ADPOW APT60GU30B Power mos 7 igbt Datasheet

TYPICAL PERFORMANCE CURVES
APT60GU30B
APT60GU30S
APT60GU30B_S
300V
POWER MOS 7 IGBT
®
TO-247
The POWER MOS 7® IGBT is a new generation of high voltage power IGBTs.
Using Punch Through Technology this IGBT is ideal for many high frequency,
high voltage switching applications and has been optimized for high frequency
switchmode power supplies.
• Low Conduction Loss
C
G
• SSOA rated
D3PAK
G
C
E
C
E
• Low Gate Charge
G
• Ultrafast Tail Current shutoff
E
MAXIMUM RATINGS
Symbol
All Ratings: TC = 25°C unless otherwise specified.
Parameter
APT60GU30B_S
VCES
Collector-Emitter Voltage
300
VGE
Gate-Emitter Voltage
±20
VGEM
Gate-Emitter Voltage Transient
±30
IC1
Continuous Collector Current @
IC2
Continuous Collector Current @ TC = 100°C
ICM
Pulsed Collector Current
SSOA
PD
TJ,TSTG
TL
1
7
UNIT
Volts
100
TC = 25°C
60
Amps
200
@ TC = 150°C
200A @ 300V
Switching Safe Operating Area @ TJ = 150°C
417
Total Power Dissipation
Watts
-55 to 150
Operating and Storage Junction Temperature Range
°C
300
Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.
STATIC ELECTRICAL CHARACTERISTICS
BVCES
Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 250µA)
300
VGE(TH)
Gate Threshold Voltage
VCE(ON)
I CES
I GES
TYP
MAX
4.5
6
Collector-Emitter On Voltage (VGE = 15V, I C = 30A, Tj = 25°C)
1.5
2.0
Collector-Emitter On Voltage (VGE = 15V, I C = 30A, Tj = 125°C)
1.5
3
(VCE = VGE, I C = 1mA, Tj = 25°C)
Collector Cut-off Current (VCE = VCES, VGE = 0V, Tj = 25°C)
2
Collector Cut-off Current (VCE = VCES, VGE = 0V, Tj = 125°C)
250
2
Gate-Emitter Leakage Current (VGE = ±20V)
Volts
µA
2500
±100
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
APT Website - http://www.advancedpower.com
UNIT
nA
3-2004
MIN
Rev A
Characteristic / Test Conditions
050-7464
Symbol
APT60GU30B_S
DYNAMIC CHARACTERISTICS
Symbol
Characteristic
Test Conditions
2990
VGE = 0V, VCE = 25V
275
Reverse Transfer Capacitance
f = 1 MHz
21
Gate-to-Emitter Plateau Voltage
Gate Charge
VGE = 15V
7.0
100
VCE = 150V
20
30
Input Capacitance
Coes
Output Capacitance
Cres
VGEP
Qge
TYP
Capacitance
Cies
Qg
MIN
Total Gate Charge
3
Gate-Emitter Charge
Qgc
Gate-Collector ("Miller ") Charge
I C = 30A
SSOA
Switching Safe Operating Area
TJ = 150°C, R G = 5Ω, VGE =
MAX
UNIT
pF
V
nC
200
A
15V, L = 100µH,VCE = 300V
td(on)
tr
td(off)
tf
Turn-on Delay Time
Current Rise Time
Eoff
Turn-off Switching Energy
td(on)
Turn-on Delay Time
Eon2
Eoff
48
VGE = 15V
250
20
I C = 30A
Current Fall Time
5
ns
155
R G = 20Ω
4
Turn-on Switching Energy (Diode)
µJ
240
Inductive Switching (125°C)
VCC = 200V
Turn-off Delay Time
Turn-off Switching Energy
130
6
Current Rise Time
Turn-on Switching Energy
TBD
TJ = +25°C
5
ns
85
R G = 20Ω
4
Turn-on Switching Energy (Diode)
Eon1
215
20
I C = 30A
Eon2
tf
VGE = 15V
Current Fall Time
Turn-on Switching Energy
td(off)
48
Turn-off Delay Time
Eon1
tr
Inductive Switching (25°C)
VCC = 200V
TBD
TJ = +125°C
200
6
µJ
340
THERMAL AND MECHANICAL CHARACTERISTICS
Symbol
Characteristic
MIN
TYP
MAX
RΘJC
Junction to Case (IGBT)
0.30
RΘJC
Junction to Case (DIODE)
N/A
Package Weight
5.90
WT
UNIT
°C/W
gm
1 Repetitive Rating: Pulse width limited by maximum junction temperature.
2 For Combi devices, Ices includes both IGBT and FRED leakages
3 See MIL-STD-750 Method 3471.
4 Eon1 is the clamped inductive turn-on-energy of the IGBT only, without the effect of a commutating diode reverse recovery current
adding to the IGBT turn-on loss. (See Figure 24.)
5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching
loss. A Combi device is used for the clamping diode as shown in the Eon2 test circuit. (See Figures 21, 22.)
6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.)
7 Countinous current limited by package lead temperature.
050-7464
Rev A
3-2004
APT Reserves the right to change, without notice, the specifications and information contained herein.
TYPICAL PERFORMANCE CURVES
60
IC, COLLECTOR CURRENT (A)
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
50
TC=25°C
40
30
20
TC=125°C
10
TC=125°C
10
120
100
80
TJ = -55°C
60
TJ = 25°C
40
20
TJ = 125°C
2 3 4
5 6
7
8 9 10
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 3, Transfer Characteristics
4
TJ = 25°C.
250µs PULSE TEST
<0.5 % DUTY CYCLE
3.5
3
2.5
IC= 60A
2
IC= 30A
1.5
IC= 15A
1
0.5
5
6 7 8 9 10 11 12 13 14 15 16
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage
12
4
2
0.9
0.85
0.8
-50
-25
0
25
50
75
100 125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 7, Breakdown Voltage vs. Junction Temperature
20
40
60
80
100
GATE CHARGE (nC)
FIGURE 4, Gate Charge
120
IC = 60A
IC = 30A
1.5
IC = 15A
1.0
0.5
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
0
-50
-25
0
25
50
75
100 125
TJ, Junction Temperature (°C)
FIGURE 6, On State Voltage vs Junction Temperature
140
0.95
0
2
1.15
1.0
VCE = 240V
6
160
1.05
VCE = 150V
8
1.2
1.10
VCE = 60V
10
0
1
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
0
IC = 30A
TJ = 25°C
120
100
80
60
Lead Temperature
Limited
40
20
0
-50
-25
0
25
50
75 100 125 150
TC, CASE TEMPERATURE (°C)
FIGURE 8, DC Collector Current vs Case Temperature
3-2004
140
14
Rev A
160
IC, DC COLLECTOR CURRENT(A)
IC, COLLECTOR CURRENT (A)
20
FIGURE 2, Output Characteristics (VGE = 10V)
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
250µs PULSE TEST
<0.5 % DUTY CYCLE
180
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
TC=25°C
30
0
0.5
1
1.5
2
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
FIGURE 1, Output Characteristics(VGE = 15V)
200
BVCES, COLLECTOR-TO-EMITTER BREAKDOWN
VOLTAGE (NORMALIZED)
TC=-55°C
40
0
0
0.5
1
1.5
2
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
0
VGE = 10V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
TC=-55°C
0
0
50
APT60GU30B_S
050-7464
IC, COLLECTOR CURRENT (A)
60
VGE= 15V
50
40
30
20
VCE = 200V
TJ = 25°C, TJ =125°C
RG = 20Ω
L = 100 µH
10
0
10
20
30
40
50
60
70
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
60
APT60GU30B_S
300
td (OFF), TURN-OFF DELAY TIME (ns)
td(ON), TURN-ON DELAY TIME (ns)
60
250
200
VGE =15V,TJ=25°C
VGE =15V,TJ=125°C
150
100
VCE = 200V
RG = 20Ω
L = 100 µH
50
0
10
20
30
40
50
60
70
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
180
RG = 20Ω, L = 100µH, VCE = 200V
160
50
40
tf, FALL TIME (ns)
tr, RISE TIME (ns)
140
30
20
TJ = 25 or 125°C,VGE = 15V
60
0
TJ = 25°C, VGE = 10V or 15V
RG = 20Ω, L = 100µH, VCE = 200V
20
30
40
50
60
70
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
10
1200
EOFF, TURN OFF ENERGY LOSS (µJ)
VCE = 200V
L = 100 µH
RG = 20Ω
TJ =125°C, VGE=15V
400
300
200
100
TJ = 25°C, VGE=15V
TJ = 125°C, VGE = 10V or 15V
1000
800
VCE = 200V
L = 100 µH
RG = 20Ω
600
400
200
TJ = 25°C, VGE = 10V or 15V
0
10
20
30
40
50
60
70
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
10
20
30
40
50
60
70
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 14, Turn Off Energy Loss vs Collector Current
1400
1200
VCE = 200V
VGE = +15V
TJ = 125°C
1200
1000
Eoff 60A
800
Eon2 60A
600
400
Eoff 30A
200
0
Eoff 15A
5
Eon2 30A
Eon2 15A
10 15 20 25 30 35 40 45 50
RG, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs. Gate Resistance
0
SWITCHING ENERGY LOSSES (µJ)
EON2, TURN ON ENERGY LOSS (µJ)
SWITCHING ENERGY LOSSES (µJ)
3-2004
Rev A
050-7464
80
20
0
10
20
30
40
50
60
70
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
500
100
40
10
600
TJ = 125°C, VGE = 10V or 15V
120
VCE = 200V
VGE = +15V
RG = 20Ω
1000
Eoff 60A
800
600
Eon2 60A
400
Eoff 30A
200
0
Eon2 30A
Eoff 15A
Eon2 15A
0
25
50
75
100
125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
TYPICAL PERFORMANCE CURVES
5,000
APT60GU30B_S
250
Cies
IC, COLLECTOR CURRENT (A)
P
C, CAPACITANCE ( F)
200
1,000
500
Coes
100
50
Cres
10
0
10
20
30
40
50
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
Figure 17, Capacitance vs Collector-To-Emitter Voltage
150
100
50
0
0
50
100 150 200 250 300 350
VCE, COLLECTOR TO EMITTER VOLTAGE
Figure 18, Minimim Switching Safe Operating Area
0.30
0.9
0.25
0.7
0.20
0.5
0.15
0.10
0.3
0.05
0.1
0.05
Note:
PDM
t1
t2
10-4
10-3
10-2
10-1
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19A, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
400
Power
(watts)
0.119
0.160
0.00450F
0.0119F
0.121F
Case temperature
FIGURE 19B, TRANSIENT THERMAL IMPEDANCE MODEL
FMAX, OPERATING FREQUENCY (kHz)
RC MODEL
Junction
temp. ( C)
0.0218
1.0
100
Fmax = min(f max1 , f max 2 )
50
10
TJ = 125°C
TC = 75°C
D = 50 %
VCE = 200V
RG = 5 Ω
10
f max1 =
0.05
t d (on ) + t r + t d(off ) + t f
f max 2 =
Pdiss − Pcond
E on 2 + E off
Pdiss =
20
30
40 50
60 70
80 90
IC, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector Current
TJ − TC
R θJC
3-2004
10-5
Peak TJ = PDM x ZθJC + TC
SINGLE PULSE
Rev A
0
Duty Factor D = t1/t2
050-7464
ZθJC, THERMAL IMPEDANCE (°C/W)
0.35
APT60GU30B_S
APT15DS30
Gate Voltage
10%
TJ = 125 C
td(on)
Collector Current
tr
V CE
IC
V CC
90%
5%
5%
10%
Collector Voltage
A
Switching Energy
D.U.T.
Figure 21, Inductive Switching Test Circuit
Figure 22, Turn-on Switching Waveforms and Definitions
VTEST
*DRIVER SAME TYPE AS D.U.T.
90%
Gate Voltage
td(off)
TJ = 125 C
tf
Collector Current
A
V CE
90%
IC
100uH
V CLAMP
10%
Collector Voltage
0
B
A
Switching Energy
D.U.T.
DRIVER*
Figure 24, EON1 Test Circuit
Figure 23, Turn-off Switching Waveforms and Definitions
3
TO-247 Package Outline
15.49 (.610)
16.26 (.640)
6.15 (.242) BSC
Collector
3-2004
Rev A
5.38 (.212)
6.20 (.244)
4.98 (.196)
5.08 (.200)
1.47 (.058)
1.57 (.062)
20.80 (.819)
21.46 (.845)
0.40 (.016)
0.79 (.031) 19.81 (.780)
20.32 (.800)
2.21 (.087)
2.59 (.102)
2.87 (.113)
3.12 (.123)
1.65 (.065)
2.13 (.084)
1.01 (.040)
1.40 (.055)
Gate
Collector
Emitter
15.95 (.628)
16.05 (.632)
Revised
4/18/95
3.50 (.138)
3.81 (.150)
4.50 (.177) Max.
050-7464
D PAK Package Outline
Collector
(Heat Sink)
4.69 (.185)
5.31 (.209)
1.49 (.059)
2.49 (.098)
1.04 (.041)
1.15 (.045)
13.79 (.543)
13.99 (.551)
0.46 (.018)
0.56 (.022)
0.020 (.001)
0.178 (.007)
2.67 (.105)
2.84 (.112)
1.22 (.048)
1.32 (.052)
5.45 (.215) BSC
2-Plcs.
Dimensions in Millimeters and (Inches)
1.27 (.050)
1.40 (.055)
1.98 (.078)
2.08 (.082)
5.45 (.215) BSC
{2 Plcs.}
Emitter
Collector
Gate
Dimensions in Millimeters (Inches)
APT’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522
5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved.
13.41 (.528)
13.51 (.532)
Revised
8/29/97
11.51 (.453)
11.61 (.457)
3.81 (.150)
4.06 (.160)
(Base of Lead)
Heat Sink (Collector)
and Leads are Plated
Similar pages