLED(0) Initial Value 00h - 0 0 0 0 0 0 0 “1100100” : “1100101” : “1100110” : “1100111” : “1101000” : “1101001” : “1101010” : “1101011” : “1101100” : “1101101” : “1101110” : “1101111” : “1110000” : “1110001” : “1110010” : “1110011” : “1110100” : “1110101” : “1110110” : “1110111” : “1111000” : “1111001” : “1111010” : “1111011” : “1111100” : “1111101” : “1111110” : “1111111” : 20.2mA 20.4mA 20.6mA 20.8mA 21.0mA 21.2mA 21.4mA 21.6mA 21.8mA 22.0mA 22.2mA 22.4mA 22.6mA 22.8mA 23.0mA 23.2mA 23.4mA 23.6mA 23.8mA 24.0mA 24.2mA 24.4mA 24.6mA 24.8mA 25.0mA 25.2mA 25.4mA 25.6mA Bit7 : (Not used) Bit [6:0] : IMLED(6:0) Main Group LED Current Setting at non-ALC mode “0000000” : “0000001” : “0000010” : “0000011” : “0000100” : “0000101” : “0000110” : “0000111” : “0001000” : “0001001” : “0001010” : “0001011” : “0001100” : “0001101” : “0001110” : “0001111” : “0010000” : “0010001” : “0010010” : “0010011” : “0010100” : “0010101” : “0010110” : “0010111” : “0011000” : “0011001” : “0011010” : “0011011” : “0011100” : “0011101” : “0011110” : “0011111” : “0100000” : “0100001” : “0100010” : “0100011” : “0100100” : “0100101” : “0100110” : “0100111” : “0101000” : “0101001” : “0101010” : “0101011” : “0101100” : “0101101” : “0101110” : “0101111” : “0110000” : “0110001” : 0.2 mA 0.4 mA 0.6 mA 0.8 mA 1.0 mA 1.2 mA 1.4 mA 1.6 mA 1.8 mA 2.0 mA 2.2 mA 2.4 mA 2.6 mA 2.8 mA 3.0 mA 3.2 mA 3.4 mA 3.6 mA 3.8 mA 4.0 mA 4.2 mA 4.4 mA 4.6 mA 4.8 mA 5.0 mA 5.2 mA 5.4 mA 5.6 mA 5.8 mA 6.0 mA 6.2 mA 6.4 mA 6.6 mA 6.8 mA 7.0 mA 7.2 mA 7.4 mA 7.6 mA 7.8 mA 8.0 mA 8.2 mA 8.4 mA 8.6 mA 8.8 mA 9.0 mA 9.2 mA 9.4 mA 9.6 mA 9.8 mA 10.0 mA “0110010” : “0110011” : “0110100” : “0110101” : “0110110” : “0110111” : “0111000” : “0111001” : “0111010” : “0111011” : “0111100” : “0111101” : “0111110” : “0111111” : “1000000” : “1000001” : “1000010” : “1000011” : “1000100” : “1000101” : “1000110” : “1000111” : “1001000” : “1001001” : “1001010” : “1001011” : “1001100” : “1001101” : “1001110” : “1001111” : “1010000” : “1010001” : “1010010” : “1010011” : “1010100” : “1010101” : “1010110” : “1010111” : “1011000” : “1011001” : “1011010” : “1011011” : “1011100” : “1011101” : “1011110” : “1011111” : “1100000” : “1100001” : “1100010” : “1100011” : 10.2mA 10.4mA 10.6mA 10.8mA 11.0mA 11.2mA 11.4mA 11.6mA 11.8mA 12.0mA 12.2mA 12.4mA 12.6mA 12.8mA 13.0mA 13.2mA 13.4mA 13.6mA 13.8mA 14.0mA 13.2mA 14.4mA 14.6mA 14.8mA 15.0mA 15.2mA 15.4mA 15.6mA 15.8mA 16.0mA 16.2mA 16.4mA 16.6mA 16.8mA 17.0mA 17.2mA 17.4mA 17.6mA 17.8mA 18.0mA 18.2mA 18.4mA 18.6mA 18.8mA 19.0mA 19.2mA 19.4mA 19.6mA 19.8mA 20.0mA Refer to “●Description of white LED Driver Operations” for detail. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 18/80 2011.04 - Rev.A BD6086GU Address 04h Technical Note < LED5 Current setting (Independence control) > Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 04h W - IW5(6) IW5(5) IW5(4) IW5(3) IW5(2) IW5(1) IW5(0) Initial Value 00h - 0 0 0 0 0 0 0 “1100100” : “1100101” : “1100110” : “1100111” : “1101000” : “1101001” : “1101010” : “1101011” : “1101100” : “1101101” : “1101110” : “1101111” : “1110000” : “1110001” : “1110010” : “1110011” : “1110100” : “1110101” : “1110110” : “1110111” : “1111000” : “1111001” : “1111010” : “1111011” : “1111100” : “1111101” : “1111110” : “1111111” : 20.2mA 20.4mA 20.6mA 20.8mA 21.0mA 21.2mA 21.4mA 21.6mA 21.8mA 22.0mA 22.2mA 22.4mA 22.6mA 22.8mA 23.0mA 23.2mA 23.4mA 23.6mA 23.8mA 24.0mA 24.2mA 24.4mA 24.6mA 24.8mA 25.0mA 25.2mA 25.4mA 25.6mA Bit7 : (Not used) Bit [6:0] : IW5(6:0) LED5 Current Setting “0000000” : “0000001” : “0000010” : “0000011” : “0000100” : “0000101” : “0000110” : “0000111” : “0001000” : “0001001” : “0001010” : “0001011” : “0001100” : “0001101” : “0001110” : “0001111” : “0010000” : “0010001” : “0010010” : “0010011” : “0010100” : “0010101” : “0010110” : “0010111” : “0011000” : “0011001” : “0011010” : “0011011” : “0011100” : “0011101” : “0011110” : “0011111” : “0100000” : “0100001” : “0100010” : “0100011” : “0100100” : “0100101” : “0100110” : “0100111” : “0101000” : “0101001” : “0101010” : “0101011” : “0101100” : “0101101” : “0101110” : “0101111” : “0110000” : “0110001” : 0.2 mA 0.4 mA 0.6 mA 0.8 mA 1.0 mA 1.2 mA 1.4 mA 1.6 mA 1.8 mA 2.0 mA 2.2 mA 2.4 mA 2.6 mA 2.8 mA 3.0 mA 3.2 mA 3.4 mA 3.6 mA 3.8 mA 4.0 mA 4.2 mA 4.4 mA 4.6 mA 4.8 mA 5.0 mA 5.2 mA 5.4 mA 5.6 mA 5.8 mA 6.0 mA 6.2 mA 6.4 mA 6.6 mA 6.8 mA 7.0 mA 7.2 mA 7.4 mA 7.6 mA 7.8 mA 8.0 mA 8.2 mA 8.4 mA 8.6 mA 8.8 mA 9.0 mA 9.2 mA 9.4 mA 9.6 mA 9.8 mA 10.0 mA “0110010” : “0110011” : “0110100” : “0110101” : “0110110” : “0110111” : “0111000” : “0111001” : “0111010” : “0111011” : “0111100” : “0111101” : “0111110” : “0111111” : “1000000” : “1000001” : “1000010” : “1000011” : “1000100” : “1000101” : “1000110” : “1000111” : “1001000” : “1001001” : “1001010” : “1001011” : “1001100” : “1001101” : “1001110” : “1001111” : “1010000” : “1010001” : “1010010” : “1010011” : “1010100” : “1010101” : “1010110” : “1010111” : “1011000” : “1011001” : “1011010” : “1011011” : “1011100” : “1011101” : “1011110” : “1011111” : “1100000” : “1100001” : “1100010” : “1100011” : 10.2mA 10.4mA 10.6mA 10.8mA 11.0mA 11.2mA 11.4mA 11.6mA 11.8mA 12.0mA 12.2mA 12.4mA 12.6mA 12.8mA 13.0mA 13.2mA 13.4mA 13.6mA 13.8mA 14.0mA 13.2mA 14.4mA 14.6mA 14.8mA 15.0mA 15.2mA 15.4mA 15.6mA 15.8mA 16.0mA 16.2mA 16.4mA 16.6mA 16.8mA 17.0mA 17.2mA 17.4mA 17.6mA 17.8mA 18.0mA 18.2mA 18.4mA 18.6mA 18.8mA 19.0mA 19.2mA 19.4mA 19.6mA 19.8mA 20.0mA Refer to “●Description of white LED Driver Operations” for detail. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 19/80 2011.04 - Rev.A BD6086GU Address 05h Technical Note < LED6 Current setting (Independence control) > Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 05h W - IW6(6) IW6(5) IW6(4) IW6(3) IW6(2) IW6(1) IW6(0) Initial Value 00h - 0 0 0 0 0 0 0 “1100100” : “1100101” : “1100110” : “1100111” : “1101000” : “1101001” : “1101010” : “1101011” : “1101100” : “1101101” : “1101110” : “1101111” : “1110000” : “1110001” : “1110010” : “1110011” : “1110100” : “1110101” : “1110110” : “1110111” : “1111000” : “1111001” : “1111010” : “1111011” : “1111100” : “1111101” : “1111110” : “1111111” : 20.2mA 20.4mA 20.6mA 20.8mA 21.0mA 21.2mA 21.4mA 21.6mA 21.8mA 22.0mA 22.2mA 22.4mA 22.6mA 22.8mA 23.0mA 23.2mA 23.4mA 23.6mA 23.8mA 24.0mA 24.2mA 24.4mA 24.6mA 24.8mA 25.0mA 25.2mA 25.4mA 25.6mA Bit7 : (Not used) Bit [6:0] : IW6(6:0) LED6 Current Setting “0000000” : “0000001” : “0000010” : “0000011” : “0000100” : “0000101” : “0000110” : “0000111” : “0001000” : “0001001” : “0001010” : “0001011” : “0001100” : “0001101” : “0001110” : “0001111” : “0010000” : “0010001” : “0010010” : “0010011” : “0010100” : “0010101” : “0010110” : “0010111” : “0011000” : “0011001” : “0011010” : “0011011” : “0011100” : “0011101” : “0011110” : “0011111” : “0100000” : “0100001” : “0100010” : “0100011” : “0100100” : “0100101” : “0100110” : “0100111” : “0101000” : “0101001” : “0101010” : “0101011” : “0101100” : “0101101” : “0101110” : “0101111” : “0110000” : “0110001” : 0.2 mA 0.4 mA 0.6 mA 0.8 mA 1.0 mA 1.2 mA 1.4 mA 1.6 mA 1.8 mA 2.0 mA 2.2 mA 2.4 mA 2.6 mA 2.8 mA 3.0 mA 3.2 mA 3.4 mA 3.6 mA 3.8 mA 4.0 mA 4.2 mA 4.4 mA 4.6 mA 4.8 mA 5.0 mA 5.2 mA 5.4 mA 5.6 mA 5.8 mA 6.0 mA 6.2 mA 6.4 mA 6.6 mA 6.8 mA 7.0 mA 7.2 mA 7.4 mA 7.6 mA 7.8 mA 8.0 mA 8.2 mA 8.4 mA 8.6 mA 8.8 mA 9.0 mA 9.2 mA 9.4 mA 9.6 mA 9.8 mA 10.0 mA “0110010” : “0110011” : “0110100” : “0110101” : “0110110” : “0110111” : “0111000” : “0111001” : “0111010” : “0111011” : “0111100” : “0111101” : “0111110” : “0111111” : “1000000” : “1000001” : “1000010” : “1000011” : “1000100” : “1000101” : “1000110” : “1000111” : “1001000” : “1001001” : “1001010” : “1001011” : “1001100” : “1001101” : “1001110” : “1001111” : “1010000” : “1010001” : “1010010” : “1010011” : “1010100” : “1010101” : “1010110” : “1010111” : “1011000” : “1011001” : “1011010” : “1011011” : “1011100” : “1011101” : “1011110” : “1011111” : “1100000” : “1100001” : “1100010” : “1100011” : 10.2mA 10.4mA 10.6mA 10.8mA 11.0mA 11.2mA 11.4mA 11.6mA 11.8mA 12.0mA 12.2mA 12.4mA 12.6mA 12.8mA 13.0mA 13.2mA 13.4mA 13.6mA 13.8mA 14.0mA 13.2mA 14.4mA 14.6mA 14.8mA 15.0mA 15.2mA 15.4mA 15.6mA 15.8mA 16.0mA 16.2mA 16.4mA 16.6mA 16.8mA 17.0mA 17.2mA 17.4mA 17.6mA 17.8mA 18.0mA 18.2mA 18.4mA 18.6mA 18.8mA 19.0mA 19.2mA 19.4mA 19.6mA 19.8mA 20.0mA Refer to “●Description of white LED Driver Operations” for detail. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 20/80 2011.04 - Rev.A BD6086GU Address 06h Technical Note < LED7 Current setting (Independence control) > Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 06h W - IW7(6) IW7(5) IW7(4) IW7(3) IW7(2) IW7(1) IW7(0) Initial Value 00h - 0 0 0 0 0 0 0 “1100100” : “1100101” : “1100110” : “1100111” : “1101000” : “1101001” : “1101010” : “1101011” : “1101100” : “1101101” : “1101110” : “1101111” : “1110000” : “1110001” : “1110010” : “1110011” : “1110100” : “1110101” : “1110110” : “1110111” : “1111000” : “1111001” : “1111010” : “1111011” : “1111100” : “1111101” : “1111110” : “1111111” : 20.2mA 20.4mA 20.6mA 20.8mA 21.0mA 21.2mA 21.4mA 21.6mA 21.8mA 22.0mA 22.2mA 22.4mA 22.6mA 22.8mA 23.0mA 23.2mA 23.4mA 23.6mA 23.8mA 24.0mA 24.2mA 24.4mA 24.6mA 24.8mA 25.0mA 25.2mA 25.4mA 25.6mA Bit7 : (Not used) Bit [6:0] : IW7(6:0) LED7 Current Setting “0000000” : “0000001” : “0000010” : “0000011” : “0000100” : “0000101” : “0000110” : “0000111” : “0001000” : “0001001” : “0001010” : “0001011” : “0001100” : “0001101” : “0001110” : “0001111” : “0010000” : “0010001” : “0010010” : “0010011” : “0010100” : “0010101” : “0010110” : “0010111” : “0011000” : “0011001” : “0011010” : “0011011” : “0011100” : “0011101” : “0011110” : “0011111” : “0100000” : “0100001” : “0100010” : “0100011” : “0100100” : “0100101” : “0100110” : “0100111” : “0101000” : “0101001” : “0101010” : “0101011” : “0101100” : “0101101” : “0101110” : “0101111” : “0110000” : “0110001” : 0.2 mA 0.4 mA 0.6 mA 0.8 mA 1.0 mA 1.2 mA 1.4 mA 1.6 mA 1.8 mA 2.0 mA 2.2 mA 2.4 mA 2.6 mA 2.8 mA 3.0 mA 3.2 mA 3.4 mA 3.6 mA 3.8 mA 4.0 mA 4.2 mA 4.4 mA 4.6 mA 4.8 mA 5.0 mA 5.2 mA 5.4 mA 5.6 mA 5.8 mA 6.0 mA 6.2 mA 6.4 mA 6.6 mA 6.8 mA 7.0 mA 7.2 mA 7.4 mA 7.6 mA 7.8 mA 8.0 mA 8.2 mA 8.4 mA 8.6 mA 8.8 mA 9.0 mA 9.2 mA 9.4 mA 9.6 mA 9.8 mA 10.0 mA “0110010” : “0110011” : “0110100” : “0110101” : “0110110” : “0110111” : “0111000” : “0111001” : “0111010” : “0111011” : “0111100” : “0111101” : “0111110” : “0111111” : “1000000” : “1000001” : “1000010” : “1000011” : “1000100” : “1000101” : “1000110” : “1000111” : “1001000” : “1001001” : “1001010” : “1001011” : “1001100” : “1001101” : “1001110” : “1001111” : “1010000” : “1010001” : “1010010” : “1010011” : “1010100” : “1010101” : “1010110” : “1010111” : “1011000” : “1011001” : “1011010” : “1011011” : “1011100” : “1011101” : “1011110” : “1011111” : “1100000” : “1100001” : “1100010” : “1100011” : 10.2mA 10.4mA 10.6mA 10.8mA 11.0mA 11.2mA 11.4mA 11.6mA 11.8mA 12.0mA 12.2mA 12.4mA 12.6mA 12.8mA 13.0mA 13.2mA 13.4mA 13.6mA 13.8mA 14.0mA 13.2mA 14.4mA 14.6mA 14.8mA 15.0mA 15.2mA 15.4mA 15.6mA 15.8mA 16.0mA 16.2mA 16.4mA 16.6mA 16.8mA 17.0mA 17.2mA 17.4mA 17.6mA 17.8mA 18.0mA 18.2mA 18.4mA 18.6mA 18.8mA 19.0mA 19.2mA 19.4mA 19.6mA 19.8mA 20.0mA Refer to “●Description of white LED Driver Operations” for detail. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 21/80 2011.04 - Rev.A BD6086GU Address 07h Technical Note < Main Current transition > Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 07h W THL(3) THL(2) THL(1) THL(0) TLH(3) TLH(2) TLH(1) TLH(0) Initial Value C7h 1 1 0 0 0 1 1 1 Bit [7:4] : THL(3:0) Main LED current Down transition per 0.2mA step “0000” : 0.256 ms “0001” : 0.512 ms “0010” : 1.024 ms “0011” : 2.048 ms “0100” : 4.096 ms “0101” : 8.192 ms “0110” : 16.38 ms “0111” : 32.77 ms “1000” : 65.54 ms “1001” : 131.1 ms “1010” : 196.6 ms “1011” : 262.1 ms “1100” : 327.7 ms (Initial value) “1101” : 393.2 ms “1110” : 458.8 ms “1111” : 524.3 ms Setting time is counted based on the switching frequency of Charge Pump. The above value becomes the value of the Typ (1MHz) time. Refer to “9. Slope process” of “●The explanation of Auto Lighting Control” for detail. Bit [3:0] : TLH(3:0) Main LED current Up transition per 0.2mA step “0000” : 0.256 ms “0001” : 0.512 ms “0010” : 1.024 ms “0011” : 2.048 ms “0100” : 4.096 ms “0101” : 8.192 ms “0110” : 16.38 ms “0111” : 32.77 ms (Initial value) “1000” : 65.54 ms “1001” : 131.1 ms “1010” : 196.6 ms “1011” : 262.1 ms “1100” : 327.7 ms “1101” : 393.2 ms “1110” : 458.8 ms “1111” : 524.3 ms Setting time is counted based on the switching frequency of Charge Pump. The above value becomes the value of the Typ (1MHz) time. Refer to “9. Slope process” of “●The explanation of Auto Lighting Control” for detail. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 22/80 2011.04 - Rev.A BD6086GU Address 08h Technical Note < Main Current Offset > Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 08h W - - IOFS(5) IOFS(4) IOFS(3) IOFS(2) IOFS(1) IOFS(0) Initial Value 00h - - 0 0 0 0 0 0 Bit [7:6] : (Not used) Bit [5:0] : IOFS(5:0) Main Current Offset “000000” : “000001” : “000010” : “000011” : “000100” : “000101” : “000110” : “000111” : “001000” : “001001” : “001010” : “001011” : “001100” : “001101” : “001110” : “001111” : “010000” : “010001” : “010010” : “010011” : “010100” : “010101” : “010110” : “010111” : “011000” : “011001” : “011010” : “011011” : “011100” : “011101” : “011110” : “011111” : 0.0 mA -0.2 mA -0.3 mA -0.4 mA -0.8 mA -1.0 mA -1.2 mA -1.4 mA -1.6 mA -1.8 mA -2.0 mA -2.2 mA -2.4 mA -2.6 mA -2.8 mA -3.0 mA -3.2 mA -3.4 mA -3.6 mA -3.8 mA -4.0 mA -4.2 mA -4.4 mA -4.6 mA -4.8 mA -5.0 mA -5.2 mA -5.4 mA -5.6 mA -5.8 mA -6.0 mA -6.2 mA “100000” : “100001” : “100010” : “100011” : “100100” : “100101” : “100110” : “100111” : “101000” : “101001” : “101010” : “101011” : “101100” : “101101” : “101110” : “101111” : “110000” : “110001” : “110010” : “110011” : “110100” : “110101” : “110110” : “110111” : “111000” : “111001” : “111010” : “111011” : “111100” : “111101” : “111110” : “111111” : -6.4 mA -6.6 mA -6.8 mA -7.0 mA -7.2 mA -7.4 mA -7.6 mA -7.8 mA -8.0 mA -8.2 mA -8.4 mA -8.6 mA -8.8 mA -9.0 mA -9.2 mA -9.4 mA -9.6 mA -9.8 mA -10.0 mA -10.2 mA -10.4 mA -10.6 mA -10.8 mA -11.0 mA -11.2 mA -11.4 mA -11.6 mA -11.8 mA -12.0 mA -12.2 mA -12.4 mA -12.6 mA fer to “10. Back light current value External adjustmen1” of “●The explanation of Auto Lighting Control” for detail. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 23/80 2011.04 - Rev.A BD6086GU Address 09h Technical Note < OSYNC Main Current transition > Address R/W 09h W Initial Value 40h Bit7 Bit6 WPWMEN SBIASON 0 1 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 - OSYNCEN - OSSLP(2) OSSLP(1) OSSLP(0) - 0 - 0 0 0 Bit7 : WPWMEN External PWM Input “WPWMIN” terminal Enable Control (Valid/Invalid) “0” : WPWMIN input invalid “1” : WPWMIN input valid Refer to “11. Back light current value External adjustmen 2” of “●The explanation of Auto Lighting Control” for detail. Bit6 : SBIASON SBIAS Control (ON/OFF) “0” : Measurement cycle synchronous “1” : Usually ON (at ALCEN=1) (Initial value) Refer to “4. AD conversion” of “●The explanation of Auto Lighting Control” for detail. Bit5 : (Not used) Bit4 : OSYNCEN “0” : “1” : Refer to “10. Back light current value External adjustmen1” of “●The explanation of Auto Lighting Control” for detail. Bit3 : (Not used) Bit [2:0] : OSSLP(2:0) Current Offset Slope Control transition per 0.2mA step “000” : 0.000 ms (Initial value) “001” : 0.064 ms “010” : 0.128 ms “011” : 0.256 ms “100” : 0.512 ms “101” : 1.024 ms “110” : 2.048 ms “111” : 4.096 ms Setting time is counted based on the switching frequency of Charge Pump. The above value becomes the value of the Typ (1MHz) time. Refer to “10. Back light current value External adjustmen1” of “●The explanation of Auto Lighting Control” for detail. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 24/80 2011.04 - Rev.A BD6086GU Address 0Ah Technical Note < Main Current Data Output > Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 0Ah R - IALED(6) IALED(5) IALED(4) IALED(3) IALED(2) IALED(1) IALED(0) Initial Value - - - - - - - - - “1100100” : “1100101” : “1100110” : “1100111” : “1101000” : “1101001” : “1101010” : “1101011” : “1101100” : “1101101” : “1101110” : “1101111” : “1110000” : “1110001” : “1110010” : “1110011” : “1110100” : “1110101” : “1110110” : “1110111” : “1111000” : “1111001” : “1111010” : “1111011” : “1111100” : “1111101” : “1111110” : “1111111” : 20.2mA 20.4mA 20.6mA 20.8mA 21.0mA 21.2mA 21.4mA 21.6mA 21.8mA 22.0mA 22.2mA 22.4mA 22.6mA 22.8mA 23.0mA 23.2mA 23.4mA 23.6mA 23.8mA 24.0mA 24.2mA 24.4mA 24.6mA 24.8mA 25.0mA 25.2mA 25.4mA 25.6mA Bit7 : (Not used) Bit [6:0] : IALED(6:0) Main Current Data Output “0000000” : “0000001” : “0000010” : “0000011” : “0000100” : “0000101” : “0000110” : “0000111” : “0001000” : “0001001” : “0001010” : “0001011” : “0001100” : “0001101” : “0001110” : “0001111” : “0010000” : “0010001” : “0010010” : “0010011” : “0010100” : “0010101” : “0010110” : “0010111” : “0011000” : “0011001” : “0011010” : “0011011” : “0011100” : “0011101” : “0011110” : “0011111” : “0100000” : “0100001” : “0100010” : “0100011” : “0100100” : “0100101” : “0100110” : “0100111” : “0101000” : “0101001” : “0101010” : “0101011” : “0101100” : “0101101” : “0101110” : “0101111” : “0110000” : “0110001” : 0.2 mA 0.4 mA 0.6 mA 0.8 mA 1.0 mA 1.2 mA 1.4 mA 1.6 mA 1.8 mA 2.0 mA 2.2 mA 2.4 mA 2.6 mA 2.8 mA 3.0 mA 3.2 mA 3.4 mA 3.6 mA 3.8 mA 4.0 mA 4.2 mA 4.4 mA 4.6 mA 4.8 mA 5.0 mA 5.2 mA 5.4 mA 5.6 mA 5.8 mA 6.0 mA 6.2 mA 6.4 mA 6.6 mA 6.8 mA 7.0 mA 7.2 mA 7.4 mA 7.6 mA 7.8 mA 8.0 mA 8.2 mA 8.4 mA 8.6 mA 8.8 mA 9.0 mA 9.2 mA 9.4 mA 9.6 mA 9.8 mA 10.0 mA “0110010” : “0110011” : “0110100” : “0110101” : “0110110” : “0110111” : “0111000” : “0111001” : “0111010” : “0111011” : “0111100” : “0111101” : “0111110” : “0111111” : “1000000” : “1000001” : “1000010” : “1000011” : “1000100” : “1000101” : “1000110” : “1000111” : “1001000” : “1001001” : “1001010” : “1001011” : “1001100” : “1001101” : “1001110” : “1001111” : “1010000” : “1010001” : “1010010” : “1010011” : “1010100” : “1010101” : “1010110” : “1010111” : “1011000” : “1011001” : “1011010” : “1011011” : “1011100” : “1011101” : “1011110” : “1011111” : “1100000” : “1100001” : “1100010” : “1100011” : 10.2mA 10.4mA 10.6mA 10.8mA 11.0mA 11.2mA 11.4mA 11.6mA 11.8mA 12.0mA 12.2mA 12.4mA 12.6mA 12.8mA 13.0mA 13.2mA 13.4mA 13.6mA 13.8mA 14.0mA 13.2mA 14.4mA 14.6mA 14.8mA 15.0mA 15.2mA 15.4mA 15.6mA 15.8mA 16.0mA 16.2mA 16.4mA 16.6mA 16.8mA 17.0mA 17.2mA 17.4mA 17.6mA 17.8mA 18.0mA 18.2mA 18.4mA 18.6mA 18.8mA 19.0mA 19.2mA 19.4mA 19.6mA 19.8mA 20.0mA The data can be read through I2C. Refer to “9. Slope process” of “●The explanation of Auto Lighting Control” for detail. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 25/80 2011.04 - Rev.A BD6086GU Address 0Bh Technical Note < Measurement Mode Setting > Address R/W 0Bh W Initial Value 80h Bit7 Bit6 ADCYC(1) ADCYC(0) 1 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 GAIN(1) GAIN(0) STYPE VSB MDCIR ALCEN 0 0 0 0 0 0 0 Bit [7:6] : ADCYC(1:0) ADC Measurement Cycle “00” : 0.52 s “01” : 1.05 s “10” : 1.57 s (Initial value) “11” : 2.10 s Setup time is counted based on the switching frequency of DC/DC. The above value becomes the value of the Typ (1MHz) time. Refer to "●Automatic brightness control operation explanation" for the detailed function of each register of this page. Refer to “4. AD conversion” of “●The explanation of Auto Lighting Control” for detail. Bit [5:4] : GAIN(1:0) Sensor Gain Switching Function Control (This is effective only at STYPE=“0”.) “00” : Auto Change (Initial value) “01” : High “10” : Low “11” : Fixed Refer to “3. I/V conversion” of “●The explanation of Auto Lighting Control” for detail. Bit3 : STYPE Ambient Light Sensor Type Select (Linear/Logarithm) “0” : For Linear sensor (Initial value) “1” : For Log sensor Refer to “3. I/V conversion” of “●The explanation of Auto Lighting Control” for detail. Bit2 : VSB SBIAS Output Voltage Control “0” : SBIAS output voltage 3.0V (Initial value) “1” : SBIAS output voltage 2.6V Refer to “2. Sensor I/F” of “●The explanation of Auto Lighting Control” for detail. Bit1 : MDCIR LED Current Reset Select by Mode Change “0” : LED current non-reset when mode change (Initial value) “1” : LED current reset when mode change Refer to “9. Slope process” of “●The explanation of Auto Lighting Control” for detail. Bit0 : ALCEN ALC Function Control (ON/OFF) “0” : ALC function OFF “1” : ALC function ON Refer to “1. Auto Lighting Control ON/OFF” of “●The explanation of Auto Lighting Control” for detail. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 26/80 2011.04 - Rev.A BD6086GU Address 0Ch Technical Note < ADC Data adjustment > Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 0Ch W SOFS(3) SOFS(2) SOFS(1) SOFS(0) SGAIN(3) SGAIN(2) SGAIN(1) SGAIN(0) Initial Value 00h 0 0 0 0 0 0 0 0 Bit [7:4] : SOFS(3:0) “1000” : “1001” : “1010” : “1011” : “1100” : “1101” : “1110” : “1111” : “0000” : “0001” : “0010” : “0011” : “0100” : “0101” : “0110” : “0111” : AD Data Offset Adjustment -8 LSB -7 LSB -6 LSB -5 LSB -4 LSB -3 LSB -2 LSB -1 LSB non-adjust +1 LSB +2 LSB +3 LSB +4 LSB +5 LSB +6 LSB +7 LSB Offset adjust is performed to ADC data. Refer to “5. ADC data gain offset adjust” of “●The explanation of Auto Lighting Control” for detail. Bit [3:0] : SGAIN(3:0) “1000” : “1001” : “1010” : “1011” : “1100” : “1101” : “1110” : “1111” : “0000” : “0001” : “0010” : “0011” : “0100” : “0101” : “0110” : “0111” : AD Data Gain Adjustment reserved reserved -37.50% -31.25% -25.00% -18.75% -12.50% -6.25% non-adjust +6.25% +12.50% +18.75% +25.00% +31.25% +37.50% reserved Gain adjust is performed to ADC data. The data after adjustment are round off by 8-bit data. Refer to “5. ADC data gain offset adjust” of “●The explanation of Auto Lighting Control” for detail. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 27/80 2011.04 - Rev.A BD6086GU Address 0Dh Technical Note < Ambient level (Read Only) > Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 0Dh R - - - - AMB(3) AMB(2) AMB(1) AMB(0) Initial Value - - - - - - - - - Bit [7:4] : (Not used) Bit [3:0] : AMB(3:0) “0000” : “0001” : “0010” : “0011” : “0100” : “0101” : “0110” : “0111” : “1000” : “1001” : “1010” : “1011” : “1100” : “1101” : “1110” : “1111” : Ambient Level 0h 1h 2h 3h 4h 5h 6h 7h 8h 9h Ah Bh Ch Dh Eh Fh The data can be read through I2C. Refer to “7. Brightness data conversion” of “●The explanation of Auto Lighting Control” for detail. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 28/80 2011.04 - Rev.A BD6086GU Technical Note Address 0Eh~1Dh < Main Current at Ambient level 0h~Fh > Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 0Eh~1Dh W - IU*(6) IU*(5) IU*(4) IU*(3) IU*(2) IU*(1) IU*(0) Initial Value - “1100100” : “1100101” : “1100110” : “1100111” : “1101000” : “1101001” : “1101010” : “1101011” : “1101100” : “1101101” : “1101110” : “1101111” : “1110000” : “1110001” : “1110010” : “1110011” : “1110100” : “1110101” : “1110110” : “1110111” : “1111000” : “1111001” : “1111010” : “1111011” : “1111100” : “1111101” : “1111110” : “1111111” : 20.2mA 20.4mA 20.6mA 20.8mA 21.0mA 21.2mA 21.4mA 21.6mA 21.8mA 22.0mA 22.2mA 22.4mA 22.6mA 22.8mA 23.0mA 23.2mA 23.4mA 23.6mA 23.8mA 24.0mA 24.2mA 24.4mA 24.6mA 24.8mA 25.0mA 25.2mA 25.4mA 25.6mA Refer to after page for initial table. “*” means 0~F. Bit7 : (Not used) Bit [6:0] : IU*(6:0) Main Current at Ambient Level for 0h~Fh “0000000” : “0000001” : “0000010” : “0000011” : “0000100” : “0000101” : “0000110” : “0000111” : “0001000” : “0001001” : “0001010” : “0001011” : “0001100” : “0001101” : “0001110” : “0001111” : “0010000” : “0010001” : “0010010” : “0010011” : “0010100” : “0010101” : “0010110” : “0010111” : “0011000” : “0011001” : “0011010” : “0011011” : “0011100” : “0011101” : “0011110” : “0011111” : “0100000” : “0100001” : “0100010” : “0100011” : “0100100” : “0100101” : “0100110” : “0100111” : “0101000” : “0101001” : “0101010” : “0101011” : “0101100” : “0101101” : “0101110” : “0101111” : “0110000” : “0110001” : 0.2 mA 0.4 mA 0.6 mA 0.8 mA 1.0 mA 1.2 mA 1.4 mA 1.6 mA 1.8 mA 2.0 mA 2.2 mA 2.4 mA 2.6 mA 2.8 mA 3.0 mA 3.2 mA 3.4 mA 3.6 mA 3.8 mA 4.0 mA 4.2 mA 4.4 mA 4.6 mA 4.8 mA 5.0 mA 5.2 mA 5.4 mA 5.6 mA 5.8 mA 6.0 mA 6.2 mA 6.4 mA 6.6 mA 6.8 mA 7.0 mA 7.2 mA 7.4 mA 7.6 mA 7.8 mA 8.0 mA 8.2 mA 8.4 mA 8.6 mA 8.8 mA 9.0 mA 9.2 mA 9.4 mA 9.6 mA 9.8 mA 10.0 mA “0110010” : “0110011” : “0110100” : “0110101” : “0110110” : “0110111” : “0111000” : “0111001” : “0111010” : “0111011” : “0111100” : “0111101” : “0111110” : “0111111” : “1000000” : “1000001” : “1000010” : “1000011” : “1000100” : “1000101” : “1000110” : “1000111” : “1001000” : “1001001” : “1001010” : “1001011” : “1001100” : “1001101” : “1001110” : “1001111” : “1010000” : “1010001” : “1010010” : “1010011” : “1010100” : “1010101” : “1010110” : “1010111” : “1011000” : “1011001” : “1011010” : “1011011” : “1011100” : “1011101” : “1011110” : “1011111” : “1100000” : “1100001” : “1100010” : “1100011” : 10.2mA 10.4mA 10.6mA 10.8mA 11.0mA 11.2mA 11.4mA 11.6mA 11.8mA 12.0mA 12.2mA 12.4mA 12.6mA 12.8mA 13.0mA 13.2mA 13.4mA 13.6mA 13.8mA 14.0mA 13.2mA 14.4mA 14.6mA 14.8mA 15.0mA 15.2mA 15.4mA 15.6mA 15.8mA 16.0mA 16.2mA 16.4mA 16.6mA 16.8mA 17.0mA 17.2mA 17.4mA 17.6mA 17.8mA 18.0mA 18.2mA 18.4mA 18.6mA 18.8mA 19.0mA 19.2mA 19.4mA 19.6mA 19.8mA 20.0mA Refer to “8. LED current conversion” of “●The explanation of Auto Lighting Control” for detail. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 29/80 2011.04 - Rev.A BD6086GU Address 1Eh Technical Note < Key Driver Control > Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 1Eh W - - KBSLP(1) KBSLP(0) MDTY(3) MDTY(2) MDTY(1) MDTY(0) Initial Value 00h - - 0 0 0 0 0 0 Bit [7:6] : (Not used) Bit [5:4] : KBSLP(1:0) PWM Slope time “00” : 0.00ms “01” : 32.77ms “10” : 65.54ms “11” : 131.00ms "PWM Slope time" is the time for transiting one step of each value prepared as MAX DUTY. Refer to “13. Key Backlight PWM Control” of “●The explanation of Auto Lighting Control” for detail. Bit [3:0] : MDTY(3:0) MAX DUTY “0000” : 0% (OFF) “0001” : 1.7% “0010” : 3.1% “0011” : 4.7% “0100” : 6.3% “0101” : 9.4% “0110” : 12.5% “0111” : 15.6% “1000” : 18.8% “1001” : 25.0% “1010” : 31.3% “1011” : 39.1% “1100” : 48.4% “1101” : 62.5% “1110” : 78.1% “1111” : 100% MAX DUTY shows H level section Refer to “13. Key Backlight PWM Control” of “●The explanation of Auto Lighting Control” for detail. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 30/80 2011.04 - Rev.A BD6086GU Address 1Fh Technical Note < Key Driver ON/OFF control > Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 1Fh W - - CHYS(1) CHYS(0) CTH(3) CTH(2) CTH(1) CTH(0) Initial Value 2Ah - - 1 0 1 0 1 0 Bit [7:6] : (Not used) Bit [5:4] : CHYS(1:0) Key Driver Hysteresis Setting <Hysteresis (to ON)> “00” : Detect threshold level -1h “01” : Detect threshold level -2h “10” : Detect threshold level -3h “11” : Detect threshold level -4h Detect threshold level-1h is the hysterics width to the brightness set up by CTH (3:0) Refer to “12. Key Backlight Binary Judgment” of “●The explanation of Auto Lighting Control” for detail. Bit [3:0] : CTH(3:0) Key Driver Detect Threshold Level Setting <Detect threshold level (to OFF)> “0000” : Brightness 0h : OFF “0001” : Brightness 1h : OFF “0010” : Brightness 2h : OFF “0011” : Brightness 3h : OFF “0100” : Brightness 4h : OFF “0101” : Brightness 5h : OFF “0110” : Brightness 6h : OFF “0111” : Brightness 7h : OFF “1000” : Brightness 8h : OFF “1001” : Brightness 9h : OFF “1010” : Brightness Ah : OFF “1011” : Brightness Bh : OFF “1100” : Brightness Ch : OFF “1101” : Brightness Dh : OFF “1110” : Brightness Eh : OFF “1111” : Brightness Fh : OFF Refer to “12. Key Backlight Binary Judgment” of “●The explanation of Auto Lighting Control” or detail. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 31/80 2011.04 - Rev.A BD6086GU Address 20h Technical Note < GPIO Input/Output setup > Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 20h W B2GPO G2GPO R2GPO KBFIX GP4DIR GP3DIR GP2DIR GP1DIR Initial Value 00h 0 0 0 0 0 0 0 0 Bit7 : B2GPO B2LED Mode Setting (LED Driver / GPO) “0” : B2LED LED Driver mode (Initial value) “1” : B2LED GPO mode B2GPO does not assume to change dynamically. Please perform a fixed setup per design. Refer to “●General-purpose I/O Ports (GPIO1-GPIO4)” for detail. Bit6 : G2GPO G2LED Mode Setting (LED Driver / GPO) “0” : G2LED LED Driver mode (Initial value) “1” : G2LED GPO mode G2GPO does not assume to change dynamically. Please perform a fixed setup per design. Refer to “●General-purpose I/O Ports (GPIO1-GPIO4)” for detail. Bit5 : R2GPO R2LED Mode Setting (LED Driver / GPO) “0” : R2LED LED Driver mode (Initial value) “1” : R2LED GPO mode R2GPO does not assume to change dynamically. Please perform a fixed setup per design. Refer to “●General-purpose I/O Ports (GPIO1-GPIO4)” for detail. Bit4 : KBFIX KBLT Mode Setting (ALC / Fix) “0” : KBLT ALC mode (Initial value) “1” : KBLT Fix mode Refer to “●Key Backlight Controller” for detail. Bit3 : GP4DIR GPIO4 Mode Setting (Input / Output) “0” : GPIO4 Input mode (Initial value) “1” : GPIO4 Output mode Refer to “●General-purpose I/O Ports (GPIO1-GPIO4)” for detail. Bit2 : GP3DIR GPIO3 Mode Setting (Input / Output) “0” : GPIO3 Input mode (Initial value) “1” : GPIO3 Output mode Refer to “●General-purpose I/O Ports (GPIO1-GPIO4)” for detail. Bit1 : GP2DIR GPIO2 Mode Setting (Input / Output) “0” : GPIO2 Input mode (Initial value) “1” : GPIO2 Output mode Refer to “●General-purpose I/O Ports (GPIO1-GPIO4)” for detail. Bit0 : GP1DIR GPIO1 Mode Setting (Input / Output) “0” : GPIO1 Input mode (Initial value) “1” : GPIO1 Output mode Refer to “●General-purpose I/O Ports (GPIO1-GPIO4)” for detail. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 32/80 2011.04 - Rev.A BD6086GU Address 21h Technical Note < GPIO output mode > Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 21h W GPO1OSC - - KBOD GPO4OD GPO3OD GPO2OD GPO1OD Initial Value 00h 0 - - 0 0 0 0 0 Bit7 : GPO1OSC GPIO1 Mode Setting (Input / Output) “0” : Illumination Reference Clock OFF (Initial value) “1” : Illumination Reference Clock ON Refer to “6. Clock external output” of “●RGB Waveform Setting” for detail. Bit [6:5] : (Not used) Bit4 : KBOD KBLT Output Mode Setting (Open Drain / Complementary) “0” : KBLT GPO Output Open Drain (Initial value) “1” : KBLT GPO Output Complementary Refer to “●Key Backlight Controller” for detail. Bit3 : GPO4OD GPIO4 Output Mode Setting (Open Drain / Complementary) “0” : GPIO4 GPO Output Open Drain (Initial value) “1” : GPIO4 GPO Output Complementary Refer to “●General-purpose I/O Ports (GPIO1-GPIO4)” for detail. Bit2 : GPO3OD GPIO3 Output Mode Setting (Open Drain / Complementary) “0” : GPIO3 GPO Output Open Drain (Initial value) “1” : GPIO3 GPO Output Complementary Refer to “●General-purpose I/O Ports (GPIO1-GPIO4)” for detail. Bit1 : GPO2OD GPIO2 Output Mode Setting (Open Drain / Complementary) “0” : GPIO2 GPO Output Open Drain (Initial value) “1” : GPIO2 GPO Output Complementary Refer to “●General-purpose I/O Ports (GPIO1-GPIO4)” for detail. Bit0 : GPO1OD GPIO1 Output Mode Setting (Open Drain / Complementary) “0” : GPIO1 GPO Output Open Drain (Initial value) “1” : GPIO1 GPO Output Complementary Refer to “●General-purpose I/O Ports (GPIO1-GPIO4)” for detail. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 33/80 2011.04 - Rev.A BD6086GU Address 22h Technical Note < GPIO output data > Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 22h W B2LV G2LV R2LV - GPO4LV GPO3LV GPO2LV GPO1LV Initial Value 00h 0 0 0 - 0 0 0 0 Bit7 : B2LV B2LED Output Setting at GPO mode (Low / High) “0” : Output Low (Initial value) “1” : Output High Refer to “●General-purpose I/O Ports (GPIO1-GPIO4)” for detail. Bit6 : G2LV G2LED Output Setting at GPO mode (Low / High) “0” : Output Low (Initial value) “1” : Output High Refer to “●General-purpose I/O Ports (GPIO1-GPIO4)” for detail. Bit5 : R2LV R2LED Output Setting at GPO mode (Low / High) “0” : Output Low (Initial value) “1” : Output High Refer to “●General-purpose I/O Ports (GPIO1-GPIO4)” for detail. Bit4 : (Not used) Bit3 : GPO4LV GPIO4 Output Setting at Output mode (Low / High) “0” : Output Low (Initial value) “1” : Output High Refer to “●General-purpose I/O Ports (GPIO1-GPIO4)” for detail. Bit2 : GPO3LV GPIO3 Output Setting at Output mode (Low / High) “0” : Output Low (Initial value) “1” : Output High Refer to “●General-purpose I/O Ports (GPIO1-GPIO4)” for detail. Bit1 : GPO2LV GPIO2 Output Setting at Output mode (Low / High) “0” : Output Low (Initial value) “1” : Output High Refer to “●General-purpose I/O Ports (GPIO1-GPIO4)” for detail. Bit0 : GPO1LV GPIO1 Output Setting at Output mode (Low / High) “0” : Output Low (Initial value) “1” : Output High Refer to “●General-purpose I/O Ports (GPIO1-GPIO4)” for detail. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 34/80 2011.04 - Rev.A BD6086GU Address 23h Technical Note < GPIO Interrupt mask setup > Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 23h W GPCLR - - - GP4MSK GP3MSK GP2MSK GP1MSK Initial Value 00h 0 - - - 0 0 0 0 Bit7 : GPCLR GPIO Clear Setting “0” : No operate “1” : GPIO Interrupt Factor Clear Refer to “●General-purpose I/O Ports (GPIO1-GPIO4)” for detail. Bit [6:4] : (Not used) Bit3 : GP4MSK GPIO4 Interrupt Mask Setting “0” : GPIO4 Interrupt Mask (Initial value) “1” : GPIO4 Interrupt Non-mask Refer to “●General-purpose I/O Ports (GPIO1-GPIO4)” for detail. Bit2 : GP3MSK GPIO3 Interrupt Mask Setting “0” : GPIO3 Interrupt Mask (Initial value) “1” : GPIO3 Interrupt Non-mask Refer to “●General-purpose I/O Ports (GPIO1-GPIO4)” for detail. Bit1: GP2MSK GPIO2 Interrupt Mask Setting “0” : GPIO2 Interrupt Mask (Initial value) “1” : GPIO2 Interrupt Non-mask Refer to “●General-purpose I/O Ports (GPIO1-GPIO4)” for detail. Bit0 : GP1MSK GPIO1 Interrupt Mask Setting “0” : GPIO1 Interrupt Mask (Initial value) “1” : GPIO1 Interrupt Non-mask Refer to “●General-purpose I/O Ports (GPIO1-GPIO4)” for detail. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 35/80 2011.04 - Rev.A BD6086GU Address 24h Technical Note < GPIO Interput factor read out, Data read out > Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 24h R GP4INT GP3INT GP2INT GP1INT GP4DAT GP3DAT GP2DAT GP1DAT Initial Value 00h 0 0 0 0 - - - - Bit7 : GP4INT GPIO4 Interrupt factor read out “0” : No Input by GPIO4 “1” : Input by GPIO4 Refer to “●General-purpose I/O Ports (GPIO1-GPIO4)” for detail. Bit6 : GP3INT GPIO3 Interrupt factor read out “0” : No Input by GPIO3 “1” : Input by GPIO3 Refer to “●General-purpose I/O Ports (GPIO1-GPIO4)” for detail. Bit5 : GP2INT GPIO2 Interrupt factor read out “0” : No Input by GPIO2 “1” : Input by GPIO2 Refer to “●General-purpose I/O Ports (GPIO1-GPIO4)” for detail. Bit4 : GP1INT GPIO1 Interrupt factor read out “0” : No Input by GPIO1 “1” : Input by GPIO1 Refer to “●General-purpose I/O Ports (GPIO1-GPIO4)” for detail. Bit3 : GP4DAT GPIO4 Data read out “0” : GPIO4 is Low “1” : GPIO4 is Hight Refer to “●General-purpose I/O Ports (GPIO1-GPIO4)” for detail. Bit2 : GP3DAT GPIO3 Data read out “0” : GPIO3 is Low “1” : GPIO3 is Hight Refer to “●General-purpose I/O Ports (GPIO1-GPIO4)” for detail. Bit1 : GP2DAT GPIO2 Data read out “0” : GPIO2 is Low “1” : GPIO2 is Hight Refer to “●General-purpose I/O Ports (GPIO1-GPIO4)” for detail. Bit0 : GP1DAT GPIO1 Data read out “0” : GPIO1 is Low “1” : GPIO1 is Hight Refer to “●General-purpose I/O Ports (GPIO1-GPIO4)” for detail. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 36/80 2011.04 - Rev.A BD6086GU Address 25h Technical Note < RGB LED control > Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 25h W - RGB2MEL RGB2OS RGB2EN - RGB1MEL RGB1OS RGB1EN Initial Value 00h - 0 0 0 - 0 0 0 Bit7 : (Not used) Bit6 : RGB2MEL RGB2 External Control Setting “0” : RGB2 External Control Invalid (Initial value) “1” : RGB2 External Control Valid Refer to “5. External terminal synchronization control” of “●RGB Waveform Setting” for detail. Bit5 : RGB2OS RGB2 One shot enable “0” : RGB2 Stop (Initial value) “1” : RGB2 1periodic Operation Refer to “8. RGB slope waveforms” of “●RGB Waveform Setting” for detail. Refer to “●Description of DC/DC Operations” for detail. Bit4 : RGB2EN RGB2 Enable “0” : RGB2 Stop (Initial value) “1” : RGB2 Continuous Operation Refer to “8. RGB slope waveforms” of “●RGB Waveform Setting” for detail. Refer to “●Description of DC/DC Operations” for detail. Bit3 : (Not used) Bit2 : RGB1MEL RGB1 External Control Setting “0” : RGB1 External Control Invalid (Initial value) “1” : RGB1 External Control Valid Refer to “5. External terminal synchronization control” of “●RGB Waveform Setting” for detail. Bit1 : RGB1OS RGB1 One shot enable “0” : RGB1 Stop (Initial value) “1” : RGB1 1periodic Operation Refer to “8. RGB slope waveforms” of “●RGB Waveform Setting” for detail. Refer to “●Description of DC/DC Operations” for detail. Bit0 : RGB1EN RGB1 Enable “0” : RGB1 Stop (Initial value) “1” : RGB1 Continuous Operation Refer to “8. RGB slope waveforms” of “●RGB Waveform Setting” for detail. Refer to “●Description of DC/DC Operations” for detail. RGB*OS returns to 0 automatically after 1 cycle operation. RGB*EN precedes to RGB*OS. In use in 1 cycle operation, there is the necessity for RGB*EN=0. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 37/80 2011.04 - Rev.A BD6086GU Address 26h Technical Note < RGB1 time > Address R/W 26h W Initial Value 00h Bit7 Bit6 Bit5 Bit4 SFRGB1(1) SFRGB1(0) SRRGB1(1) SRRGB1(0) 0 0 0 0 Bit3 Bit2 Bit1 Bit0 - TRGB1(2) TRGB1(1) TRGB1(0) - 0 0 0 Bit [7:6] : SFRGB1(1:0) Slope Down Transition Setting “00” : 0 “01” : Wave form cycle / 16 “10” : Wave form cycle / 8 “11” : Wave form cycle / 4 It is a theoretical value on logic control, and the reaction time of the analog section is not included. "Slope time" is the time from a slope start to a slope end. Refer to “4. Rising/falling slope time” of “●RGB Waveform Setting” for detail. Bit [5:4] : SRRGB1(1:0) Slope Up Transition Setting “00” : 0 “01” : Wave form cycle / 16 “10” : Wave form cycle / 8 “11” : Wave form cycle / 4 It is a theoretical value on logic control, and the reaction time of the analog section is not included. "Slope time" is the time from a slope start to a slope end. Refer to “4. Rising/falling slope time” of “●RGB Waveform Setting” for detail. Bit3 : (Not used) Bit [2:0] : TRGB1(2:0) Wave Form Cycle Setting “000” : 0.131 s “001” : 0.52 s “010” : 1.05 s “011” : 2.10 s “100” : 4.19 s “101” : 8.39 s “110” : 12.6 s “111” : 16.8 s Refer to “1. Waveform cycle” of “●RGB Waveform Setting” for detail. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 38/80 2011.04 - Rev.A BD6086GU Address 27h Technical Note < R1 current1 setup> Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 27h W - IR11(6) IR11(5) IR11(4) IR11(3) IR11(2) IR11(1) IR11(0) Initial Value 00h - 0 0 0 0 0 0 0 “1100100” : “1100101” : “1100110” : “1100111” : “1101000” : “1101001” : “1101010” : “1101011” : “1101100” : “1101101” : “1101110” : “1101111” : “1110000” : “1110001” : “1110010” : “1110011” : “1110100” : “1110101” : “1110110” : “1110111” : “1111000” : “1111001” : “1111010” : “1111011” : “1111100” : “1111101” : “1111110” : “1111111” : 20.0mA 20.2mA 20.4mA 20.6mA 20.8mA 21.0mA 21.2mA 21.4mA 21.6mA 21.8mA 22.0mA 22.2mA 22.4mA 22.6mA 22.8mA 23.0mA 23.2mA 23.4mA 23.6mA 23.8mA 24.0mA 24.2mA 24.4mA 24.6mA 24.8mA 25.0mA 25.2mA 25.4mA Bit7 : (Not used) Bit [6:0] : IR11(6:0) R1LED Current1 Setting (At RGBISETpin 120kΩ connection) “0000000” : “0000001” : “0000010” : “0000011” : “0000100” : “0000101” : “0000110” : “0000111” : “0001000” : “0001001” : “0001010” : “0001011” : “0001100” : “0001101” : “0001110” : “0001111” : “0010000” : “0010001” : “0010010” : “0010011” : “0010100” : “0010101” : “0010110” : “0010111” : “0011000” : “0011001” : “0011010” : “0011011” : “0011100” : “0011101” : “0011110” : “0011111” : “0100000” : “0100001” : “0100010” : “0100011” : “0100100” : “0100101” : “0100110” : “0100111” : “0101000” : “0101001” : “0101010” : “0101011” : “0101100” : “0101101” : “0101110” : “0101111” : “0110000” : “0110001” : 0.0 mA 0.2 mA 0.4 mA 0.6 mA 0.8 mA 1.0 mA 1.2 mA 1.4 mA 1.6 mA 1.8 mA 2.0 mA 2.2 mA 2.4 mA 2.6 mA 2.8 mA 3.0 mA 3.2 mA 3.4 mA 3.6 mA 3.8 mA 4.0 mA 4.2 mA 4.4 mA 4.6 mA 4.8 mA 5.0 mA 5.2 mA 5.4 mA 5.6 mA 5.8 mA 6.0 mA 6.2 mA 6.4 mA 6.6 mA 6.8 mA 7.0 mA 7.2 mA 7.4 mA 7.6 mA 7.8 mA 8.0 mA 8.2 mA 8.4 mA 8.6 mA 8.8 mA 9.0 mA 9.2 mA 9.4 mA 9.6 mA 9.8 mA “0110010” : “0110011” : “0110100” : “0110101” : “0110110” : “0110111” : “0111000” : “0111001” : “0111010” : “0111011” : “0111100” : “0111101” : “0111110” : “0111111” : “1000000” : “1000001” : “1000010” : “1000011” : “1000100” : “1000101” : “1000110” : “1000111” : “1001000” : “1001001” : “1001010” : “1001011” : “1001100” : “1001101” : “1001110” : “1001111” : “1010000” : “1010001” : “1010010” : “1010011” : “1010100” : “1010101” : “1010110” : “1010111” : “1011000” : “1011001” : “1011010” : “1011011” : “1011100” : “1011101” : “1011110” : “1011111” : “1100000” : “1100001” : “1100010” : “1100011” : 10.0mA 10.2mA 10.4mA 10.6mA 10.8mA 11.0mA 11.2mA 11.4mA 11.6mA 11.8mA 12.0mA 12.2mA 12.4mA 12.6mA 12.8mA 13.0mA 13.2mA 13.4mA 13.6mA 13.8mA 13.0mA 14.2mA 14.4mA 14.6mA 14.8mA 15.0mA 15.2mA 15.4mA 15.6mA 15.8mA 16.0mA 16.2mA 16.4mA 16.6mA 16.8mA 17.0mA 17.2mA 17.4mA 17.6mA 17.8mA 18.0mA 18.2mA 18.4mA 18.6mA 18.8mA 19.0mA 19.2mA 19.4mA 19.6mA 19.8mA Refer to “3. Current settings 1 and 2 (I1, I2)” of “●RGB Waveform Setting” for detail. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 39/80 2011.04 - Rev.A BD6086GU Address 28h Technical Note < R1 current2 setup> Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 28h W - IR12(6) IR12(5) IR12(4) IR12(3) IR12(2) IR12(1) IR12(0) Initial Value 00h - 0 0 0 0 0 0 0 “1100100” : “1100101” : “1100110” : “1100111” : “1101000” : “1101001” : “1101010” : “1101011” : “1101100” : “1101101” : “1101110” : “1101111” : “1110000” : “1110001” : “1110010” : “1110011” : “1110100” : “1110101” : “1110110” : “1110111” : “1111000” : “1111001” : “1111010” : “1111011” : “1111100” : “1111101” : “1111110” : “1111111” : 20.0mA 20.2mA 20.4mA 20.6mA 20.8mA 21.0mA 21.2mA 21.4mA 21.6mA 21.8mA 22.0mA 22.2mA 22.4mA 22.6mA 22.8mA 23.0mA 23.2mA 23.4mA 23.6mA 23.8mA 24.0mA 24.2mA 24.4mA 24.6mA 24.8mA 25.0mA 25.2mA 25.4mA Bit7 : (Not used) Bit [6:0] : IR12(6:0) R1LED Current2 Setting (At RGBISETpin 120kΩ connection) “0000000” : “0000001” : “0000010” : “0000011” : “0000100” : “0000101” : “0000110” : “0000111” : “0001000” : “0001001” : “0001010” : “0001011” : “0001100” : “0001101” : “0001110” : “0001111” : “0010000” : “0010001” : “0010010” : “0010011” : “0010100” : “0010101” : “0010110” : “0010111” : “0011000” : “0011001” : “0011010” : “0011011” : “0011100” : “0011101” : “0011110” : “0011111” : “0100000” : “0100001” : “0100010” : “0100011” : “0100100” : “0100101” : “0100110” : “0100111” : “0101000” : “0101001” : “0101010” : “0101011” : “0101100” : “0101101” : “0101110” : “0101111” : “0110000” : “0110001” : 0.0 mA 0.2 mA 0.4 mA 0.6 mA 0.8 mA 1.0 mA 1.2 mA 1.4 mA 1.6 mA 1.8 mA 2.0 mA 2.2 mA 2.4 mA 2.6 mA 2.8 mA 3.0 mA 3.2 mA 3.4 mA 3.6 mA 3.8 mA 4.0 mA 4.2 mA 4.4 mA 4.6 mA 4.8 mA 5.0 mA 5.2 mA 5.4 mA 5.6 mA 5.8 mA 6.0 mA 6.2 mA 6.4 mA 6.6 mA 6.8 mA 7.0 mA 7.2 mA 7.4 mA 7.6 mA 7.8 mA 8.0 mA 8.2 mA 8.4 mA 8.6 mA 8.8 mA 9.0 mA 9.2 mA 9.4 mA 9.6 mA 9.8 mA “0110010” : “0110011” : “0110100” : “0110101” : “0110110” : “0110111” : “0111000” : “0111001” : “0111010” : “0111011” : “0111100” : “0111101” : “0111110” : “0111111” : “1000000” : “1000001” : “1000010” : “1000011” : “1000100” : “1000101” : “1000110” : “1000111” : “1001000” : “1001001” : “1001010” : “1001011” : “1001100” : “1001101” : “1001110” : “1001111” : “1010000” : “1010001” : “1010010” : “1010011” : “1010100” : “1010101” : “1010110” : “1010111” : “1011000” : “1011001” : “1011010” : “1011011” : “1011100” : “1011101” : “1011110” : “1011111” : “1100000” : “1100001” : “1100010” : “1100011” : 10.0mA 10.2mA 10.4mA 10.6mA 10.8mA 11.0mA 11.2mA 11.4mA 11.6mA 11.8mA 12.0mA 12.2mA 12.4mA 12.6mA 12.8mA 13.0mA 13.2mA 13.4mA 13.6mA 13.8mA 13.0mA 14.2mA 14.4mA 14.6mA 14.8mA 15.0mA 15.2mA 15.4mA 15.6mA 15.8mA 16.0mA 16.2mA 16.4mA 16.6mA 16.8mA 17.0mA 17.2mA 17.4mA 17.6mA 17.8mA 18.0mA 18.2mA 18.4mA 18.6mA 18.8mA 19.0mA 19.2mA 19.4mA 19.6mA 19.8mA Refer to “3. Current settings 1 and 2 (I1, I2)” of “●RGB Waveform Setting” for detail. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 40/80 2011.04 - Rev.A BD6086GU Address 29h Technical Note < R1 Wave Pattern> Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 29h W - - - - PR1(3) PR1(2) PR1(1) PR1(0) Initial Value 07h - - - - 0 1 1 1 Bit [7:4] : (Not used) Bit [3:0] : PR1(3:0) R1LED Wave Pattern “0000” : Pattern 1 “0001” : Pattern 2 “0010” : Pattern 3 “0011” : Pattern 4 “0100” : Pattern 5 “0101” : Pattern 6 “0110” : Pattern 7 “0111” : Pattern 8 “1000” : Pattern 9 “1001” : Pattern 10 “1010” : Pattern 11 “1011” : Pattern 12 “1100” : Pattern 13 “1101” : Pattern 14 “1110” : Pattern 15 “1111” : Pattern 16 Refer to “2. Waveform pattern” of “●RGB Waveform Setting” for detail. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 41/80 2011.04 - Rev.A BD6086GU Address 2Ah Technical Note < G1 current1 setup> Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 2Ah W - IG11(6) IG11(5) IG11(4) IG11(3) IG11(2) IG11(1) IG11(0) Initial Value 00h - 0 0 0 0 0 0 0 “1100100” : “1100101” : “1100110” : “1100111” : “1101000” : “1101001” : “1101010” : “1101011” : “1101100” : “1101101” : “1101110” : “1101111” : “1110000” : “1110001” : “1110010” : “1110011” : “1110100” : “1110101” : “1110110” : “1110111” : “1111000” : “1111001” : “1111010” : “1111011” : “1111100” : “1111101” : “1111110” : “1111111” : 20.0mA 20.2mA 20.4mA 20.6mA 20.8mA 21.0mA 21.2mA 21.4mA 21.6mA 21.8mA 22.0mA 22.2mA 22.4mA 22.6mA 22.8mA 23.0mA 23.2mA 23.4mA 23.6mA 23.8mA 24.0mA 24.2mA 24.4mA 24.6mA 24.8mA 25.0mA 25.2mA 25.4mA Bit7 : (Not used) Bit [6:0] : IG11(6:0) G1LED Current1 Setting (At RGBISETpin 120kΩ connection) “0000000” : “0000001” : “0000010” : “0000011” : “0000100” : “0000101” : “0000110” : “0000111” : “0001000” : “0001001” : “0001010” : “0001011” : “0001100” : “0001101” : “0001110” : “0001111” : “0010000” : “0010001” : “0010010” : “0010011” : “0010100” : “0010101” : “0010110” : “0010111” : “0011000” : “0011001” : “0011010” : “0011011” : “0011100” : “0011101” : “0011110” : “0011111” : “0100000” : “0100001” : “0100010” : “0100011” : “0100100” : “0100101” : “0100110” : “0100111” : “0101000” : “0101001” : “0101010” : “0101011” : “0101100” : “0101101” : “0101110” : “0101111” : “0110000” : “0110001” : 0.0 mA 0.2 mA 0.4 mA 0.6 mA 0.8 mA 1.0 mA 1.2 mA 1.4 mA 1.6 mA 1.8 mA 2.0 mA 2.2 mA 2.4 mA 2.6 mA 2.8 mA 3.0 mA 3.2 mA 3.4 mA 3.6 mA 3.8 mA 4.0 mA 4.2 mA 4.4 mA 4.6 mA 4.8 mA 5.0 mA 5.2 mA 5.4 mA 5.6 mA 5.8 mA 6.0 mA 6.2 mA 6.4 mA 6.6 mA 6.8 mA 7.0 mA 7.2 mA 7.4 mA 7.6 mA 7.8 mA 8.0 mA 8.2 mA 8.4 mA 8.6 mA 8.8 mA 9.0 mA 9.2 mA 9.4 mA 9.6 mA 9.8 mA “0110010” : “0110011” : “0110100” : “0110101” : “0110110” : “0110111” : “0111000” : “0111001” : “0111010” : “0111011” : “0111100” : “0111101” : “0111110” : “0111111” : “1000000” : “1000001” : “1000010” : “1000011” : “1000100” : “1000101” : “1000110” : “1000111” : “1001000” : “1001001” : “1001010” : “1001011” : “1001100” : “1001101” : “1001110” : “1001111” : “1010000” : “1010001” : “1010010” : “1010011” : “1010100” : “1010101” : “1010110” : “1010111” : “1011000” : “1011001” : “1011010” : “1011011” : “1011100” : “1011101” : “1011110” : “1011111” : “1100000” : “1100001” : “1100010” : “1100011” : 10.0mA 10.2mA 10.4mA 10.6mA 10.8mA 11.0mA 11.2mA 11.4mA 11.6mA 11.8mA 12.0mA 12.2mA 12.4mA 12.6mA 12.8mA 13.0mA 13.2mA 13.4mA 13.6mA 13.8mA 13.0mA 14.2mA 14.4mA 14.6mA 14.8mA 15.0mA 15.2mA 15.4mA 15.6mA 15.8mA 16.0mA 16.2mA 16.4mA 16.6mA 16.8mA 17.0mA 17.2mA 17.4mA 17.6mA 17.8mA 18.0mA 18.2mA 18.4mA 18.6mA 18.8mA 19.0mA 19.2mA 19.4mA 19.6mA 19.8mA Refer to “3. Current settings 1 and 2 (I1, I2)” of “●RGB Waveform Setting” for detail. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 42/80 2011.04 - Rev.A BD6086GU Address 2Bh Technical Note < G1 current2 setup> Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 2Bh W - IG12(6) IG12(5) IG12(4) IG12(3) IG12(2) IG12(1) IG12(0) Initial Value 00h - 0 0 0 0 0 0 0 “1100100” : “1100101” : “1100110” : “1100111” : “1101000” : “1101001” : “1101010” : “1101011” : “1101100” : “1101101” : “1101110” : “1101111” : “1110000” : “1110001” : “1110010” : “1110011” : “1110100” : “1110101” : “1110110” : “1110111” : “1111000” : “1111001” : “1111010” : “1111011” : “1111100” : “1111101” : “1111110” : “1111111” : 20.0mA 20.2mA 20.4mA 20.6mA 20.8mA 21.0mA 21.2mA 21.4mA 21.6mA 21.8mA 22.0mA 22.2mA 22.4mA 22.6mA 22.8mA 23.0mA 23.2mA 23.4mA 23.6mA 23.8mA 24.0mA 24.2mA 24.4mA 24.6mA 24.8mA 25.0mA 25.2mA 25.4mA Bit7 : (Not used) Bit [6:0] : IG12(6:0) G1LED Current2 Setting (At RGBISETpin 120kΩ connection) “0000000” : “0000001” : “0000010” : “0000011” : “0000100” : “0000101” : “0000110” : “0000111” : “0001000” : “0001001” : “0001010” : “0001011” : “0001100” : “0001101” : “0001110” : “0001111” : “0010000” : “0010001” : “0010010” : “0010011” : “0010100” : “0010101” : “0010110” : “0010111” : “0011000” : “0011001” : “0011010” : “0011011” : “0011100” : “0011101” : “0011110” : “0011111” : “0100000” : “0100001” : “0100010” : “0100011” : “0100100” : “0100101” : “0100110” : “0100111” : “0101000” : “0101001” : “0101010” : “0101011” : “0101100” : “0101101” : “0101110” : “0101111” : “0110000” : “0110001” : 0.0 mA 0.2 mA 0.4 mA 0.6 mA 0.8 mA 1.0 mA 1.2 mA 1.4 mA 1.6 mA 1.8 mA 2.0 mA 2.2 mA 2.4 mA 2.6 mA 2.8 mA 3.0 mA 3.2 mA 3.4 mA 3.6 mA 3.8 mA 4.0 mA 4.2 mA 4.4 mA 4.6 mA 4.8 mA 5.0 mA 5.2 mA 5.4 mA 5.6 mA 5.8 mA 6.0 mA 6.2 mA 6.4 mA 6.6 mA 6.8 mA 7.0 mA 7.2 mA 7.4 mA 7.6 mA 7.8 mA 8.0 mA 8.2 mA 8.4 mA 8.6 mA 8.8 mA 9.0 mA 9.2 mA 9.4 mA 9.6 mA 9.8 mA “0110010” : “0110011” : “0110100” : “0110101” : “0110110” : “0110111” : “0111000” : “0111001” : “0111010” : “0111011” : “0111100” : “0111101” : “0111110” : “0111111” : “1000000” : “1000001” : “1000010” : “1000011” : “1000100” : “1000101” : “1000110” : “1000111” : “1001000” : “1001001” : “1001010” : “1001011” : “1001100” : “1001101” : “1001110” : “1001111” : “1010000” : “1010001” : “1010010” : “1010011” : “1010100” : “1010101” : “1010110” : “1010111” : “1011000” : “1011001” : “1011010” : “1011011” : “1011100” : “1011101” : “1011110” : “1011111” : “1100000” : “1100001” : “1100010” : “1100011” : 10.0mA 10.2mA 10.4mA 10.6mA 10.8mA 11.0mA 11.2mA 11.4mA 11.6mA 11.8mA 12.0mA 12.2mA 12.4mA 12.6mA 12.8mA 13.0mA 13.2mA 13.4mA 13.6mA 13.8mA 13.0mA 14.2mA 14.4mA 14.6mA 14.8mA 15.0mA 15.2mA 15.4mA 15.6mA 15.8mA 16.0mA 16.2mA 16.4mA 16.6mA 16.8mA 17.0mA 17.2mA 17.4mA 17.6mA 17.8mA 18.0mA 18.2mA 18.4mA 18.6mA 18.8mA 19.0mA 19.2mA 19.4mA 19.6mA 19.8mA Refer to “3. Current settings 1 and 2 (I1, I2)” of “●RGB Waveform Setting” for detail. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 43/80 2011.04 - Rev.A BD6086GU Address 2Ch Technical Note < G1 Wave pattern > Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 2Ch W - - - - PG1(3) PG1(2) PG1(1) PG1(0) Initial Value 07h - - - - 0 1 1 1 Bit [7:4] : (Not used) Bit [3:0] : PG1(3:0) G1LED Wave Pattern “0000” : Pattern 1 “0001” : Pattern 2 “0010” : Pattern 3 “0011” : Pattern 4 “0100” : Pattern 5 “0101” : Pattern 6 “0110” : Pattern 7 “0111” : Pattern 8 “1000” : Pattern 9 “1001” : Pattern 10 “1010” : Pattern 11 “1011” : Pattern 12 “1100” : Pattern 13 “1101” : Pattern 14 “1110” : Pattern 15 “1111” : Pattern 16 Refer to “2. Waveform pattern” of “●RGB Waveform Setting” for detail. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 44/80 2011.04 - Rev.A BD6086GU Address 2Dh Technical Note < B1 current1 setup > Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 2Dh W - IB11(6) IB11(5) IB11(4) IB11(3) IB11(2) IB11(1) IB11(0) Initial Value 00h - 0 0 0 0 0 0 0 “1100100” : “1100101” : “1100110” : “1100111” : “1101000” : “1101001” : “1101010” : “1101011” : “1101100” : “1101101” : “1101110” : “1101111” : “1110000” : “1110001” : “1110010” : “1110011” : “1110100” : “1110101” : “1110110” : “1110111” : “1111000” : “1111001” : “1111010” : “1111011” : “1111100” : “1111101” : “1111110” : “1111111” : 20.0mA 20.2mA 20.4mA 20.6mA 20.8mA 21.0mA 21.2mA 21.4mA 21.6mA 21.8mA 22.0mA 22.2mA 22.4mA 22.6mA 22.8mA 23.0mA 23.2mA 23.4mA 23.6mA 23.8mA 24.0mA 24.2mA 24.4mA 24.6mA 24.8mA 25.0mA 25.2mA 25.4mA Bit7 : (Not used) Bit [6:0] : IB11(6:0) B1LED Current1 Setting (At RGBISETpin 120kΩ connection) “0000000” : “0000001” : “0000010” : “0000011” : “0000100” : “0000101” : “0000110” : “0000111” : “0001000” : “0001001” : “0001010” : “0001011” : “0001100” : “0001101” : “0001110” : “0001111” : “0010000” : “0010001” : “0010010” : “0010011” : “0010100” : “0010101” : “0010110” : “0010111” : “0011000” : “0011001” : “0011010” : “0011011” : “0011100” : “0011101” : “0011110” : “0011111” : “0100000” : “0100001” : “0100010” : “0100011” : “0100100” : “0100101” : “0100110” : “0100111” : “0101000” : “0101001” : “0101010” : “0101011” : “0101100” : “0101101” : “0101110” : “0101111” : “0110000” : “0110001” : 0.0 mA 0.2 mA 0.4 mA 0.6 mA 0.8 mA 1.0 mA 1.2 mA 1.4 mA 1.6 mA 1.8 mA 2.0 mA 2.2 mA 2.4 mA 2.6 mA 2.8 mA 3.0 mA 3.2 mA 3.4 mA 3.6 mA 3.8 mA 4.0 mA 4.2 mA 4.4 mA 4.6 mA 4.8 mA 5.0 mA 5.2 mA 5.4 mA 5.6 mA 5.8 mA 6.0 mA 6.2 mA 6.4 mA 6.6 mA 6.8 mA 7.0 mA 7.2 mA 7.4 mA 7.6 mA 7.8 mA 8.0 mA 8.2 mA 8.4 mA 8.6 mA 8.8 mA 9.0 mA 9.2 mA 9.4 mA 9.6 mA 9.8 mA “0110010” : “0110011” : “0110100” : “0110101” : “0110110” : “0110111” : “0111000” : “0111001” : “0111010” : “0111011” : “0111100” : “0111101” : “0111110” : “0111111” : “1000000” : “1000001” : “1000010” : “1000011” : “1000100” : “1000101” : “1000110” : “1000111” : “1001000” : “1001001” : “1001010” : “1001011” : “1001100” : “1001101” : “1001110” : “1001111” : “1010000” : “1010001” : “1010010” : “1010011” : “1010100” : “1010101” : “1010110” : “1010111” : “1011000” : “1011001” : “1011010” : “1011011” : “1011100” : “1011101” : “1011110” : “1011111” : “1100000” : “1100001” : “1100010” : “1100011” : 10.0mA 10.2mA 10.4mA 10.6mA 10.8mA 11.0mA 11.2mA 11.4mA 11.6mA 11.8mA 12.0mA 12.2mA 12.4mA 12.6mA 12.8mA 13.0mA 13.2mA 13.4mA 13.6mA 13.8mA 13.0mA 14.2mA 14.4mA 14.6mA 14.8mA 15.0mA 15.2mA 15.4mA 15.6mA 15.8mA 16.0mA 16.2mA 16.4mA 16.6mA 16.8mA 17.0mA 17.2mA 17.4mA 17.6mA 17.8mA 18.0mA 18.2mA 18.4mA 18.6mA 18.8mA 19.0mA 19.2mA 19.4mA 19.6mA 19.8mA Refer to “3. Current settings 1 and 2 (I1, I2)” of “●RGB Waveform Setting” for detail. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 45/80 2011.04 - Rev.A BD6086GU Address 2Eh Technical Note < B1 current2 setup > Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 2Eh W - IB12(6) IB12(5) IB12(4) IB12(3) IB12(2) IB12(1) IB12(0) Initial Value 00h - 0 0 0 0 0 0 0 “1100100” : “1100101” : “1100110” : “1100111” : “1101000” : “1101001” : “1101010” : “1101011” : “1101100” : “1101101” : “1101110” : “1101111” : “1110000” : “1110001” : “1110010” : “1110011” : “1110100” : “1110101” : “1110110” : “1110111” : “1111000” : “1111001” : “1111010” : “1111011” : “1111100” : “1111101” : “1111110” : “1111111” : 20.0mA 20.2mA 20.4mA 20.6mA 20.8mA 21.0mA 21.2mA 21.4mA 21.6mA 21.8mA 22.0mA 22.2mA 22.4mA 22.6mA 22.8mA 23.0mA 23.2mA 23.4mA 23.6mA 23.8mA 24.0mA 24.2mA 24.4mA 24.6mA 24.8mA 25.0mA 25.2mA 25.4mA Bit7 : (Not used) Bit [6:0] : IB12(6:0) B1LED Current2 Setting (At RGBISETpin 120kΩ connection) “0000000” : “0000001” : “0000010” : “0000011” : “0000100” : “0000101” : “0000110” : “0000111” : “0001000” : “0001001” : “0001010” : “0001011” : “0001100” : “0001101” : “0001110” : “0001111” : “0010000” : “0010001” : “0010010” : “0010011” : “0010100” : “0010101” : “0010110” : “0010111” : “0011000” : “0011001” : “0011010” : “0011011” : “0011100” : “0011101” : “0011110” : “0011111” : “0100000” : “0100001” : “0100010” : “0100011” : “0100100” : “0100101” : “0100110” : “0100111” : “0101000” : “0101001” : “0101010” : “0101011” : “0101100” : “0101101” : “0101110” : “0101111” : “0110000” : “0110001” : 0.0 mA 0.2 mA 0.4 mA 0.6 mA 0.8 mA 1.0 mA 1.2 mA 1.4 mA 1.6 mA 1.8 mA 2.0 mA 2.2 mA 2.4 mA 2.6 mA 2.8 mA 3.0 mA 3.2 mA 3.4 mA 3.6 mA 3.8 mA 4.0 mA 4.2 mA 4.4 mA 4.6 mA 4.8 mA 5.0 mA 5.2 mA 5.4 mA 5.6 mA 5.8 mA 6.0 mA 6.2 mA 6.4 mA 6.6 mA 6.8 mA 7.0 mA 7.2 mA 7.4 mA 7.6 mA 7.8 mA 8.0 mA 8.2 mA 8.4 mA 8.6 mA 8.8 mA 9.0 mA 9.2 mA 9.4 mA 9.6 mA 9.8 mA “0110010” : “0110011” : “0110100” : “0110101” : “0110110” : “0110111” : “0111000” : “0111001” : “0111010” : “0111011” : “0111100” : “0111101” : “0111110” : “0111111” : “1000000” : “1000001” : “1000010” : “1000011” : “1000100” : “1000101” : “1000110” : “1000111” : “1001000” : “1001001” : “1001010” : “1001011” : “1001100” : “1001101” : “1001110” : “1001111” : “1010000” : “1010001” : “1010010” : “1010011” : “1010100” : “1010101” : “1010110” : “1010111” : “1011000” : “1011001” : “1011010” : “1011011” : “1011100” : “1011101” : “1011110” : “1011111” : “1100000” : “1100001” : “1100010” : “1100011” : 10.0mA 10.2mA 10.4mA 10.6mA 10.8mA 11.0mA 11.2mA 11.4mA 11.6mA 11.8mA 12.0mA 12.2mA 12.4mA 12.6mA 12.8mA 13.0mA 13.2mA 13.4mA 13.6mA 13.8mA 13.0mA 14.2mA 14.4mA 14.6mA 14.8mA 15.0mA 15.2mA 15.4mA 15.6mA 15.8mA 16.0mA 16.2mA 16.4mA 16.6mA 16.8mA 17.0mA 17.2mA 17.4mA 17.6mA 17.8mA 18.0mA 18.2mA 18.4mA 18.6mA 18.8mA 19.0mA 19.2mA 19.4mA 19.6mA 19.8mA Refer to “3. Current settings 1 and 2 (I1, I2)” of “●RGB Waveform Setting” for detail. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 46/80 2011.04 - Rev.A BD6086GU Address 2Fh Technical Note < B1 Wave pattern > Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 2Fh W - - - - PB1(3) PB1(2) PB1(1) PB1(0) Initial Value 07h - - - - 0 1 1 1 Bit [7:4] : (Not used) Bit [3:0] : PB1(3:0) B1LED Wave Pattern “0000” : Pattern 1 “0001” : Pattern 2 “0010” : Pattern 3 “0011” : Pattern 4 “0100” : Pattern 5 “0101” : Pattern 6 “0110” : Pattern 7 “0111” : Pattern 8 “1000” : Pattern 9 “1001” : Pattern 10 “1010” : Pattern 11 “1011” : Pattern 12 “1100” : Pattern 13 “1101” : Pattern 14 “1110” : Pattern 15 “1111” : Pattern 16 Refer to “2. Waveform pattern” of “●RGB Waveform Setting” for detail. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 47/80 2011.04 - Rev.A BD6086GU Address 30h Technical Note < RGB2 time > Address R/W 30h W Initial Value 00h Bit7 Bit6 Bit5 Bit4 SFRGB2(1) SFRGB2(0) SRRGB2(1) SRRGB2(0) - - 0 0 Bit3 Bit2 Bit1 Bit0 - TRGB2(2) TRGB2(1) TRGB2(0) 0 0 0 0 Bit [7:6] : SFRGB2(1:0) Slope Down Transition Setting “00” : 0 “01” : Wave form cycle / 16 “10” : Wave form cycle / 8 “11” : Wave form cycle / 4 It is a theoretical value on logic control, and the reaction time of the analog section is not included. "Slope time" is the time from a slope start to a slope end. Refer to “4. Rising/falling slope time” of “●RGB Waveform Setting” for detail. Bit [5:4] : SRRGB2(1:0) Slope Up Transition Setting “00” : 0 “01” : Wave form cycle / 16 “10” : Wave form cycle / 8 “11” : Wave form cycle / 4 It is a theoretical value on logic control, and the reaction time of the analog section is not included. "Slope time" is the time from a slope start to a slope end. Refer to “4. Rising/falling slope time” of “●RGB Waveform Setting” for detail. Bit3 : (Not used) Bit [2:0] : TRGB2(2:0) Wave Form Cycle Setting “000” : 0.131 s “001” : 0.52 s “010” : 1.05 s “011” : 2.10 s “100” : 4.19 s “101” : 8.39 s “110” : 12.6 s “111” : 16.8 s Refer to “1. Waveform cycle” of “●RGB Waveform Setting” for detail. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 48/80 2011.04 - Rev.A BD6086GU Address 31h Technical Note < R2 current 1setup > Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 31h W - IR21(6) IR21(5) IR21(4) IR21(3) IR21(2) IR21(1) IR21(0) Initial Value 00h - - 0 0 0 0 0 0 “1100100” : “1100101” : “1100110” : “1100111” : “1101000” : “1101001” : “1101010” : “1101011” : “1101100” : “1101101” : “1101110” : “1101111” : “1110000” : “1110001” : “1110010” : “1110011” : “1110100” : “1110101” : “1110110” : “1110111” : “1111000” : “1111001” : “1111010” : “1111011” : “1111100” : “1111101” : “1111110” : “1111111” : 20.0mA 20.2mA 20.4mA 20.6mA 20.8mA 21.0mA 21.2mA 21.4mA 21.6mA 21.8mA 22.0mA 22.2mA 22.4mA 22.6mA 22.8mA 23.0mA 23.2mA 23.4mA 23.6mA 23.8mA 24.0mA 24.2mA 24.4mA 24.6mA 24.8mA 25.0mA 25.2mA 25.4mA Bit7 : (Not used) Bit [6:0] : IR21(6:0) R2LED Current1 Setting (At RGBISETpin 120kΩ connection) “0000000” : “0000001” : “0000010” : “0000011” : “0000100” : “0000101” : “0000110” : “0000111” : “0001000” : “0001001” : “0001010” : “0001011” : “0001100” : “0001101” : “0001110” : “0001111” : “0010000” : “0010001” : “0010010” : “0010011” : “0010100” : “0010101” : “0010110” : “0010111” : “0011000” : “0011001” : “0011010” : “0011011” : “0011100” : “0011101” : “0011110” : “0011111” : “0100000” : “0100001” : “0100010” : “0100011” : “0100100” : “0100101” : “0100110” : “0100111” : “0101000” : “0101001” : “0101010” : “0101011” : “0101100” : “0101101” : “0101110” : “0101111” : “0110000” : “0110001” : 0.0 mA 0.2 mA 0.4 mA 0.6 mA 0.8 mA 1.0 mA 1.2 mA 1.4 mA 1.6 mA 1.8 mA 2.0 mA 2.2 mA 2.4 mA 2.6 mA 2.8 mA 3.0 mA 3.2 mA 3.4 mA 3.6 mA 3.8 mA 4.0 mA 4.2 mA 4.4 mA 4.6 mA 4.8 mA 5.0 mA 5.2 mA 5.4 mA 5.6 mA 5.8 mA 6.0 mA 6.2 mA 6.4 mA 6.6 mA 6.8 mA 7.0 mA 7.2 mA 7.4 mA 7.6 mA 7.8 mA 8.0 mA 8.2 mA 8.4 mA 8.6 mA 8.8 mA 9.0 mA 9.2 mA 9.4 mA 9.6 mA 9.8 mA “0110010” : “0110011” : “0110100” : “0110101” : “0110110” : “0110111” : “0111000” : “0111001” : “0111010” : “0111011” : “0111100” : “0111101” : “0111110” : “0111111” : “1000000” : “1000001” : “1000010” : “1000011” : “1000100” : “1000101” : “1000110” : “1000111” : “1001000” : “1001001” : “1001010” : “1001011” : “1001100” : “1001101” : “1001110” : “1001111” : “1010000” : “1010001” : “1010010” : “1010011” : “1010100” : “1010101” : “1010110” : “1010111” : “1011000” : “1011001” : “1011010” : “1011011” : “1011100” : “1011101” : “1011110” : “1011111” : “1100000” : “1100001” : “1100010” : “1100011” : 10.0mA 10.2mA 10.4mA 10.6mA 10.8mA 11.0mA 11.2mA 11.4mA 11.6mA 11.8mA 12.0mA 12.2mA 12.4mA 12.6mA 12.8mA 13.0mA 13.2mA 13.4mA 13.6mA 13.8mA 13.0mA 14.2mA 14.4mA 14.6mA 14.8mA 15.0mA 15.2mA 15.4mA 15.6mA 15.8mA 16.0mA 16.2mA 16.4mA 16.6mA 16.8mA 17.0mA 17.2mA 17.4mA 17.6mA 17.8mA 18.0mA 18.2mA 18.4mA 18.6mA 18.8mA 19.0mA 19.2mA 19.4mA 19.6mA 19.8mA Refer to “3. Current settings 1 and 2 (I1, I2)” of “●RGB Waveform Setting” for detail www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 49/80 2011.04 - Rev.A BD6086GU Address 32h Technical Note < R2 current 2setup > Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 32h W - IR22(6) IR22(5) IR22(4) IR22(3) IR22(2) IR22(1) IR22(0) Initial Value 00h - - 0 0 0 0 0 0 “1100100” : “1100101” : “1100110” : “1100111” : “1101000” : “1101001” : “1101010” : “1101011” : “1101100” : “1101101” : “1101110” : “1101111” : “1110000” : “1110001” : “1110010” : “1110011” : “1110100” : “1110101” : “1110110” : “1110111” : “1111000” : “1111001” : “1111010” : “1111011” : “1111100” : “1111101” : “1111110” : “1111111” : 20.0mA 20.2mA 20.4mA 20.6mA 20.8mA 21.0mA 21.2mA 21.4mA 21.6mA 21.8mA 22.0mA 22.2mA 22.4mA 22.6mA 22.8mA 23.0mA 23.2mA 23.4mA 23.6mA 23.8mA 24.0mA 24.2mA 24.4mA 24.6mA 24.8mA 25.0mA 25.2mA 25.4mA Bit7 : (Not used) Bit [6:0] : IR22(6:0) R2LED Current2 Setting (At RGBISETpin 120kΩ connection) “0000000” : “0000001” : “0000010” : “0000011” : “0000100” : “0000101” : “0000110” : “0000111” : “0001000” : “0001001” : “0001010” : “0001011” : “0001100” : “0001101” : “0001110” : “0001111” : “0010000” : “0010001” : “0010010” : “0010011” : “0010100” : “0010101” : “0010110” : “0010111” : “0011000” : “0011001” : “0011010” : “0011011” : “0011100” : “0011101” : “0011110” : “0011111” : “0100000” : “0100001” : “0100010” : “0100011” : “0100100” : “0100101” : “0100110” : “0100111” : “0101000” : “0101001” : “0101010” : “0101011” : “0101100” : “0101101” : “0101110” : “0101111” : “0110000” : “0110001” : 0.0 mA 0.2 mA 0.4 mA 0.6 mA 0.8 mA 1.0 mA 1.2 mA 1.4 mA 1.6 mA 1.8 mA 2.0 mA 2.2 mA 2.4 mA 2.6 mA 2.8 mA 3.0 mA 3.2 mA 3.4 mA 3.6 mA 3.8 mA 4.0 mA 4.2 mA 4.4 mA 4.6 mA 4.8 mA 5.0 mA 5.2 mA 5.4 mA 5.6 mA 5.8 mA 6.0 mA 6.2 mA 6.4 mA 6.6 mA 6.8 mA 7.0 mA 7.2 mA 7.4 mA 7.6 mA 7.8 mA 8.0 mA 8.2 mA 8.4 mA 8.6 mA 8.8 mA 9.0 mA 9.2 mA 9.4 mA 9.6 mA 9.8 mA “0110010” : “0110011” : “0110100” : “0110101” : “0110110” : “0110111” : “0111000” : “0111001” : “0111010” : “0111011” : “0111100” : “0111101” : “0111110” : “0111111” : “1000000” : “1000001” : “1000010” : “1000011” : “1000100” : “1000101” : “1000110” : “1000111” : “1001000” : “1001001” : “1001010” : “1001011” : “1001100” : “1001101” : “1001110” : “1001111” : “1010000” : “1010001” : “1010010” : “1010011” : “1010100” : “1010101” : “1010110” : “1010111” : “1011000” : “1011001” : “1011010” : “1011011” : “1011100” : “1011101” : “1011110” : “1011111” : “1100000” : “1100001” : “1100010” : “1100011” : 10.0mA 10.2mA 10.4mA 10.6mA 10.8mA 11.0mA 11.2mA 11.4mA 11.6mA 11.8mA 12.0mA 12.2mA 12.4mA 12.6mA 12.8mA 13.0mA 13.2mA 13.4mA 13.6mA 13.8mA 13.0mA 14.2mA 14.4mA 14.6mA 14.8mA 15.0mA 15.2mA 15.4mA 15.6mA 15.8mA 16.0mA 16.2mA 16.4mA 16.6mA 16.8mA 17.0mA 17.2mA 17.4mA 17.6mA 17.8mA 18.0mA 18.2mA 18.4mA 18.6mA 18.8mA 19.0mA 19.2mA 19.4mA 19.6mA 19.8mA Refer to “3. Current settings 1 and 2 (I1, I2)” of “●RGB Waveform Setting” for detail. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 50/80 2011.04 - Rev.A BD6086GU Address 33h Technical Note < R2 Wave Pattern setup > Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 33h W - - - - PR2(3) PR2(2) PR2(1) PR2(0) Initial Value 00h - - 0 0 0 0 0 0 Bit [7:4] : (Not used) Bit [3:0] : PR2(3:0) R2LED Wave Pattern “0000” : Pattern 1 “0001” : Pattern 2 “0010” : Pattern 3 “0011” : Pattern 4 “0100” : Pattern 5 “0101” : Pattern 6 “0110” : Pattern 7 “0111” : Pattern 8 “1000” : Pattern 9 “1001” : Pattern 10 “1010” : Pattern 11 “1011” : Pattern 12 “1100” : Pattern 13 “1101” : Pattern 14 “1110” : Pattern 15 “1111” : Pattern 16 Refer to “2. Waveform pattern” of “●RGB Waveform Setting” for detail. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 51/80 2011.04 - Rev.A BD6086GU Address 34h Technical Note < G2 current 1setup > Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 34h W - IG21(6) IG21(5) IG21(4) IG21(3) IG21(2) IG21(1) IG21(0) Initial Value 00h - - 0 0 0 0 0 0 “1100100” : “1100101” : “1100110” : “1100111” : “1101000” : “1101001” : “1101010” : “1101011” : “1101100” : “1101101” : “1101110” : “1101111” : “1110000” : “1110001” : “1110010” : “1110011” : “1110100” : “1110101” : “1110110” : “1110111” : “1111000” : “1111001” : “1111010” : “1111011” : “1111100” : “1111101” : “1111110” : “1111111” : 20.0mA 20.2mA 20.4mA 20.6mA 20.8mA 21.0mA 21.2mA 21.4mA 21.6mA 21.8mA 22.0mA 22.2mA 22.4mA 22.6mA 22.8mA 23.0mA 23.2mA 23.4mA 23.6mA 23.8mA 24.0mA 24.2mA 24.4mA 24.6mA 24.8mA 25.0mA 25.2mA 25.4mA Bit7 : (Not used) Bit [6:0] : IG21(6:0) G2LED Current1 Setting (At RGBISETpin 120kΩ connection) “0000000” : “0000001” : “0000010” : “0000011” : “0000100” : “0000101” : “0000110” : “0000111” : “0001000” : “0001001” : “0001010” : “0001011” : “0001100” : “0001101” : “0001110” : “0001111” : “0010000” : “0010001” : “0010010” : “0010011” : “0010100” : “0010101” : “0010110” : “0010111” : “0011000” : “0011001” : “0011010” : “0011011” : “0011100” : “0011101” : “0011110” : “0011111” : “0100000” : “0100001” : “0100010” : “0100011” : “0100100” : “0100101” : “0100110” : “0100111” : “0101000” : “0101001” : “0101010” : “0101011” : “0101100” : “0101101” : “0101110” : “0101111” : “0110000” : “0110001” : 0.0 mA 0.2 mA 0.4 mA 0.6 mA 0.8 mA 1.0 mA 1.2 mA 1.4 mA 1.6 mA 1.8 mA 2.0 mA 2.2 mA 2.4 mA 2.6 mA 2.8 mA 3.0 mA 3.2 mA 3.4 mA 3.6 mA 3.8 mA 4.0 mA 4.2 mA 4.4 mA 4.6 mA 4.8 mA 5.0 mA 5.2 mA 5.4 mA 5.6 mA 5.8 mA 6.0 mA 6.2 mA 6.4 mA 6.6 mA 6.8 mA 7.0 mA 7.2 mA 7.4 mA 7.6 mA 7.8 mA 8.0 mA 8.2 mA 8.4 mA 8.6 mA 8.8 mA 9.0 mA 9.2 mA 9.4 mA 9.6 mA 9.8 mA “0110010” : “0110011” : “0110100” : “0110101” : “0110110” : “0110111” : “0111000” : “0111001” : “0111010” : “0111011” : “0111100” : “0111101” : “0111110” : “0111111” : “1000000” : “1000001” : “1000010” : “1000011” : “1000100” : “1000101” : “1000110” : “1000111” : “1001000” : “1001001” : “1001010” : “1001011” : “1001100” : “1001101” : “1001110” : “1001111” : “1010000” : “1010001” : “1010010” : “1010011” : “1010100” : “1010101” : “1010110” : “1010111” : “1011000” : “1011001” : “1011010” : “1011011” : “1011100” : “1011101” : “1011110” : “1011111” : “1100000” : “1100001” : “1100010” : “1100011” : 10.0mA 10.2mA 10.4mA 10.6mA 10.8mA 11.0mA 11.2mA 11.4mA 11.6mA 11.8mA 12.0mA 12.2mA 12.4mA 12.6mA 12.8mA 13.0mA 13.2mA 13.4mA 13.6mA 13.8mA 13.0mA 14.2mA 14.4mA 14.6mA 14.8mA 15.0mA 15.2mA 15.4mA 15.6mA 15.8mA 16.0mA 16.2mA 16.4mA 16.6mA 16.8mA 17.0mA 17.2mA 17.4mA 17.6mA 17.8mA 18.0mA 18.2mA 18.4mA 18.6mA 18.8mA 19.0mA 19.2mA 19.4mA 19.6mA 19.8mA Refer to “3. Current settings 1 and 2 (I1, I2)” of “●RGB Waveform Setting” for detail. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 52/80 2011.04 - Rev.A BD6086GU Address 35h Add ress Technical Note < G2 current 2setup > R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 35h W - IG22(6) IG22(5) IG22(4) IG22(3) IG22(2) IG22(1) IG22(0) Initial Value 00h - - 0 0 0 0 0 0 “1100100” : “1100101” : “1100110” : “1100111” : “1101000” : “1101001” : “1101010” : “1101011” : “1101100” : “1101101” : “1101110” : “1101111” : “1110000” : “1110001” : “1110010” : “1110011” : “1110100” : “1110101” : “1110110” : “1110111” : “1111000” : “1111001” : “1111010” : “1111011” : “1111100” : “1111101” : “1111110” : “1111111” : 20.0mA 20.2mA 20.4mA 20.6mA 20.8mA 21.0mA 21.2mA 21.4mA 21.6mA 21.8mA 22.0mA 22.2mA 22.4mA 22.6mA 22.8mA 23.0mA 23.2mA 23.4mA 23.6mA 23.8mA 24.0mA 24.2mA 24.4mA 24.6mA 24.8mA 25.0mA 25.2mA 25.4mA Bit7 : (Not used) Bit [6:0] : IG22(6:0) G2LED Current2 Setting (At RGBISETpin 120kΩ connection) “0000000” : “0000001” : “0000010” : “0000011” : “0000100” : “0000101” : “0000110” : “0000111” : “0001000” : “0001001” : “0001010” : “0001011” : “0001100” : “0001101” : “0001110” : “0001111” : “0010000” : “0010001” : “0010010” : “0010011” : “0010100” : “0010101” : “0010110” : “0010111” : “0011000” : “0011001” : “0011010” : “0011011” : “0011100” : “0011101” : “0011110” : “0011111” : “0100000” : “0100001” : “0100010” : “0100011” : “0100100” : “0100101” : “0100110” : “0100111” : “0101000” : “0101001” : “0101010” : “0101011” : “0101100” : “0101101” : “0101110” : “0101111” : “0110000” : “0110001” : 0.0 mA 0.2 mA 0.4 mA 0.6 mA 0.8 mA 1.0 mA 1.2 mA 1.4 mA 1.6 mA 1.8 mA 2.0 mA 2.2 mA 2.4 mA 2.6 mA 2.8 mA 3.0 mA 3.2 mA 3.4 mA 3.6 mA 3.8 mA 4.0 mA 4.2 mA 4.4 mA 4.6 mA 4.8 mA 5.0 mA 5.2 mA 5.4 mA 5.6 mA 5.8 mA 6.0 mA 6.2 mA 6.4 mA 6.6 mA 6.8 mA 7.0 mA 7.2 mA 7.4 mA 7.6 mA 7.8 mA 8.0 mA 8.2 mA 8.4 mA 8.6 mA 8.8 mA 9.0 mA 9.2 mA 9.4 mA 9.6 mA 9.8 mA “0110010” : “0110011” : “0110100” : “0110101” : “0110110” : “0110111” : “0111000” : “0111001” : “0111010” : “0111011” : “0111100” : “0111101” : “0111110” : “0111111” : “1000000” : “1000001” : “1000010” : “1000011” : “1000100” : “1000101” : “1000110” : “1000111” : “1001000” : “1001001” : “1001010” : “1001011” : “1001100” : “1001101” : “1001110” : “1001111” : “1010000” : “1010001” : “1010010” : “1010011” : “1010100” : “1010101” : “1010110” : “1010111” : “1011000” : “1011001” : “1011010” : “1011011” : “1011100” : “1011101” : “1011110” : “1011111” : “1100000” : “1100001” : “1100010” : “1100011” : 10.0mA 10.2mA 10.4mA 10.6mA 10.8mA 11.0mA 11.2mA 11.4mA 11.6mA 11.8mA 12.0mA 12.2mA 12.4mA 12.6mA 12.8mA 13.0mA 13.2mA 13.4mA 13.6mA 13.8mA 13.0mA 14.2mA 14.4mA 14.6mA 14.8mA 15.0mA 15.2mA 15.4mA 15.6mA 15.8mA 16.0mA 16.2mA 16.4mA 16.6mA 16.8mA 17.0mA 17.2mA 17.4mA 17.6mA 17.8mA 18.0mA 18.2mA 18.4mA 18.6mA 18.8mA 19.0mA 19.2mA 19.4mA 19.6mA 19.8mA Refer to “3. Current settings 1 and 2 (I1, I2)” of “●RGB Waveform Setting” for detail. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 53/80 2011.04 - Rev.A BD6086GU Address 36h Technical Note < G2 Wave Pattern setup > Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 36h W - - - - PG2(3) PG2(2) PG2(1) PG2(0) Initial Value 00h - - 0 0 0 0 0 0 Bit [7:4] : (Not used) Bit [3:0] : PG2(3:0) G2LED Wave Pattern “0000” : Pattern 1 “0001” : Pattern 2 “0010” : Pattern 3 “0011” : Pattern 4 “0100” : Pattern 5 “0101” : Pattern 6 “0110” : Pattern 7 “0111” : Pattern 8 “1000” : Pattern 9 “1001” : Pattern 10 “1010” : Pattern 11 “1011” : Pattern 12 “1100” : Pattern 13 “1101” : Pattern 14 “1110” : Pattern 15 “1111” : Pattern 16 fer to “2. Waveform pattern” of “●RGB Waveform Setting” for detail. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 54/80 2011.04 - Rev.A BD6086GU Address 37h Technical Note < B2 current 1setup > Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 37h W - IB21(6) IB21(5) IB21(4) IB21(3) IB21(2) IB21(1) IB21(0) Initial Value 00h - - 0 0 0 0 0 0 “1100100” : “1100101” : “1100110” : “1100111” : “1101000” : “1101001” : “1101010” : “1101011” : “1101100” : “1101101” : “1101110” : “1101111” : “1110000” : “1110001” : “1110010” : “1110011” : “1110100” : “1110101” : “1110110” : “1110111” : “1111000” : “1111001” : “1111010” : “1111011” : “1111100” : “1111101” : “1111110” : “1111111” : 20.0mA 20.2mA 20.4mA 20.6mA 20.8mA 21.0mA 21.2mA 21.4mA 21.6mA 21.8mA 22.0mA 22.2mA 22.4mA 22.6mA 22.8mA 23.0mA 23.2mA 23.4mA 23.6mA 23.8mA 24.0mA 24.2mA 24.4mA 24.6mA 24.8mA 25.0mA 25.2mA 25.4mA Bit7 : (Not used) Bit [6:0] : IB21(6:0) B2LED Current1 Setting (At RGBISETpin 120kΩ connection) “0000000” : “0000001” : “0000010” : “0000011” : “0000100” : “0000101” : “0000110” : “0000111” : “0001000” : “0001001” : “0001010” : “0001011” : “0001100” : “0001101” : “0001110” : “0001111” : “0010000” : “0010001” : “0010010” : “0010011” : “0010100” : “0010101” : “0010110” : “0010111” : “0011000” : “0011001” : “0011010” : “0011011” : “0011100” : “0011101” : “0011110” : “0011111” : “0100000” : “0100001” : “0100010” : “0100011” : “0100100” : “0100101” : “0100110” : “0100111” : “0101000” : “0101001” : “0101010” : “0101011” : “0101100” : “0101101” : “0101110” : “0101111” : “0110000” : “0110001” : 0.0 mA 0.2 mA 0.4 mA 0.6 mA 0.8 mA 1.0 mA 1.2 mA 1.4 mA 1.6 mA 1.8 mA 2.0 mA 2.2 mA 2.4 mA 2.6 mA 2.8 mA 3.0 mA 3.2 mA 3.4 mA 3.6 mA 3.8 mA 4.0 mA 4.2 mA 4.4 mA 4.6 mA 4.8 mA 5.0 mA 5.2 mA 5.4 mA 5.6 mA 5.8 mA 6.0 mA 6.2 mA 6.4 mA 6.6 mA 6.8 mA 7.0 mA 7.2 mA 7.4 mA 7.6 mA 7.8 mA 8.0 mA 8.2 mA 8.4 mA 8.6 mA 8.8 mA 9.0 mA 9.2 mA 9.4 mA 9.6 mA 9.8 mA “0110010” : “0110011” : “0110100” : “0110101” : “0110110” : “0110111” : “0111000” : “0111001” : “0111010” : “0111011” : “0111100” : “0111101” : “0111110” : “0111111” : “1000000” : “1000001” : “1000010” : “1000011” : “1000100” : “1000101” : “1000110” : “1000111” : “1001000” : “1001001” : “1001010” : “1001011” : “1001100” : “1001101” : “1001110” : “1001111” : “1010000” : “1010001” : “1010010” : “1010011” : “1010100” : “1010101” : “1010110” : “1010111” : “1011000” : “1011001” : “1011010” : “1011011” : “1011100” : “1011101” : “1011110” : “1011111” : “1100000” : “1100001” : “1100010” : “1100011” : 10.0mA 10.2mA 10.4mA 10.6mA 10.8mA 11.0mA 11.2mA 11.4mA 11.6mA 11.8mA 12.0mA 12.2mA 12.4mA 12.6mA 12.8mA 13.0mA 13.2mA 13.4mA 13.6mA 13.8mA 13.0mA 14.2mA 14.4mA 14.6mA 14.8mA 15.0mA 15.2mA 15.4mA 15.6mA 15.8mA 16.0mA 16.2mA 16.4mA 16.6mA 16.8mA 17.0mA 17.2mA 17.4mA 17.6mA 17.8mA 18.0mA 18.2mA 18.4mA 18.6mA 18.8mA 19.0mA 19.2mA 19.4mA 19.6mA 19.8mA Refer to “3. Current settings 1 and 2 (I1, I2)” of “●RGB Waveform Setting” for detail. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 55/80 2011.04 - Rev.A BD6086GU Address 38h Technical Note < B2 current 2setup > Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 38h W - IB22(6) IB22 (5) IB22(4) IB22(3) IB22(2) IB22(1) IB22(0) Initial Value 00h - - 0 0 0 0 0 0 “1100100” : “1100101” : “1100110” : “1100111” : “1101000” : “1101001” : “1101010” : “1101011” : “1101100” : “1101101” : “1101110” : “1101111” : “1110000” : “1110001” : “1110010” : “1110011” : “1110100” : “1110101” : “1110110” : “1110111” : “1111000” : “1111001” : “1111010” : “1111011” : “1111100” : “1111101” : “1111110” : “1111111” : 20.0mA 20.2mA 20.4mA 20.6mA 20.8mA 21.0mA 21.2mA 21.4mA 21.6mA 21.8mA 22.0mA 22.2mA 22.4mA 22.6mA 22.8mA 23.0mA 23.2mA 23.4mA 23.6mA 23.8mA 24.0mA 24.2mA 24.4mA 24.6mA 24.8mA 25.0mA 25.2mA 25.4mA Bit7 : (Not used) Bit [6:0] : IB22(6:0) B2LED Current2 Setting (At RGBISETpin 120kΩ connection) “0000000” : “0000001” : “0000010” : “0000011” : “0000100” : “0000101” : “0000110” : “0000111” : “0001000” : “0001001” : “0001010” : “0001011” : “0001100” : “0001101” : “0001110” : “0001111” : “0010000” : “0010001” : “0010010” : “0010011” : “0010100” : “0010101” : “0010110” : “0010111” : “0011000” : “0011001” : “0011010” : “0011011” : “0011100” : “0011101” : “0011110” : “0011111” : “0100000” : “0100001” : “0100010” : “0100011” : “0100100” : “0100101” : “0100110” : “0100111” : “0101000” : “0101001” : “0101010” : “0101011” : “0101100” : “0101101” : “0101110” : “0101111” : “0110000” : “0110001” : 0.0 mA 0.2 mA 0.4 mA 0.6 mA 0.8 mA 1.0 mA 1.2 mA 1.4 mA 1.6 mA 1.8 mA 2.0 mA 2.2 mA 2.4 mA 2.6 mA 2.8 mA 3.0 mA 3.2 mA 3.4 mA 3.6 mA 3.8 mA 4.0 mA 4.2 mA 4.4 mA 4.6 mA 4.8 mA 5.0 mA 5.2 mA 5.4 mA 5.6 mA 5.8 mA 6.0 mA 6.2 mA 6.4 mA 6.6 mA 6.8 mA 7.0 mA 7.2 mA 7.4 mA 7.6 mA 7.8 mA 8.0 mA 8.2 mA 8.4 mA 8.6 mA 8.8 mA 9.0 mA 9.2 mA 9.4 mA 9.6 mA 9.8 mA “0110010” : “0110011” : “0110100” : “0110101” : “0110110” : “0110111” : “0111000” : “0111001” : “0111010” : “0111011” : “0111100” : “0111101” : “0111110” : “0111111” : “1000000” : “1000001” : “1000010” : “1000011” : “1000100” : “1000101” : “1000110” : “1000111” : “1001000” : “1001001” : “1001010” : “1001011” : “1001100” : “1001101” : “1001110” : “1001111” : “1010000” : “1010001” : “1010010” : “1010011” : “1010100” : “1010101” : “1010110” : “1010111” : “1011000” : “1011001” : “1011010” : “1011011” : “1011100” : “1011101” : “1011110” : “1011111” : “1100000” : “1100001” : “1100010” : “1100011” : 10.0mA 10.2mA 10.4mA 10.6mA 10.8mA 11.0mA 11.2mA 11.4mA 11.6mA 11.8mA 12.0mA 12.2mA 12.4mA 12.6mA 12.8mA 13.0mA 13.2mA 13.4mA 13.6mA 13.8mA 13.0mA 14.2mA 14.4mA 14.6mA 14.8mA 15.0mA 15.2mA 15.4mA 15.6mA 15.8mA 16.0mA 16.2mA 16.4mA 16.6mA 16.8mA 17.0mA 17.2mA 17.4mA 17.6mA 17.8mA 18.0mA 18.2mA 18.4mA 18.6mA 18.8mA 19.0mA 19.2mA 19.4mA 19.6mA 19.8mA Refer to “3. Current settings 1 and 2 (I1, I2)” of “●RGB Waveform Setting” for detail. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 56/80 2011.04 - Rev.A BD6086GU Address 39h Technical Note < B2 Wave Pattern setup > Address R/W Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 39h W - - - - PB(3) PB(2) PB(1) PB(0) Initial Value 00h - - 0 0 0 0 0 0 Bit [7:4] : (Not used) Bit [3:0] : PB(3:0) “0000” : “0001” : “0010” : “0011” : “0100” : “0101” : “0110” : “0111” : “1000” : “1001” : “1010” : “1011” : “1100” : “1101” : “1110” : “1111” : B2LED Wave Pattern Pattern 1 Pattern 2 Pattern 3 Pattern 4 Pattern 5 Pattern 6 Pattern 7 Pattern 8 Pattern 9 Pattern 10 Pattern 11 Pattern 12 Pattern 13 Pattern 14 Pattern 15 Pattern 16 fer to “2. Waveform pattern” of “●RGB Waveform Setting” for detail. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 57/80 2011.04 - Rev.A BD6086GU Technical Note ●Description of white LED Driver Operations ・ Comprises four lights (WLEDs1-4) for the main driver and three lights (WLEDs5-7) for general-purpose drivers. ・ Permits the main driver to select either a fixed current mode based on a register or an auto light control mode by the auto light control module. ・ Enables a general-purpose driver to designate an independent control mode based on a register and its attribution to the main group in units of terminals. This function makes it possible to assign the drivers easily depending on set designs such as main 4 LEDs/sub 2 LEDs/indicator 1ch and main 6 LEDs/sub 1 LED. ・ Implements control as shown below when main group setting is designated via the W*MD bit. Current setting: Operates in conjunction with IMLED(6:0) (IW*(6:0) is discarded.) ON/OFF control: Operates in conjunction with MLEDEN. (W*EN is discarded.) ・ Enables the main group to control PWM via the external terminal so that brightness control can be accomplished from the outside. PWM control: Inputs PWM via the external terminal “WPWMIN.” External synchronization: Corrects a current value set by IOFS (5:0) in synchronization with the external terminal “OSYNC.” ・ Determines the LED current via a built-in resistance. Permits the main group to perform slope processing so that the leading/trailing edge time can be set individually. The settings made in the registers THL (3:0) and TLH (3:0) are effective regardless of their light control mode (ON/OFF). To enable instant activation, the minimum value must be set for time. ●RGB LED Driver Operation Description ・ Two drivers “RGB1 (R1LED, G1LED, B1LED)” and “RGB2 (R2LED, G2LED, B2LED)” are mounted. ・ A slope function is incorporated to control drivers independently. ・ Refer to RGB Waveform Setting for more information about output waveform setting. ・ RGB2 can be used for GPO (Open drain output) It can be set up in every terminal with the register R2GPO, G2GPO and B2GPO. ・ The LED current can be set via a resistance value (RISET) to be connected to the RGBISET terminal. The maximum current value can be derived from the following expression: ILEDmax [A] = 3.048 / RISET [kΩ] (Typ) However, this setting must be made so that the maximum current value can be less than or equal to 30.48mA. In addition, the RGBISET terminal has an overcurrent protection circuit to prevent the excessive LED current from flowing for low impedance to the ground. ・ Connection of each LED of RGB can be set up in VBAT or VOUT by the register RGB1PW (1:0) and RGB2PW (1:0). When Vf is low, it is connected to VBAT, and it is possible that efficiency is raised. When a VBAT connection is chosen, a return route to the DC/DC circuit is interrupted, and it works as a simple constant current driver. In this case, set it up to be less low than the saturation voltage (0.2V) of the fixed electric current circuit. LED electric current When DC/DC isn't used. RGB*EN または RGB*OS Ton (Max:20ms) LED 電流 www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 58/80 2011.04 - Rev.A BD6086GU Technical Note ●General-purpose I/O Ports (GPIO1-GPIO4) Capable of selecting GPI and GPO independently according to the register setting. Capable of selecting a complementary or open drain output method so long as GPO is selected. Uses a VGPIO applied voltage as a logic level (during CMOS output setting and input setting). When open drain output is selected, a pull-up resistance may be connected to a desirable location (VPUP) but the condition of VGPIO≧VPUP must be satisfied. ・ Capable of outputting an interrupt signal via the INTB terminal (NMOS open drain) depending on an input logic change 2 in each terminal and reading an input logic and an interrupt factor via I C so long as GPI is selected. Reflecting interrupts can be selected individually. When input mask is set: An input logic is sampled at the leading edge of a clock (having a frequency obtained by dividing 32KIN by 256). When a sampling value differs from the contents of the existing output register consecutively three times, it is reflected on the output register (input logic and interrupt factor). No input logic change is reflected on the INTB output. When input mask is reset: An input logic is sampled at the leading edge of a clock (having a frequency obtained by dividing 32KIN by 256). When a sampling value differs from the contents of the existing output register consecutively three times, it is reflected on the output register (input logic and interrupt factor). In addition, an interrupt pulse (one cycle of 32KIN with negative logic) is output simultaneously via INTB. The interrupt factor can be cleared by setting GPCLR (Address=23h, Bit=7) to H. ・ Provide an idle GPIO terminal with a resistance of about 100kΩ for pull-down. (When GPIO1 to GPIO4 and KBLT are not used at all, short-circuiting of VGPIO and GND eliminates the need for using this pull-down resistance.) ・ Each terminal of the GPIO block is initially set as follows: GPIOs1-4: I/O mode When using the output mode: The breakthrough current flows on an input buffer circuit until the output mode is set. When there is a problem, be sure to connect a pull-down resistance. Once the output mode is set, the input buffer circuit must be set to OFF so that the breakthrough current cannot flow. When using the input mode: The breakthrough current flows on an input buffer circuit unless an input voltage is fixed. When there is a problem, be sure to connect a pull-down resistance to fix the input voltage. KBLT: L (A pull-down resistance is incorporated to prevent unstable output at voltage supply.) INTB: Employs an external pull-down to set “H” for open drain output. ・ ・ ・ www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 59/80 2011.04 - Rev.A BD6086GU Technical Note ・ Apply voltage to VGPIO as follows to prevent a malfunction which causes an unexpected operation on a GPIO circuit at activation time. VIO and VGIO may be short-circuited. Even when only GPIO is used, voltage should apply to VIO too. To avoid erroneous output to the INTB terminal at activation time, don’t reset the input mask of GPIO* prior to an elapse of 30ms after 32KN input. Because internal IO is activated at clock input, current dissipation arises even in the standby state. When there is a problem, stop 32KIN input. ・ Input a clock of 50kHz or below to 32KIN. VBAT T VBATON T VBATOFF VIO Tr VIO -VGPIO =m in 0m s Tr VIO -VG PIO =m in 0m s VG PIO T RSTB=m in 0.1m s T R ST=m in 0.1m s RESETB T GPIO O N=m in 0.1m s 32KIN T M SKC LEAR=m in 30m s G P*M SK Register control Im proper Possible Im proper It is an example of a wave at the time of use as GPI. 1 2 1 2 3 G P IO * 32K IN x2 5 6 G P *IN T G P *D AT IN TB 32K IN 1C lock I2C C lock width G P C LR www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 60/80 2011.04 - Rev.A BD6086GU Technical Note ●Key Backlight Controller ・ Capable of turning ON or OFF the key backlight according to the register setting or via the automatic light control module. ・ Capable of adjusting illumination (ON time) according to the Duty setting via the built-in PWM (PWM frequency: 488Hz) and fade-in/fade-out via the slope function which steps PWM Duty at time intervals set in the KBSLP register. ・ Determines a key backlight PWM frequency based on an internal clock rate of 1MHz. This value is identical to that at Typ (1MHx). ・ Enables the selection of complementary or open drain for output and allows diversion to GPO. ・ Uses a VGPIO applied voltage as a logic level (during CMOS output setting and input setting). When open drain output is selected, a pull-up resistance may be a desirable location (VPUP) but the condition of VGPIO≧VPUP must be satisfied. ・ Mandatory to supply voltage to VGPIO for key backlight controller operations. For a key backlight controller operating in conjunction with an auto luminous control (ALC) module The register “KBFIX” must be set to 0 to enter the auto luminous control mode. The ON/OFF condition to illumination intensity is set in the registers CTH (3:0) and CHYS (1:0). The ON/OFF patterns of the key backlight are set in the registers MDTY (3:0) and KBSLP (1:0). (For details of auto luminous control module setting, refer to ●Description of Auto Luminous Control Module Operations.) For a key backlight controller capable of ON/OFF control according to register settings The register “KBFIX” must be set to 1 to enter the register setting mode. The slope time is set in the register “KBSLP (1:0).” When the key backlight is turned ON, data equivalent to illumination intensity must be set in MDTY (3.0). When it is turned OFF, “0h" must be set instead. For a key backlight controller to be used as GPO The register “KBFIX” must be set to 1 to enter the register setting mode. The register "KBSLP (1:0)” is set to 00 (without slope). When “H” level output takes place as a GPO, the register “MDTY (3:0)”must be set to Fh. In contrast, when "L" level output takes place, the MDTY (3.0) must be set to 0h instead. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 61/80 2011.04 - Rev.A BD6086GU Technical Note ●RGB Waveform Setting Various kinds of RGB control can be implemented by designating waveform cycles, waveform patterns, current settings 1, 2 and rising/falling slope times. To activate a RGB waveform, a continuous operation via RGB*EN or a single-shot operation via RGB*OS can be selected. In addition, when control via the external terminal RGB*CNT is enabled via RGB*MEL, the corresponding LED can be lit in synchronization with the external signal. 1. Waveform cycle ・ingle cycle time is set for a waveform pattern. ・This setting can be made independently for RGB1 and RGB2. 2. Waveform pattern ・A pattern in a waveform cycle is set. ・Sixteen types of waveform patterns can be set in units of waveform patterns. ・For concrete waveform patterns, refer to the timing diagram shown on the next page. 3. Current settings 1 and 2 (I1, I2) ・Two currents in a waveform pattern are set. ・When the maximum current value is 25.4mA, it is possible to set the current ranging from 0 to 25.4mA with an increment of 0.2mA (128 steps). ・The polarity of a waveform is determined by the greater-than/ less-than relationship in the current setting. ・This setting can be made in units of terminals. 4. Rising/falling slope time ・A current change time during switching between current settings 1 and 2 is set. A time per step (0.2mA) is calculated based on a difference between the currents selected in current settings 1, 2 and a setting slope time. For this reason, a time per step (0.2mA) is short when a difference between setting currents I1 and I2 is large. In contrast, it is long when a difference between setting currents I1 and I2 is small. ・Regardless of current settings 1 and 2, a rising slope time applies at current increase and a falling slope time applies at current decrease. For concrete waveform images, refer to the timing diagram shown on the next page. 5. External terminal synchronization control When control via the external terminal RGB*CNT is enabled via RGB*MEL, lighting is enabled if the input external signal goes “H.” In contrast, it is disabled if the external input signal goes “L.” In this way, synchronization with the external signal is enabled so that LED can be blinked in conjunction with a ringing tone (a melody signaling a ringtone). Waveform cycle A RGB thin line indicates an image where external terminal control does not take place. R*LED G*LED B*LED RGB*CNT RGB*MEL External terminal control is enabled. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. Remains “Enabled” with RGB*MEL=1 and RGB*CNT=H 62/80 External terminal control is disabled. 2011.04 - Rev.A BD6086GU Technical Note Wave cycle Register data Wave pattern 1 (00h) Wave pattern2 (01h) Wave pattern 3 (02h) Wave pattern 4 (03h) Wave pattern 5 (04h) Wave pattern 6 (05h) Wave pattern 7 (06h) Wave pattern 8 (07h) Wave pattern 9 (08h) Wave pattern 10 (09h) Wave pattern 11 (0Ah) Wave pattern 12 (0Bh) Wave pattern 13 (0Ch) Wave pattern 14 (0Dh) Wave pattern 15 (0Eh) Wave pattern 16 (0Fh) I1 I2 I1 I2 I1 I2 I1 I2 I1 I2 I1 I2 I1 I2 I1 I1 I2 I1 I1 I1 I2 I2 I1 I1 I2 I2 I1 I1 I1 I2 I2 I1 I1 I2 I1 I1 I1 I1 I2 I2 I1 I2 I1 I1 I2 I1 I2 (ex)The image of current change of Wave pattern 11 Slope Down transition Current 2(I2) Slope uptransition Current 1(I1) RGB wave setting timing diagram 6. Clock external output The clock (31.25kHz (TYP)) of this LSI is output by making the setup of the register GPO1OSC "1" from the GPIO1 terminal. (Internal OSC is turned on separately, and you must make GPIO1 a setup of output.) As extension of illuminations, a clock can be supplied to other RGB LED drivers, and it can be made to synchronize with this LSI. It is applicable to a clock supply means in case there is no clock for GPIO (32KIN). www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 63/80 2011.04 - Rev.A BD6086GU Technical Note 7. RGB waveform setting examples [Example 1] Normal operation Waveform cycle [Example 4] 16Hz operation R*LED R*LED G*LED G*LED B*LED B*LED RGB*EN=1 RGB*EN=0 RGB*EN=1 Waveform cycle RGB*EN=0 Selecting a waveform pattern 8 causes a continuous normal Combining the settings of a waveform pattern 11 and a operation to take place through the setting current 1. waveform cycle 131ms causes blinking at a rate of 15.3Hz (approx. 16Hz). [Example 2] Blinking Waveform cycle [Example 5] Continuous lighting of four LEDs R*LED R*LED G*LED G*LED B*LED B*LED RGB*EN=1 RGB*EN=0 Waveform cycle RGB*OS=1 Setting a rising/falling slope time to “0” causes This example shows that lighting occurs continuously in blinking to take place. the order of white, red, red and red. Phase switching takes place via the setting currents of R and G. [Example 3] Slope operation Waveform cycle [Example 6] 7-color change slope operation R*LED R*LED G*LED G*LED B*LED B*LED RGB*EN=1 RGB*EN=0 RGB*EN=1 RGB*EN=0 R, G and B waveform patterns are set in a way that When a rising/falling slope time is longer than the any of R, G and B changes constantly. setting made in example 2, a continuous color change is made by slope operation. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. Waveform cycle 64/80 2011.04 - Rev.A BD6086GU Technical Note 8. RGB slope waveforms ・xample of waveform at activation Current setting: I1 < I2 (R G B*EN = 1) I2 I1 (O FF) (R G B*O S = 1) R G B*EN or R G B*O S = 1 R G B*EN = 0 Current setting: I1 > I2 I1 (RG B*EN = 1) I2 (O FF) (R G B*O S = 1) R G B*EN or R G B*O S = 1 R G B*EN = 0 ・urrent difference in each channel (example) I2 (A ) I2 (B ) T r a n s itio n ta k e s p la c e in u n its o f s t e p s b u t th e t im e p e r s t e p is s e t b a s e d o n in t e r n a l c a lc u la t io n s o t h a t t h e s lo p e a r r iv a l t im e is q u a s i- e q u a l. I1 (B ) I1 (A ) S lo p e 区 間 9. Setting change in slope duration A slope operation is performed by an internal sequencer. When an attempt is made to change the setting in a slope duration, the active slope operation is reset and a newly set slope operation is restarted. In this case, however, LED lighting stops for a maximum of 16.4ms (OSC frequency=typ) for synchronization with the internal clock until the operation is restarted. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 65/80 2011.04 - Rev.A BD6086GU Technical Note ●The explanation of Auto Lighting Control Dimming of LCD backlight and ON/OFF control of key backlight, are possible in the basis of the data detected by external ambient light a sensor. ・ince it has the bias adjustment function for sensors, ADC with an average filter, a gain offset adjustment function, and a LOG conversion function, an Ambient light can be broadly chosen from Photo Diode, Photo Transistor, Photo IC (a linear output / LOG output), etc. ・mbient light is changed into brightness data by digital processing. The external output of data is possible at I2C. ・onversion on LED current can choose a built-in initial table and a built-in user setting table. ・n LED driver is with a current value change slope function, and Auto Luminous control without sense of incongruity is possible for it. ・N/ off of the key back light can be controlled automatically by the brightness. Current control data Output voltage control PWM Permission Sensor offset adjust SBIAS SBIAS Sensor Gain adjust LIN/LOG Change time setup Conversion table Mode change SSENS ADC WPWMIN Periodic setup Current value Slope time sensor LCD Back light OSYNC WLED Equalization Measured -value adjust processing LOG Current value conversion Current value adjustment Slope processing conversion GC1 Gain control PWM ON/OFF control KBLT processing GC2 key Back light Gain control ON/OFF Brightness data Detect threshold Slope time Detect Hysteresis MAX DUTY :Effective also in ALC functional the case of not using it 2. Sensor I/F ・It is possible to supply bias voltage to a sensor using SBIAS. Output voltage (VoS) can be adjusted by register setup. Bit:VSB ・The external resistance for I/V conversion is adjusted according to the property of a sensor. sensor current 1. Auto Lighting Control ON/OFF ・It is independent of a back light / key back light section, and effective / non-effect can be set up and use only by reading of illuminance information is possible. Bit:ALCEN Ambient light www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 66/80 2011.04 - Rev.A BD6086GU Technical Note SSENS pin input voltage 3. I/V conversion Gain switching function is built in to extend the dynamic range. Effective / non-effect of automatic gain control are register setup. GC1 and the output logic of GC2 can be set up by the manual at the time of automatic gain control invalid. Bit :GAIN (1:0) No Gain control Gain control Ambient light ex1(BH1600FVC and connection) ex3 SBIAS SBIAS SSENS SSENS 9.5 (*1) Application circuit BH1600 GND GC1 GC1 GC2 GC2 SBIAS SSENS 1 VCC IOUT ex3 GC1 GC1 GC2 GC2 SGND SGND SGND Resistance is a relative valu Operation mode GAIN(1:0) GC1 output GC2 output Sensor Application Gain state Automatic 00 H L L H 01 H L Manual 10 L H Automatic High Automatic 00 H L L H Low Automatic Manual 01 00 H L L H High Fixation 01 L L Low - Auto Luminous control operates as Low Gain as High Gain at the time of "10" when GAIN (1:0) is "01." (*1) Please set the relative ratio of resistance. In this case, be careful of the difference in brightness conversion in High Gain mode and Low Gain mode. 4. AD conversion ・Detection of Ambient light information is periodically performed for low-power realization. Bit : ADCYC(1:0) ・The current which turns off SBIAS and ADC and is generated by the sensor is controlled except the time of Ambient light measurement. ・SBIAS output equips with intermittent operation mode and always ON-mode. Pull-down [ SBIAS and a SSENS terminal ] inside at the time of OFF. Bit : SBIASON A LC E N A D C YC (1:0) A D C C ycle A D start signal S B IA S O utput T A D one= 1.024m s(typ) T w ait= 64m s(typ) W hen S B IA S O N =1 16 tim es m easurem ent A D C M ovem ent T A D = 16.4m s(typ) G C 1, G C 2 G C 1, G C 2=00 A M B (3:0) A M B (3:0) T A M B = 80.4m s(typ) www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 67/80 2011.04 - Rev.A BD6086GU Technical Note 5. ADC data gain offset adjust ・Gain adjust and offset adjust to ADC output data are possible. ・adjust of gain and offset is a register setup. Bit:SGAIN (3:0) Bit:SOFS (3:0) ADC Internal data dj 6. Average filter ・Average filter for cancel a noise (16 times Fixation) Gain Offset adjustment Ambient light Brightness data 7. Brightness data conversion ・From Ambient light data, the rank judging of 16 steps suitable for brightness is carried out. ・Selection of the existence of LOG conversion with the type of Ambient light sensor is possible. Linear type Sensor:LOG Conversion LOG type Sensor:Data through Bit:STYPE ・Brightness data can be read through I2C. Ambient light SSENS voltage LOG Those with conversion Brightness GAIN no control (GAIN=11 STYPE=0) GAIN control Low mode (exclude GAIN=11) High mode 0 VoS×0/256 - VoS×0/256 1 VoS×1/256 - VoS×1/256 2 VoS×2/256 - VoS×2/256 3 4 5 6 7 8 9 A B C D E F VoS×3/256 VoS×4/256 VoS×5/256 VoS×6/256 VoS×7/256 VoS×9/256 VoS×10/256 VoS×13/256 VoS×14/256 VoS×19/256 VoS×20/256 VoS×27/256 VoS×28/256 VoS×38/256 VoS×39/256 VoS×53/256 VoS×54/256 VoS×74/256 VoS×2/256 VoS×3/256 VoS×4/256 VoS×6/256 VoS×7/256 VoS×11/256 VoS×12/256 VoS×20/256 VoS×21/256 VoS×36/256 VoS×75/256 VoS×104/256 VoS×105/256 VoS×144/256 VoS×145/256 VoS×199/256 VoS×200/256 VoS×255/256 VoS×37/256 VoS×64/256 VoS×65/256 VoS×114/256 VoS×115/256 VoS×199/256 VoS×200/256 VoS×255/256 VoS×0/256 VoS×1/256 VoS×3/256 VoS×4/256 VoS×5/256 VoS×7/256 VoS×8/256 VoS×12/256 VoS×13/256 VoS×21/256 VoS×22/256 VoS×37/256 VoS×38/256 VoS×65/256 VoS×66/256 VoS×113/256 VoS×114/256 VoS×199/256 VoS×200/256 VoS×255/256 - With no LOG conversion GAIN no control (GAIN=11 STYPE=1) VoS×0/256 VoS×17/256 VoS×18/256 VoS×26/256 VoS×27/256 VoS×36/256 VoS×37/256 VoS×47/256 VoS×48/256 VoS×59/256 VoS×60/256 VoS×71/256 VoS×72/256 VoS×83/256 VoS×84/256 VoS×95/256 VoS×96/256 VoS×107/256 VoS×108/256 VoS×119/256 VoS×120/256 VoS×131/256 VoS×132/256 VoS×143/256 VoS×144/256 VoS×155/256 VoS×156/256 VoS×168/256 VoS×169/256 VoS×181/256 VoS×182/256 VoS×255/256 Low mode / High mode changes with a color coating value (brightness) at the time of automatic control. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 68/80 2011.04 - Rev.A BD6086GU Table setup (Initial value) Brightness setup Current value Brightness setup Current value 0 1 2 3 4 5 6 7 11h 13h 15h 18h 1Eh 25h 2Fh 3Bh 3.6mA 4.0mA 4.4mA 5.0mA 6.2mA 7.6mA 9.6mA 12.0mA 8 9 A B C D E F 48h 56h 5Fh 63h 63h 63h 63h 63h 14.6mA 17.4mA 19.2mA 20.0mA 20.0mA 20.0mA 20.0mA 20.0mA 9. Slope process ・Slope process is given to LED current to dim naturally. ・The slope function is carried also in the driver for keys. ・LED current changes in the 256Step gradation in slopeing. ・UP(dark→bright ),Down(bright→dark) LED current transition speed are set individually. Bit:THL(3:0), TLH(3:0) ・Back light current changes as follows at the time of a slope. TLH (THL) is a time setup of the current steps 2/256. TLH A conversion rule can be changed. Brightness 変換テーブルのデータ Data of a conversion table LCD light LED current LCDBack バックライト LED 電流 8. LED current conversion ・The current of the LED driver to each Brightness is set up. ・Although a table setup (initial value) is prepared beforehand, it can change into a user setup by overwriting. Bit:IU*(6:0) (Back light) LCD Back light LED current Technical Note LED current LEDdrive ドライブ電流 slope time light→Dark, light→Dark A setup to each is possible. Brightness t 25.6mA 256 THL LCD Back light LED current ・The slope method at the time of the change in Auto Luminous control mode and register setting mode. It can choose. Once LED current is set to 0mA at Auto Luminous control mode at the registor Auto Luminous time of a change at the time of mode mode MDCIR=1, it transits according to the slope time set up by TLH. MDCIR=’0’ Bit:MDCIR ・LED current data can be read through I2C. 0mA www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 69/80 registor mode Mode change on MDCIR=’1’, It resets to a current value. t 2011.04 - Rev.A BD6086GU Technical Note 10. Back light current value External adjustmen1 ・Adjustment of the back light current which synchronized with the terminal input instead of timing of register writing is possible. ・By OSYNCEN=0, the amount of offset beforehand set as the register is reflected in LED driver current synchronizing (*) with an external terminal (OSYNC). (*) The time of the maximum OSSLP / 2 is taken for LCD back light LED current to start change, since it re-timing by the internal clock in any case. Bit:IOFS(5:0) IOFS The present setup 次の設定 register OSYNC LCD Back light LED current OSSLP When OSYNCEN=0 The present setup IOFS register ・The slope function is carried in the offset current. A slope sets up the change time per 2/256 step. Switching time is common with standup/falling. Bit:OSSLP(2:0) The next setup The next setup 次の設定 OSYNC LCD Back light LED current OSSLP OSSLP WHEN OSYNCEN=1 25.6mA 256 11. Back light current value External adjustmen 2 ・If a permission is granted by register setup, the PWM drive by the external terminal (WPWMIN) is possible. Bit:WPWMEN ・It becomes PWM operation which used the back light current by a register setup or automatic Luminous control as the base, and is the the best for the brightness compensation by external control. WPWMEN WPWMIN Back light current 0 L Normal operation 0 1 H L Normal operation 1 H Normal operation Compulsion OFF E N (*) I n te r n a l S o f t- S ta r t T im e D C /D C W P W M IN O u tp u t in p u t W PW M EN L E D C u rre n t E N (*) : it m e a n s “ M L E D E N ” o r “ W * E N ” o r “ R G B * E N ” o r “ R G B * O S ” . ( c a s e o f s e t tin g f o r R G B L E D c o n n e c t to V O U T ) I t is p o s s ib le t o m a k e it a W P W M IN in p u t a n d W P W M E N = 1 in f r o n t o f E N ( * ) . A P W M d r iv e b e c o m e s e ff e c t iv e a fte r t h e tim e o f a n L E D c u r r e n t s ta n d u p . W h e n r is in g d u r in g P W M o p e r a tio n , a s f o r th e s ta n d u p t im e o f a D C /D C o u t p u t , o n ly th e r a te o f P W M D u t y b e c o m e s la t e . A p p e a r a n c e m a y b e in f lu e n c e d w h e n e x t r e m e ly la te f r e q u e n c y a n d e x t r e m e ly lo w D u t y a r e in p u tt e d . P le a s e s e c u r e 5 0 μ s o r m o r e o f H s e c tio n s a t th e tim e o f P W M p u ls e F o r c e . www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 70/80 2011.04 - Rev.A BD6086GU Technical Note 13. Key Backlight PWM Control ・Outputs ON or OFF for binary judgment via the KBLT terminal after PWM processing. ・Allows up to 16 levels of MAX Duty to be set in the register via PWM. Bit name: MDTY (3:0) Allows a slope time to be set in the register via PWM. 16 levels of duties prepared as MAX Duty are sequentially stepped at KBSLP time intervals. Bit name: KBSLP (1:0) (This function is effective when KBLT serves for GPO as well as binary judgment.) * waveform in this description represents an operation image and does not indicate an bsolute value accurately. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 71/80 Key back light ON/OFF control Example: The backlight turns on with an illumination intensity of 7 and turns off with an illumination intensity of 5. CTH[3:0]=7h CHYS[1:0]=1h Detect threshold level, Hysteresis setup is possible OFF Brightness MDTY set point PWM Duty The threshold value and hystresis must meet the following condition: CTH setting CHYS setting ON DUTY Control KBSLP KBLT output 12. Key Backlight Binary Judgment Capable of comparing luminosity factor data with judgment threshold value with a hysteresis to determine binary judgment for illumination intensity. ・Available for key backlight ON/OFF control based on illumination intensity. ・Sets a threshold value and a hystresis via the registers. Bit name: CTH(3:0) Bit name: CHYS(1:0) t 2011.04 - Rev.A BD6086GU Technical Note ●Description of REG Operations REG control method ON/OFF control and normal mode/low power consumption mode control available for both register settings and terminal input REG* REG*ON REG*EN registor (Register) (Terminal) ON/OFF control ON/OFF REG*ON 0 0 1 1 L H L H OFF ON ON ON REG*CNT REG*MD REG* 0 L Low consumption 0 H Normal 1 L Normal 1 H Normal REG2VSEL REG2 L 1.8V H 1.5V Normal/ Low consumption REG*CNT REG* REG*MD REG*EN REG control Equivalent circuit diagram *1 or 2 are shown. About REG* (I/O voltage) activation When REG* is output as a VIO voltage, activation must take place as shown below. VBAT(force) RESETB (External terminal control) REG*EN(External terminal control) Min:7.5ms (*2) REG2EN Min:0ms (*4) REG*MD (External terminal control) REG*O(output) (=VIO voltage) Standby Low consumption Standby Normal mode mode Register access is possible. Min:2ms(*2) (*1) This sequence is the case where REG*O is used as I/O voltage. When you carry out external force of the I/O voltage, please start as follows in consideration of the specification of an external power supply. (*2) When low consumption mode is unnecessary, REG2 EN=REG2MD (simultaneous control) is possible. However, please take into consideration the REG2 standup time (Min:2ms) at the time of the normal mode in that case. (*3) REG* should perform release of RESETB at the time of the normal mode. (*4) The simultaneous timing of REG*EN="L" and RESETB= “L” is also OK. However, it is prohibition to carry out REG*EN= “L” before RESETB= “L” . When using an external power supply as VIO voltage, it is necessary to start as follows. VBAT (force) VIO (force) RESETB (External terminal control) Register access impossible possible impossible Please perform release of RESETB after the standup of VIO and VGPIO. It is prohibition to bring down VIO and VGPIO before RESETB="L." Moreover, when VIO and VGPIO are another power supplies, please start VIO voltage first. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 72/80 2011.04 - Rev.A BD6086GU Technical Note ●Description of DC/DC Operations Activation The DC/DC circuit is activated when any LED is subject to lighting control (DCDCFON=0). (However, this is true only when the output (VOUT) of the DC/DC circuit is set as a LED connection destination.) A soft start function is available to prevent the rush current at DC/DC circuit activation. Note that voltage should apply to both VBAT and VIO as follows: DCDCMD=1 must be set in the fixed voltage mode and DCDCMD=DCDCFON =1 must be set when DCDC output takes place regardless of LEDs. VBAT VIO T VIOON=min 0.1ms T VIOOFF=min 0.1ms RESETB T RSTB=min 0.1ms T RST=min 0ms EN (*) T SOFT VOUT LED 電 流 (*) An EN signal means the following in the upper figure. EN = “MLEDEN” or “W*EN” or “RGB*EN” or “RGB*OS” (= LED The LED lighting control of a setup of connection VOUT) But, as for Ta > TTSD (typ : 195° C), a protection function functions, and an EN signal doesn't become effective. TSOFT changes by the capacitor connected to VOUT and inside OSC. TSOFT is Typ 200μs (when the output capacitor of VOUT =1.0μF). Overvoltage protection/Overcurrent protection The DC/DC circuit output (VOUT) is provided with an overvoltage protection function and an overcurrent protection function. VOUT overvoltage detection voltage: approx. 6.0V (during a VOUT voltage rise) A detection voltage has a hysteresis and its detection cancel voltage is approx. 5.75V (reference design value). In addition, when the VOUT output is short-circuited to GND, the leak current is suppressed via the overcurrent protection function. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 73/80 2011.04 - Rev.A BD6086GU Technical Note Mode transition A step-up (pressure rising) multiple switches automatically depending on the VBAT voltage and VOUT terminal voltage. STANDBY Condition (1) ALL off MLEDEN=”1” or W*EN=”1” or RGB*EN or RGB*OS=”1” (1) and Ta<TTSD SOFT (However, an LED must be used for LED light control defined in the VOUT setting.) CP x1.0 mode After detecting VOUT>1.5V(typ), 128us(typ) wait X1.0 CP x1.0 mode mode up=”H” mode down=”H” X1.5 CP x1.5 mode mode up=”H” mode down=”H” X2.0 CP x2.0 mode The charge pump mode transits as follows. <Mode transition: x1.0 → x1.5 → x2.0> VBAT and VOUT are compared and mode transition is allowed only when the following conditions are satisfied. Mode transition from x1.0 to x1.5 VBAT ≤ VOUT + (Ron10×Iout) (LED terminal feedback: VOUT = Vf+0.2(Typ)) Mode transition from x1.5 to x2.0 VBAT×1.5 ≤ VOUT + (Ron15×Iout) (LED terminal feedback: VOUT = Vf+0.2(Typ)) Where, Ron10 and Ron15 represent a 0n resistance at a charge pump. Ron10=1Ω (Typ), Ron15=5Ω (Typ) (design value) <Mode transition: x2.0 → x1.5 → x1.0> VOUT and VBAT rates are detected and mode transition is performed only when a prescribed rate is exceeded. The rates are as follows: Mode transition from x1.5 to x1.0 VBAT/VOUT=1.07 (design value) Mode transition from x2.0 to x1.5 VBAT/VOUT=0.96 (design value) www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 74/80 2011.04 - Rev.A BD6086GU Technical Note ●Description of other operations 1.Reset There are two types of reset: software reset and hardware reset. (1) Software reset ・Setting the register (SFTRST) to “1” causes all the registers to be initialized. ・The registers subject to software reset automatically return to zero (Auto Return 0). (2) Hardware reset ・Changing the RESETB terminal setting from “H” to “L” causes a state subject to hardware reset. ・Attempting hardware reset causes the states of all registers and output terminals to be initialized to their initial values, so that address reception is entirely stopped. ・Attempting reset in the hardware reset state causes the RESETB terminal state to change from “L” to “H” and vice versa. ・The RESETB terminal is provided with a filter circuit and a duration of 5µs or less with the terminal set to “L” is not recognized as hardware reset. (3) Reset sequence ・When hardware reset is attempted during software reset, software reset is already cleared when hardware reset is cleared (because the software reset initial value is 0). 2.Thermal shutdown A thermal shutdown function is effective in the following block. DC/DC (Charge pump) LED driver REG1,2 (Normal mode) SBIAS The thermal shutdown function is activated when the detected temperature is approx. 195C. The detected temperature has a hysteresis and the detection cancel temperature is approx. 175C (reference value in design). 3. I/O portion While the RESETB terminal is in “L” state, no input signal is propagated to the IC logic portion because SDA and SCL input buffer operations are all stopped. When RESETB=L, output is fixed at “H.” SCL (SDA) Level shifter Logic EN RESETB Special care should be taken because a current path may be formed via a terminal protection diode, depending on an I/O power-on sequence or an input level. 4. About the pin management of the function that isn't used and test pins Setting it as follows is recommended with the test pin and the pin which isn't used. Set up pin referring to the “Equivalent circuit diagram” so that there may not be a problem under the actual use. T1, T2, T3 T4 Non-used LED Pin Digital input terminal VGPIO 32KIN GPIO1~4 KBLT INTB ,REG1O, REG2O www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. Short to GND because pin for test OPEN because pin for test Short to GND (Must) But, the setup of a register concerned with LED that isn’t used is prohibited. Short to GND (A terminal with built-in Pull-Down resistance is also included.) When you do not use all GPIO channels and a KBLT output, please short-circuit to a ground in VGPIO, GPIO 1-4, and all the 32KIN. When you do not use GPI, please short-circuit to a ground. PulDowm with resistance of about 100kΩ (When not using all of GPIO 1-4 and KBLT, it is short-circuiting VGPIO to a ground, and Pull-Down resistance can be omitted) Although Pull-Down is built in, it opens for an output. It opens for an output. 75/80 2011.04 - Rev.A BD6086GU Technical Note ●Operation Settings (Flow Example) 1. Backlight: Auto luminous Mode 2. Key Backlight Control at Opening/Closing Apply supply voltage. Apply supply voltage. Cancel reset. Cancel reset. Luminous control: Various settings Backlight: Various settings ALCEN=1 The backlight settings can be made at any timing so long as it precedes MLEDEN=1. MULEDMD=1 is mandatory. Luminous control: Various settings KBLT: Various settings ALC block operation takes place for Illumination Intensity measurement. ALCEN=1 ALC block operation takes place for illumination Intensity measurement. Wait for 80.4 ms or more. Time required for Initial value date acquisition. Wait for 80.4 ms or more Time required for initial Illumination Intensity acquisition. MLEDEN=1 Key backlight settings can be made at any timings so long as it precedes MDTY(3:0) setting. KBFIX=0 (Initial) is mandatory. Set MDTY(3:0) The backlight turns on. MLEDEN=0 must be set first when the backlight is off. The key backlight turns on. This lighting occurs for other than the MDTY(3:0) setting. MDTY(3:0) must be set first when the backlight is off. 3. Backlight: Fade-in/Fade-out Apply supply voltage. Cancel reset. Backlight: Various settings Backlight setting. Slow time setting. MLEDEN=1 The backlight turns on. (Rise at designated slope time) Set the minimum current. (Rise at designated slope time) MLEDEN=0 The backlight turns off. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 76/80 2011.04 - Rev.A BD6086GU Technical Note ●PCB pattern of the Power dissipation measuring board 1st layer(component) 2nd layer 3rd layer 4th layer 5th layer 6th layer 7th layer www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 8th layer (solder) 77/80 2011.04 - Rev.A BD6086GU Technical Note ●Notes for use (1) Absolute Maximum Ratings An excess in the absolute maximum ratings, such as supply voltage, temperature range of operating conditions, etc., can break down devices, thus making impossible to identify breaking mode such as a short circuit or an open circuit. If any special mode exceeding the absolute maximum ratings is assumed, consideration should be given to take physical safety measures including the use of fuses, etc. (2) Power supply and ground line Design PCB pattern to provide low impedance for the wiring between the power supply and the ground lines. Pay attention to the interference by common impedance of layout pattern when there are plural power supplies and ground lines. Especially, when there are ground pattern for small signal and ground pattern for large current included the external circuits, please separate each ground pattern. Furthermore, for all power supply pins to ICs, mount a capacitor between the power supply and the ground pin. At the same time, in order to use a capacitor, thoroughly check to be sure the characteristics of the capacitor to be used present no problem including the occurrence of capacity dropout at a low temperature, thus determining the constant. (3) Ground voltage Make setting of the potential of the ground pin so that it will be maintained at the minimum in any operating state. Furthermore, check to be sure no pins are at a potential lower than the ground voltage including an actual electric transient. (4) Short circuit between pins and erroneous mounting In order to mount ICs on a set PCB, pay thorough attention to the direction and offset of the ICs. Erroneous mounting can break down the ICs. Furthermore, if a short circuit occurs due to foreign matters entering between pins or between the pin and the power supply or the ground pin, the ICs can break down. (5) Operation in strong electromagnetic field Be noted that using ICs in the strong electromagnetic field can malfunction them. (6) Input pins In terms of the construction of IC, parasitic elements are inevitably formed in relation to potential. The operation of the parasitic element can cause interference with circuit operation, thus resulting in a malfunction and then breakdown of the input pin. Therefore, pay thorough attention not to handle the input pins, such as to apply to the input pins a voltage lower than the ground respectively, so that any parasitic element will operate. Furthermore, do not apply a voltage to the input pins when no power supply voltage is applied to the IC. In addition, even if the power supply voltage is applied, apply to the input pins a voltage lower than the power supply voltage or within the guaranteed value of electrical characteristics. (7) External capacitor In order to use a ceramic capacitor as the external capacitor, determine the constant with consideration given to a degradation in the nominal capacitance due to DC bias and changes in the capacitance due to temperature, etc. (8) Thermal shutdown circuit (TSD) This LSI builds in a thermal shutdown (TSD) circuit. When junction temperatures become detection temperature or higher, the thermal shutdown circuit operates and turns a switch OFF. The thermal shutdown circuit, which is aimed at isolating the LSI from thermal runaway as much as possible, is not aimed at the protection or guarantee of the LSI. Therefore, do not continuously use the LSI with this circuit operating or use the LSI assuming its operation. (9) Thermal design Perform thermal design in which there are adequate margins by taking into account the permissible dissipation (Pd) in actual states of use. (10) LDO Use each output of LDO by the independence. Don’t use under the condition that each output is short-circuited because it has the possibility that an operation becomes unstable. (11) About the pin for the test, the un-use pin Prevent a problem from being in the pin for the test and the un-use pin under the state of actual use. Please refer to a function manual and an application notebook. And, as for the pin that doesn't specially have an explanation, ask our company person in charge. (12) Rush Current Rush current may flow in instant in the internal logic unfixed state by the power supply injection order and delay. Therefore, be careful of power supply coupling capacity, a power supply and the width of grand pattern wiring, and leading about. (13) About the function description or application note or more. The function manual and the application notebook are the design materials to design a set. So, the contents of the materials aren't always guaranteed. Please design application by having fully examination and evaluation include the external elements. www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 78/80 2011.04 - Rev.A BD6086GU Technical Note ●Power Dissipation (On the ROHM’s standard board) 2.0 1900mW 1.8 Power dissipation(W) 1.6 Information of the ROHM’s standard board Material : glass-epoxy Size : 50mm×58mm×1.75mm (8Layer) Pattern of the board: Refer to it that goes later. 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 0 25 50 75 100 125 150 Peripheral temperature(℃) www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 79/80 2011.04 - Rev.A BD6086GU Technical Note ●Ordering part number B D 6 Part No. 0 8 6 G Part No. 6086 U - Package GU : VCSP85H4 E 2 Packaging and forming specification E2: Embossed tape and reel VCSP85H4(BD6086GU) <Tape and Reel information> 0.25±0.1 1.0MAX 4.50±0.1 1PIN MARK (φ0.15)INDEX POST A H G F E D C B A 2500pcs Direction of feed S E2 The direction is the 1pin of product is at the upper left when you hold ( reel on the left hand and you pull out the tape on the right hand B 12 3 4 5 6 78 0.50±0.1 ) P=0.5×7 0.08 S 63-φ0.30±0.05 0.05 A B Embossed carrier tape Quantity 0.50±0.1 4.50±0.1 Tape 1pin P=0.5×7 Reel (Unit : mm) www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. 80/80 Direction of feed ∗ Order quantity needs to be multiple of the minimum quantity. 2011.04 - Rev.A Notice Notes No copying or reproduction of this document, in part or in whole, is permitted without the consent of ROHM Co.,Ltd. The content specified herein is subject to change for improvement without notice. The content specified herein is for the purpose of introducing ROHM's products (hereinafter "Products"). If you wish to use any such Product, please be sure to refer to the specifications, which can be obtained from ROHM upon request. Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production. Great care was taken in ensuring the accuracy of the information specified in this document. However, should you incur any damage arising from any inaccuracy or misprint of such information, ROHM shall bear no responsibility for such damage. The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM and other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the use of such technical information. The Products specified in this document are intended to be used with general-use electronic equipment or devices (such as audio visual equipment, office-automation equipment, communication devices, electronic appliances and amusement devices). The Products specified in this document are not designed to be radiation tolerant. While ROHM always makes efforts to enhance the quality and reliability of its Products, a Product may fail or malfunction for a variety of reasons. Please be sure to implement in your equipment using the Products safety measures to guard against the possibility of physical injury, fire or any other damage caused in the event of the failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM shall bear no responsibility whatsoever for your use of any Product outside of the prescribed scope or not in accordance with the instruction manual. The Products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuelcontroller or other safety device). ROHM shall bear no responsibility in any way for use of any of the Products for the above special purposes. If a Product is intended to be used for any such special purpose, please contact a ROHM sales representative before purchasing. If you intend to export or ship overseas any Product or technology specified herein that may be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit under the Law. Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us. ROHM Customer Support System http://www.rohm.com/contact/ www.rohm.com © 2011 ROHM Co., Ltd. All rights reserved. R1120A