CED73A3/CEU73A3 N-Channel Enhancement Mode Field Effect Transistor FEATURES 30V, 65A, RDS(ON) = 7.8mΩ(typ) @VGS = 10V. RDS(ON) = 10mΩ(typ) @VGS = 4.5V. Super high dense cell design for extremely low RDS(ON). High power and current handing capability. D Lead free product is acquired. TO-251 & TO-252 package. G D G S CEU SERIES TO-252(D-PAK) ABSOLUTE MAXIMUM RATINGS Parameter G D S CED SERIES TO-251(I-PAK) Tc = 25 C unless otherwise noted Symbol Limit 30 Units V VGS ±20 V ID 65 A IDM 350 A 60 W Drain-Source Voltage VDS Gate-Source Voltage Drain Current-Continuous Drain Current-Pulsed a Maximum Power Dissipation @ TC = 25 C - Derate above 25 C S PD 0.48 W/ C Single Pulsed Avalanche Energy d EAS 160 mJ Single Pulsed Avalanche Current d IAS 25 A TJ,Tstg -55 to 150 C Operating and Store Temperature Range Thermal Characteristics Symbol Limit Units Thermal Resistance, Junction-to-Case Parameter RθJC 2.1 C/W Thermal Resistance, Junction-to-Ambient RθJA 50 C/W 2005.March http://www.cetsemi.com 6 - 122 CED73A3/CEU73A3 Electrical Characteristics Parameter Tc = 25 C unless otherwise noted Symbol Test Condition Min Drain-Source Breakdown Voltage BVDSS VGS = 0V, ID = 250µA 30 Zero Gate Voltage Drain Current IDSS Gate Body Leakage Current, Forward Gate Body Leakage Current, Reverse Typ Max Units VDS = 25V, VGS = 0V 1 µA IGSSF VGS = 20V, VDS = 0V 100 nA IGSSR VGS = -20V, VDS = 0V -100 nA Off Characteristics V On Characteristics b Gate Threshold Voltage VGS(th) Static Drain-Source RDS(on) On-Resistance Forwand Transconductance Dynamic Characteristics gFS VGS = VDS, ID = 250µA 3 V VGS = 10V, ID = 30A 1 7.8 9 mΩ VGS = 4.5V, ID = 30A 10 13 mΩ VDS = 10V, ID = 15A 20 S 2923 pF 506 pF 202 pF c Input Capacitance Ciss Output Capacitance Coss Reverse Transfer Capacitance Crss VDS = 15V, VGS = 0V, f = 1.0 MHz Switching Characteristics c Turn-On Delay Time td(on) Turn-On Rise Time tr Turn-Off Delay Time td(off) 19 VDD = 15V, ID = 1A, VGS = 10V, RGEN = 6Ω 23 ns 6.8 12 ns 71 128 ns Turn-On Fall Time tf 12.8 17.5 ns Total Gate Charge Qg 24 30 nC Gate-Source Charge Qgs Gate-Drain Charge Qgd VDS = 15V, ID = 20A, VGS = 4.5V 9.1 nC 7.5 nC Drain-Source Diode Characteristics and Maximun Ratings Drain-Source Diode Forward Current IS Drain-Source Diode Forward Voltage b VSD VGS = 0V, IS = 20A Notes : a.Repetitive Rating : Pulse width limited by maximum junction temperature. b.Pulse Test : Pulse Width < 300µs, Duty Cycle < 2%. c.Guaranteed by design, not subject to production testing. d.L = 0.5mH, IAS = 25A, VDD = 24V, RG = 25Ω, Starting TJ = 25 C 6 - 123 20 A 1.5 V 6 CED73A3/CEU73A3 VGS=10,8,6,5V 60 VGS=4V 80 ID, Drain Current (A) ID, Drain Current (A) 100 60 40 VGS=3V 20 50 40 30 20 25 C 10 -55 C TJ=125 C 0 0 1 2 3 0 4 0 RDS(ON), Normalized RDS(ON), On-Resistance(Ohms) C, Capacitance (pF) 5 6 Figure 2. Transfer Characteristics 2800 2100 1400 Coss 700 Crss 0 0 5 10 15 20 25 2.2 1.9 ID=30A VGS=10V 1.6 1.3 1.0 0.7 0.4 -100 -50 0 50 100 150 200 VDS, Drain-to-Source Voltage (V) TJ, Junction Temperature( C) Figure 3. Capacitance Figure 4. On-Resistance Variation with Temperature VDS=VGS IS, Source-drain current (A) VTH, Normalized Gate-Source Threshold Voltage 4 Figure 1. Output Characteristics Ciss ID=250µA 1.1 1.0 0.9 0.8 0.7 0.6 -50 3 VGS, Gate-to-Source Voltage (V) 3500 1.2 2 VDS, Drain-to-Source Voltage (V) 4200 1.3 1 VGS=0V 10 10 10 -25 0 25 50 75 100 125 150 2 1 0 0.4 0.6 0.8 1.0 1.2 1.4 TJ, Junction Temperature( C) VSD, Body Diode Forward Voltage (V) Figure 5. Gate Threshold Variation with Temperature Figure 6. Body Diode Forward Voltage Variation with Source Current 6 - 124 10 10 VDS=15V ID=20A 8 ID, Drain Current (A) VGS, Gate to Source Voltage (V) CED73A3/CEU73A3 6 4 2 0 RDS(ON)Limit 10 10 10 0 7 14 21 28 35 3 100µs 1ms 10ms 100ms DC 2 1 6 TC=25 C TJ=150 C Single Pulse 0 10 -1 10 0 10 1 10 Qg, Total Gate Charge (nC) VDS, Drain-Source Voltage (V) Figure 7. Gate Charge Figure 8. Maximum Safe Operating Area VDD t on RL V IN D td(off) tf 90% 90% VOUT VOUT VGS RGEN toff tr td(on) 10% INVERTED 10% G 90% S VIN 50% 50% 10% PULSE WIDTH Figure 10. Switching Waveforms r(t),Normalized Effective Transient Thermal Impedance Figure 9. Switching Test Circuit 10 0 D=0.5 0.2 10 PDM 0.1 -1 t1 0.05 t2 0.02 0.01 Single Pulse 10 1. RθJA (t)=r (t) * RθJA 2. RθJA=See Datasheet 3. TJM-TA = P* RθJA (t) 4. Duty Cycle, D=t1/t2 -2 10 -2 10 -1 10 0 10 1 10 2 Square Wave Pulse Duration (msec) Figure 11. Normalized Thermal Transient Impedance Curve 6 - 125 10 3 10 4 2