ASB AGN1440 Ku band gan amplifier mmic Datasheet

AGN1440
AGN1440 Data Sheet
Ku Band GaN Power Amplifier MMIC
1. Product Overview
1.1 General Description
AGN1440 is a two-stage internally matched GaN MMIC Power Amplifier which operates between
13.75GHz and 14.50 GHz frequency range. This product is well suited for VSAT applications.
1.2 Features
 Frequency Range: 13.75 - 14.50 GHz
 Saturated Output Power: 41 dBm
 Power Added Efficiency: 28 %
 Small Signal Gain: 18.5 dB
 Output Third Order Intercept Point: 43 dBm
 Bias: VDD = +28 V, IDD = 350 mA, VGG = -2.8 V (Typical)
100% DC and RF tested
1.3 Applications
 Ku Band VSAT
 Point to Point Radio
1.4 Package Profile & RoHS Compliance
10-lead Flange Package
1/11
ASB Inc.

[email protected]
RoHS-compliant
June 2015
AGN1440
2. Summary on Product Performances
2.1 Typical Performance
Test conditions : T = +25 C, VDD = +28 V, CW, ZO = 50 
Parameters
Test Conditions
Gate Bias Voltage
Output Power at
Power Gain at
f = 13.75 - 14.50 GHz
Psat1)
Psat1)
Drain Current at
Min
Psat1)
Typ
Max
Units
-2.8
-2.5
V
f = 13.75 - 14.50 GHz
39
41
dBm
f = 13.75 - 14.50 GHz
9
11
dB
f = 13.75 - 14.50 GHz
1700
f = 13.75 - 14.50 GHz
28
Gain Flatness
f = 13.75 - 14.50 GHz
0.5
1.0
dB
Input Return Loss
f = 13.75 - 14.50 GHz
-10
-6
dB
Output Return Loss
f = 13.75 - 14.50 GHz
-14
-10
dB
Power Added Efficiency at
Psat1)
Δf = 10 MHz
2-Tone Test
Output power / Tone = +32 dBm
VDD = +28 V
Output TOI2)
Supply Current
1900
mA
%
43
dBm
350
mA
1) Psat: Saturated output power
2) TOI: Third order intercept point
2.2 Product Specification
Test conditions : T = +25 C, VDD= +28 V, CW, VGG = -2.8 V typical, ZO = 50 
Parameter
Min
Typ
Max
Frequency
13.75
Small Signal Gain
18
14.50
18.5
Unit
GHz
dB
Input Return Loss
-10
-6
dB
Output Return Loss
-14
-10
dB
Supply Current
350
mA
2.3 Absolute Maximum Ratings
2/11
Parameters
Max. Ratings
Operating Case Temperature (Tc)
-40 to 85 C
Storage Temperature (Tstg)
-55 to 125 C
Drain Voltage (VDD)
+35 V
Gate Voltage (VGG)
-5.0 to -2.5 V
Input RF Power (Pin)
+35 dBm
ASB Inc.

[email protected]
June 2015
AGN1440
2.4 Pin Descriptions
3/11
ASB Inc.

Pin
Pin Name
Description
1,5
Vg
Gate voltage
3
RF IN
Input, matched to 50 ohms
6,10
Vd
Drain voltage
8
RF OUT
2,4,7,9
NC
Output, matched to 50 ohms
No internal connection ( open
or connected to GND )
[email protected]
June 2015
AGN1440
3. Application: 13.75 ~ 14.50 GHz
3.1 Application Circuit
Note 1: The capacitors are recommended on the bias supply line, close to the package,
in order to prevent video oscillations which could damage the module.
3.2 Biasing Procedure
4/11

Make sure no RF power is applied to the device before continuing.

Pinch off device by setting VGG to -3.5 V.

Raise VDD to +28 V while monitoring drain current.

Raise VGG until drain current reaches 350 mA. VGG should be between -3.5 and -2.5 V.

Apply RF power.

To improve the thermal and RF performance, ASB recommends a heat sinker attached to the
bottom of the package with an Indium alloy preform.
ASB Inc.

[email protected]
June 2015
AGN1440
3.3 Plots of Performances
S-parameter
Input / Output Return Loss vs. Frequency
Input / Output Return Loss (dB)
VDD = +28 V, IDD = 350 mA, Pin = -20 dBm
0
-5
-10
-15
-20
Input Return Loss
-25
Output Return Loss
-30
12
12.5
13
13.5 14 14.5
Frequency (GHz)
15
15.5
16
15.5
16
Small Signal Gain vs. Frequency
VDD = +28 V, IDD = 350 mA, Pin = -20 dBm
Small Signal Gain (dB)
24
20
16
12
8
4
0
12
5/11
12.5
13
ASB Inc.
13.5 14 14.5
Frequency (GHz)

[email protected]
15
June 2015
Output Power, IDD vs. Input Power
VDD = +28 V, IDD = 350 mA
VDD = +28 V, IDD = 350 mA
46
44
42
40
38
36
34
32
30
28
26
24
22
20
18
16
Pin = +20 dBm
Pin = +10 dBm
Pin = +0 dBm
Power Added Efficiency (%)
2200
40
2000
36
1800
32
1600
28
1400
24
1200
20
1000
16
800
12
600
8
400
4
200
0
13
13.5
14
Frequency (GHz)
14.5
0
-10
15
-5
0
5
10
15
20
Input Power (dBm)
25
30
Power Added Efficiency vs. Frequency
Output TOI vs. Output Power / Tone
VDD = +28 V, IDD = 350 mA
VDD = +28 V, IDD = 350 mA, Δf = 10 MHz
35
52
36
34
32
30
28
26
24
22
20
18
16
14
12
10
8
6
4
2
0
50
Pin = +30 dBm
48
46
Pin = +20 dBm
44
42
40
38
Pin = +10 dBm
36
34
Pin = +0 dBm
13
6/11
Output Power (dBm)
Pin = +30 dBm
44
13.5
14
Frequency (GHz)
14.5
32
15
ASB Inc.
18

[email protected]
20
22
24
26 28 30 32 34
Output Power / Tone (dBm)
36
38
40
June 2015
IDD (mA)
Output Power vs. Frequency
TOI (dBm)
Output Power (dBm)
AGN1440
AGN1440
Output Power, Drain Current vs. Input Power by Temperature
2200
44
2200
40
2000
40
2000
36
1800
36
1800
32
1600
32
1600
28
1400
28
1400
24
1200
24
1200
20
1000
20
1000
16
800
16
800
12
600
12
600
8
400
8
400
4
200
4
200
0
0
0
0
-5
0
5
10 15 20
Input Power (dBm)
25
30
-10
35
5
10 15 20
Input Power (dBm)
25
30
35
2200
44
2200
40
2000
40
2000
36
1800
36
1800
32
1600
32
1600
28
1400
28
1400
24
1200
24
1200
20
1000
20
1000
16
800
16
800
12
600
12
600
8
400
8
400
4
200
4
200
0
0
-10
-5
0
5
10 15 20
Input Power (dBm)
25
30
0
-10
35
ASB Inc.
Output Power (dBm)
44
0
7/11
0
VDD = +28 V, IDD = 350 mA @ 14.50 GHz
IDD (mA)
Output Power (dBm)
VDD = +28 V, IDD = 350 mA @ 14.25 GHz
-5

IDD (mA)
-10
Output Power (dBm)
44
IDD (mA)
VDD = +28 V, IDD = 350 mA @ 14.00 GHz
IDD (mA)
Output Power (dBm)
VDD = +28 V, IDD = 350 mA @ 13.75 GHz
[email protected]
-5
0
5
10 15 20
Input Power (dBm)
25
30
35
June 2015
AGN1440
VDD = +28 V, IDD = 350 mA Δf = 10 MHz
VDD = +28 V, IDD = 350 mA Δf = 10 MHz
@ 13.75 GHz
@ 14.00 GHz
52
52
50
50
48
48
46
46
44
44
TOI (dBm)
TOI (dBm)
Output TOI vs. Output Power / Tone by Temperature
42
40
40
38
38
36
36
34
34
32
32
18
20
22
24
26 28 30 32 34
Output Power / Tone (dBm)
36
38
18
40
22
24
26 28 30 32 34
Output Power / Tone (dBm)
36
VDD = +28 V, IDD = 350 mA, Δf = 10 MHz
@ 14.25 GHz
@ 14.50 GHz
52
52
50
50
48
48
46
46
44
44
42
40
36
36
34
34
32
32
20
22
24
26 28 30 32 34
Output Power / Tone (dBm)
36
38
18
40
ASB Inc.

40
38
40
40
38
18
38
42
38
8/11
20
VDD = +28 V, IDD = 350 mA, Δf = 10 MHz
TOI (dBm)
TOI (dBm)
42
[email protected]
20
22
24
26 28 30 32 34
Output Power / Tone (dBm)
36
June 2015
AGN1440
Output Power vs. Frequency
Output TOI vs. Temperature
VDD = +28 V, IDD = 350 mA, Pin = +30 dBm, CW
VDD = +28 V, IDD = 350 mA, Δf = 10 MHz,
Output Power / Tone = +32 dBm
54
48
52
46
44
48
TOI (dBm)
Output Power (dBm)
50
42
40
46
44
42
40
38
38
36
36
34
34
13
9/11
13.5
14
Frequency (GHz)
14.5
15
ASB Inc.
-60

[email protected]
-40
-20
0
20
40
Temperature
60
80
100
June 2015
AGN1440
4. Mounting Instructions for Flange Package
4.1 Screw Mounting
4.1.1 The flange of package should be attached using screws. Torque conditions are shown in table 1.
Table 1. Recommended and Maximum Torque for Screw Mounting
Package
Recommended
Screw
Recommended
Torque
Maximum Torque
Flange
M2.0
10 N-cm (0.9 lb-in)
15 N-cm (1.3 lb-in)
4.1.2 First, tighten the screws with a torque driver set to 5 N-cm
4.1.3 The surface finish of the heat sinker should be better than 0.8 µm and the surface flatness must
be better than 10 µm.
4.1.4 Silicon based heat sink compounds should not be used for the thermal conductive grease. It
causes the poor grounding of the source flange, contamination, and long term degradation of
thermal resistance between the package and heat sinker.
4.2. Solder Mounting
4.2.1 Recommended solder is lead-free solder (Sn-3.0Ag-0.5Cu) or equivalent.
4.2.2 After soldering, the flux residue should be removed by appropriate cleaning methods.
4.2.3 The recommended soldering conditions are as follows:
Partial heating method: Soldering iron, spot laser/air
Product terminal temperature: 260°C, max. 10 sec/terminal or 400°C, max. 3 sec/terminal
10/11
ASB Inc.

[email protected]
June 2015
AGN1440
5. Package Outline
Units: mm [in]
*Please note the 1.51 mm of the height of the lead from the bottom of the metal base when it is to be mounted.
(End of Datasheet)
11/11
ASB Inc.

[email protected]
June 2015
Similar pages