MITSUBISHI IGBT MODULES CM300HA-12H HIGH POWER SWITCHING USE INSULATED TYPE A Q M H N V–DIA.(4 TYP.) S E C E D G C CM F G X–M4 THD. (2 TYP.) W–M6 THD. (2 TYP.) P B K U K R E J L T E C E G Outline Drawing and Circuit Diagram Dimensions Inches Millimeters A 4.21 B 3.661±0.01 C 2.44 D 1.89±0.01 E 1.42 Max. F 1.34 34.0 G 1.18 H 1.14 J 0.98 Max. K 0.94 L 0.93 Dimensions Inches Millimeters 107.0 M 0.83 21.0 93.0±0.25 N 0.69 17.5 P 0.63 16.0 48.0±0.25 Q 0.51 13.0 36.0 Max. R 0.43 11.0 S 0.35 9.0 30.0 T 0.28 7.0 29.0 U 0.12 3.0 V 0.26 Dia. Dia. 6.5 24.0 W M6 Metric M6 23.5 X M4 Metric M4 62.0 25.0 Max. Description: Mitsubishi IGBT Modules are designed for use in switching applications. Each module consists of one IGBT in a single configuration with a reverse-connected super-fast recovery free-wheel diode. All components and interconnects are isolated from the heat sinking baseplate, offering simplified system assembly and thermal management. Features: u Low Drive Power u Low VCE(sat) u Discrete Super-Fast Recovery Free-Wheel Diode u High Frequency Operation u Isolated Baseplate for Easy Heat Sinking Applications: u AC Motor Control u Motion/Servo Control u UPS u Welding Power Supplies Ordering Information: Example: Select the complete part module number you desire from the table below -i.e. CM300HA-12H is a 600V (VCES), 300 Ampere Single IGBT Module. Type CM Current Rating Amperes VCES Volts (x 50) 300 12 Sep.1998 MITSUBISHI IGBT MODULES CM300HA-12H HIGH POWER SWITCHING USE INSULATED TYPE Absolute Maximum Ratings, Tj = 25 °C unless otherwise specified Ratings Symbol CM600HU-12H Units Junction Temperature Tj -40 to 150 °C Storage Temperature Tstg -40 to 125 °C Collector-Emitter Voltage (G-E SHORT) VCES 600 Volts Gate-Emitter Voltage (C-E SHORT) VGES ±20 Volts IC 300 Amperes ICM 600* Amperes Collector Current (Tc = 25°C) Peak Collector Current (Tj ≤ 150°C) Emitter Current** (Tc = 25°C) IE 300 Amperes Peak Emitter Current** IEM 600* Amperes Maximum Collector Dissipation (Tc = 25°C) Pc 1100 Watts Mounting Torque, M6 Main Terminal – 1.96~2.94 N·m Mounting Torque, M6 Mounting – 1.96~2.94 N·m Mounting Torque, M4 Terminal – 0.98~1.47 N·m – 400 Grams Viso 2500 Vrms Weight Isolation Voltage (Main Terminal to Baseplate, AC 1 min.) * Pulse width and repetition rate should be such that the device junction temperature (Tj) does not exceed Tj(max) rating. **Represents characteristics of the anti-parallel, emitter-to-collector free-wheel diode (FWDi). Static Electrical Characteristics, Tj = 25 °C unless otherwise specified Characteristics Symbol Test Conditions Min. Typ. Max. Units Collector-Cutoff Current ICES VCE = VCES, VGE = 0V – – 1.0 mA Gate Leakage Current IGES VGE = VGES, VCE = 0V – – 0.5 µA Gate-Emitter Threshold Voltage VGE(th) IC = 30mA, VCE = 10V 4.5 6.0 7.5 Volts Collector-Emitter Saturation Voltage VCE(sat) IC = 300A, VGE = 15V – 2.1 2.8** Volts IC = 300A, VGE = 15V, Tj = 150°C – – Volts Total Gate Charge QG VCC = 300V, IC = 300A, VGE = 15V – 900 – nC Emitter-Collector voltage VEC IE = 300A, VGE = 0V – – 2.8 Min. Typ. Max. – – 30 nF – – 10.5 nF 2.15 Volts ** Pulse width and repetition rate should be such that device junction temperature rise is negligible. Dynamic Electrical Characteristics, Tj = 25 °C unless otherwise specified Characteristics Symbol Input Capacitance Cies Output Capacitance Coes Test Conditions VGE = 0V, VCE = 10V Units Reverse Transfer Capacitance Cres – – 6 nF Resistive Turn-on Delay Time td(on) – – 350 ns Load Rise Time Switching Turn-off Delay Time Times tr VCC = 300V, IC = 300A, – – 600 ns td(off) VGE1 = VGE2 = 15V, RG = 2.1Ω – – 350 ns Fall Time tf – – 300 ns Diode Reverse Recovery Time trr IE = 300A, diE/dt = –600A/µs – – 110 ns Diode Reverse Recovery Charge Qrr IE = 300A, diE/dt = –600A/µs – 0.81 – µC Thermal and Mechanical Characteristics, Tj = 25 °C unless otherwise specified Characteristics Symbol Test Conditions Min. Typ. Thermal Resistance, Junction to Case Thermal Resistance, Junction to Case Contact Thermal Resistance Max. Units Rth(j-c) Per IGBT – – 0.11 °C/W Rth(j-c) Per FWDi – – 0.24 °C/W Rth(c-f) Per Module, Thermal Grease Applied – – 0.040 °C/W Sep.1998 MITSUBISHI IGBT MODULES CM300HA-12H HIGH POWER SWITCHING USE INSULATED TYPE OUTPUT CHARACTERISTICS (TYPICAL) 600 500 VGE = 20V 15 400 11 300 10 200 9 100 5 12 7 VCE = 10V Tj = 25°C Tj = 125°C 500 COLLECTOR-EMITTER SATURATION VOLTAGE, VCE(sat), (VOLTS) Tj = 25oC COLLECTOR CURRENT, IC, (AMPERES) 400 300 200 100 8 0 0 0 2 4 6 8 10 4 8 12 16 COLLECTOR-EMITTER VOLTAGE, VCE, (VOLTS) GATE-EMITTER VOLTAGE, VGE, (VOLTS) COLLECTOR-EMITTER SATURATION VOLTAGE CHARACTERISTICS (TYPICAL) FREE-WHEEL DIODE FORWARD CHARACTERISTICS (TYPICAL) 2 1 0 6 IC = 300A 4 2 400 500 600 102 Cies 101 Coes 100 10-1 10-1 101 12 16 0 20 0.8 1.6 2.4 3.2 4.0 EMITTER-COLLECTOR VOLTAGE, VEC, (VOLTS) HALF-BRIDGE SWITCHING CHARACTERISTICS (TYPICAL) REVERSE RECOVERY CHARACTERISTICS (TYPICAL) 103 103 REVERSE RECOVERY TIME, t rr, (ns) tf 102 VCC = 300V VGE = ±15V RG = 2.1Ω Tj = 125°C tr 102 COLLECTOR CURRENT, IC, (AMPERES) 103 Irr 102 101 t rr di/dt = -600A/µsec Tj = 25°C 101 101 102 EMITTER CURRENT, IE, (AMPERES) 101 102 GATE CHARGE, VGE 102 td(off) td(on) 100 COLLECTOR-EMITTER VOLTAGE, VCE, (VOLTS) GATE-EMITTER VOLTAGE, VGE, (VOLTS) 100 103 20 GATE-EMITTER VOLTAGE, VGE, (VOLTS) 8 Cres VGE = 0V IC = 120A 101 101 300 CAPACITANCE VS. VCE (TYPICAL) CAPACITANCE, Cies, Coes, Cres, (nF) EMITTER CURRENT, IE, (AMPERES) IC = 600A 4 200 COLLECTOR-CURRENT, IC, (AMPERES) Tj = 25°C 8 0 100 102 Tj = 25°C 0 SWITCHING TIME, (ns) 3 20 103 10 VGE = 15V Tj = 25°C Tj = 125°C 4 0 0 REVERSE RECOVERY CURRENT, Irr, (AMPERES) COLLECTOR CURRENT, IC, (AMPERES) 600 COLLECTOR-EMITTER SATURATION VOLTAGE, VCE(sat), (VOLTS) COLLECTOR-EMITTER SATURATION VOLTAGE CHARACTERISTICS (TYPICAL) TRANSFER CHARACTERISTICS (TYPICAL) IC = 300A 16 VCC = 200V 12 VCC = 300V 8 4 0 0 200 400 600 800 1000 1200 GATE CHARGE, QG, (nC) Sep.1998 MITSUBISHI IGBT MODULES CM300HA-12H 10-3 101 100 TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS (IGBT) 10-2 10-1 100 101 Single Pulse TC = 25°C Per Unit Base = R th(j-c) = 0.11°C/W 10-1 10-1 10-2 10-2 10-3 10-5 TIME, (s) 10-4 10-3 10-3 NORMALIZED TRANSIENT THERMAL IMPEDANCE, Z th(j-c) Zth = Rth • (NORMALIZED VALUE) NORMALIZED TRANSIENT THERMAL IMPEDANCE, Z th(j-c) Zth = Rth • (NORMALIZED VALUE) HIGH POWER SWITCHING USE INSULATED TYPE 10-3 101 100 TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS (FWDi) 10-2 10-1 100 101 Single Pulse TC = 25°C Per Unit Base = R th(j-c) = 0.24°C/W 10-1 10-1 10-2 10-2 10-3 10-5 10-4 10-3 10-3 TIME, (s) Sep.1998