Mitsubishi CM300HA-12H High power switching use insulated type Datasheet

MITSUBISHI IGBT MODULES
CM300HA-12H
HIGH POWER SWITCHING USE
INSULATED TYPE
A
Q
M
H
N
V–DIA.(4 TYP.)
S
E
C
E
D
G C
CM
F
G
X–M4 THD.
(2 TYP.)
W–M6 THD.
(2 TYP.)
P
B
K
U
K
R
E
J
L
T
E
C
E
G
Outline Drawing and Circuit Diagram
Dimensions
Inches
Millimeters
A
4.21
B
3.661±0.01
C
2.44
D
1.89±0.01
E
1.42 Max.
F
1.34
34.0
G
1.18
H
1.14
J
0.98 Max.
K
0.94
L
0.93
Dimensions
Inches
Millimeters
107.0
M
0.83
21.0
93.0±0.25
N
0.69
17.5
P
0.63
16.0
48.0±0.25
Q
0.51
13.0
36.0 Max.
R
0.43
11.0
S
0.35
9.0
30.0
T
0.28
7.0
29.0
U
0.12
3.0
V
0.26 Dia.
Dia. 6.5
24.0
W
M6 Metric
M6
23.5
X
M4 Metric
M4
62.0
25.0 Max.
Description:
Mitsubishi IGBT Modules
are designed for use in switching
applications. Each module consists
of one IGBT in a single configuration with a reverse-connected super-fast recovery free-wheel diode.
All components and interconnects
are isolated from the heat sinking
baseplate, offering simplified system assembly and thermal management.
Features:
u Low Drive Power
u Low VCE(sat)
u Discrete Super-Fast Recovery
Free-Wheel Diode
u High Frequency Operation
u Isolated Baseplate for Easy
Heat Sinking
Applications:
u AC Motor Control
u Motion/Servo Control
u UPS
u Welding Power Supplies
Ordering Information:
Example: Select the complete part
module number you desire from the
table below -i.e. CM300HA-12H is a
600V (VCES), 300 Ampere Single
IGBT Module.
Type
CM
Current Rating
Amperes
VCES
Volts (x 50)
300
12
Sep.1998
MITSUBISHI IGBT MODULES
CM300HA-12H
HIGH POWER SWITCHING USE
INSULATED TYPE
Absolute Maximum Ratings, Tj = 25 °C unless otherwise specified
Ratings
Symbol
CM600HU-12H
Units
Junction Temperature
Tj
-40 to 150
°C
Storage Temperature
Tstg
-40 to 125
°C
Collector-Emitter Voltage (G-E SHORT)
VCES
600
Volts
Gate-Emitter Voltage (C-E SHORT)
VGES
±20
Volts
IC
300
Amperes
ICM
600*
Amperes
Collector Current (Tc = 25°C)
Peak Collector Current (Tj ≤ 150°C)
Emitter Current** (Tc = 25°C)
IE
300
Amperes
Peak Emitter Current**
IEM
600*
Amperes
Maximum Collector Dissipation (Tc = 25°C)
Pc
1100
Watts
Mounting Torque, M6 Main Terminal
–
1.96~2.94
N·m
Mounting Torque, M6 Mounting
–
1.96~2.94
N·m
Mounting Torque, M4 Terminal
–
0.98~1.47
N·m
–
400
Grams
Viso
2500
Vrms
Weight
Isolation Voltage (Main Terminal to Baseplate, AC 1 min.)
* Pulse width and repetition rate should be such that the device junction temperature (Tj) does not exceed Tj(max) rating.
**Represents characteristics of the anti-parallel, emitter-to-collector free-wheel diode (FWDi).
Static Electrical Characteristics, Tj = 25 °C unless otherwise specified
Characteristics
Symbol
Test Conditions
Min.
Typ.
Max.
Units
Collector-Cutoff Current
ICES
VCE = VCES, VGE = 0V
–
–
1.0
mA
Gate Leakage Current
IGES
VGE = VGES, VCE = 0V
–
–
0.5
µA
Gate-Emitter Threshold Voltage
VGE(th)
IC = 30mA, VCE = 10V
4.5
6.0
7.5
Volts
Collector-Emitter Saturation Voltage
VCE(sat)
IC = 300A, VGE = 15V
–
2.1
2.8**
Volts
IC = 300A, VGE = 15V, Tj = 150°C
–
–
Volts
Total Gate Charge
QG
VCC = 300V, IC = 300A, VGE = 15V
–
900
–
nC
Emitter-Collector voltage
VEC
IE = 300A, VGE = 0V
–
–
2.8
Min.
Typ.
Max.
–
–
30
nF
–
–
10.5
nF
2.15
Volts
** Pulse width and repetition rate should be such that device junction temperature rise is negligible.
Dynamic Electrical Characteristics, Tj = 25 °C unless otherwise specified
Characteristics
Symbol
Input Capacitance
Cies
Output Capacitance
Coes
Test Conditions
VGE = 0V, VCE = 10V
Units
Reverse Transfer Capacitance
Cres
–
–
6
nF
Resistive
Turn-on Delay Time
td(on)
–
–
350
ns
Load
Rise Time
Switching
Turn-off Delay Time
Times
tr
VCC = 300V, IC = 300A,
–
–
600
ns
td(off)
VGE1 = VGE2 = 15V, RG = 2.1Ω
–
–
350
ns
Fall Time
tf
–
–
300
ns
Diode Reverse Recovery Time
trr
IE = 300A, diE/dt = –600A/µs
–
–
110
ns
Diode Reverse Recovery Charge
Qrr
IE = 300A, diE/dt = –600A/µs
–
0.81
–
µC
Thermal and Mechanical Characteristics, Tj = 25 °C unless otherwise specified
Characteristics
Symbol
Test Conditions
Min.
Typ.
Thermal Resistance, Junction to Case
Thermal Resistance, Junction to Case
Contact Thermal Resistance
Max.
Units
Rth(j-c)
Per IGBT
–
–
0.11
°C/W
Rth(j-c)
Per FWDi
–
–
0.24
°C/W
Rth(c-f)
Per Module, Thermal Grease Applied
–
–
0.040
°C/W
Sep.1998
MITSUBISHI IGBT MODULES
CM300HA-12H
HIGH POWER SWITCHING USE
INSULATED TYPE
OUTPUT CHARACTERISTICS
(TYPICAL)
600
500
VGE = 20V
15
400
11
300
10
200
9
100
5
12
7
VCE = 10V
Tj = 25°C
Tj = 125°C
500
COLLECTOR-EMITTER
SATURATION VOLTAGE, VCE(sat), (VOLTS)
Tj = 25oC
COLLECTOR CURRENT, IC, (AMPERES)
400
300
200
100
8
0
0
0
2
4
6
8
10
4
8
12
16
COLLECTOR-EMITTER VOLTAGE, VCE, (VOLTS)
GATE-EMITTER VOLTAGE, VGE, (VOLTS)
COLLECTOR-EMITTER
SATURATION VOLTAGE CHARACTERISTICS
(TYPICAL)
FREE-WHEEL DIODE
FORWARD CHARACTERISTICS
(TYPICAL)
2
1
0
6
IC = 300A
4
2
400
500
600
102
Cies
101
Coes
100
10-1
10-1
101
12
16
0
20
0.8
1.6
2.4
3.2
4.0
EMITTER-COLLECTOR VOLTAGE, VEC, (VOLTS)
HALF-BRIDGE
SWITCHING CHARACTERISTICS
(TYPICAL)
REVERSE RECOVERY CHARACTERISTICS
(TYPICAL)
103
103
REVERSE RECOVERY TIME, t rr, (ns)
tf
102
VCC = 300V
VGE = ±15V
RG = 2.1Ω
Tj = 125°C
tr
102
COLLECTOR CURRENT, IC, (AMPERES)
103
Irr
102
101
t rr
di/dt = -600A/µsec
Tj = 25°C
101
101
102
EMITTER CURRENT, IE, (AMPERES)
101
102
GATE CHARGE, VGE
102
td(off)
td(on)
100
COLLECTOR-EMITTER VOLTAGE, VCE, (VOLTS)
GATE-EMITTER VOLTAGE, VGE, (VOLTS)
100
103
20
GATE-EMITTER VOLTAGE, VGE, (VOLTS)
8
Cres
VGE = 0V
IC = 120A
101
101
300
CAPACITANCE VS. VCE
(TYPICAL)
CAPACITANCE, Cies, Coes, Cres, (nF)
EMITTER CURRENT, IE, (AMPERES)
IC = 600A
4
200
COLLECTOR-CURRENT, IC, (AMPERES)
Tj = 25°C
8
0
100
102
Tj = 25°C
0
SWITCHING TIME, (ns)
3
20
103
10
VGE = 15V
Tj = 25°C
Tj = 125°C
4
0
0
REVERSE RECOVERY CURRENT, Irr, (AMPERES)
COLLECTOR CURRENT, IC, (AMPERES)
600
COLLECTOR-EMITTER
SATURATION VOLTAGE, VCE(sat), (VOLTS)
COLLECTOR-EMITTER
SATURATION VOLTAGE CHARACTERISTICS
(TYPICAL)
TRANSFER CHARACTERISTICS
(TYPICAL)
IC = 300A
16
VCC = 200V
12
VCC = 300V
8
4
0
0
200
400
600
800 1000 1200
GATE CHARGE, QG, (nC)
Sep.1998
MITSUBISHI IGBT MODULES
CM300HA-12H
10-3
101
100
TRANSIENT THERMAL
IMPEDANCE CHARACTERISTICS
(IGBT)
10-2
10-1
100
101
Single Pulse
TC = 25°C
Per Unit Base = R th(j-c) = 0.11°C/W
10-1
10-1
10-2
10-2
10-3
10-5
TIME, (s)
10-4
10-3
10-3
NORMALIZED TRANSIENT THERMAL IMPEDANCE, Z th(j-c)
Zth = Rth • (NORMALIZED VALUE)
NORMALIZED TRANSIENT THERMAL IMPEDANCE, Z th(j-c)
Zth = Rth • (NORMALIZED VALUE)
HIGH POWER SWITCHING USE
INSULATED TYPE
10-3
101
100
TRANSIENT THERMAL
IMPEDANCE CHARACTERISTICS
(FWDi)
10-2
10-1
100
101
Single Pulse
TC = 25°C
Per Unit Base = R th(j-c) = 0.24°C/W
10-1
10-1
10-2
10-2
10-3
10-5
10-4
10-3
10-3
TIME, (s)
Sep.1998
Similar pages