CEP3205/CEB3205 N-Channel Enhancement Mode Field Effect Transistor FEATURES 55V, 108.5A, RDS(ON) = 8.5mΩ @VGS = 10V. Super high dense cell design for extremely low RDS(ON). High power and current handing capability. D Lead free product is acquired. TO-220 & TO-263 package. D G S CEB SERIES TO-263(DD-PAK) G G D S ABSOLUTE MAXIMUM RATINGS Parameter CEP SERIES TO-220 Tc = 25 C unless otherwise noted Symbol Limit 55 Units V VGS ±20 V ID 108.5 A IDM 434 A 200 W Drain-Source Voltage VDS Gate-Source Voltage Drain Current-Continuous Drain Current-Pulsed S a Maximum Power Dissipation @ TC = 25 C PD - Derate above 25 C 1.3 W/ C Single Pulsed Avalanche Energy d EAS 319 mJ Single Pulsed Avalanche Current d IAS TJ,Tstg 68 A -55 to 175 C Symbol Limit Units Thermal Resistance, Junction-to-Case RθJC 0.75 C/W Thermal Resistance, Junction-to-Ambient RθJA 62.5 C/W Operating and Store Temperature Range Thermal Characteristics Parameter Rev 4. 2007.Sep. http://www.cetsemi.com Details are subject to change without notice . 1 CEP3205/CEB3205 Electrical Characteristics Parameter Tc = 25 C unless otherwise noted Symbol Test Condition Min Drain-Source Breakdown Voltage BVDSS VGS = 0V, ID = 250µA 55 Zero Gate Voltage Drain Current IDSS Gate Body Leakage Current, Forward Gate Body Leakage Current, Reverse Typ Max Units VDS = 55V, VGS = 0V 25 µA IGSSF VGS = 20V, VDS = 0V 100 nA IGSSR VGS = -20V, VDS = 0V -100 nA 4 V 8.5 mΩ Off Characteristics V On Characteristics b Gate Threshold Voltage Static Drain-Source On-Resistance VGS(th) VGS = VDS, ID = 250µA 2 RDS(on) VGS = 10V, ID = 62A 6.5 gFS VDS = 25V, ID = 62A 50 S 5040 pF 1115 pF 35 pF Dynamic Characteristics c Forward Transconductance Input Capacitance Ciss Output Capacitance Coss Reverse Transfer Capacitance Crss VDS = 25V, VGS = 0V, f = 1.0 MHz Switching Characteristics c Turn-On Delay Time td(on) Turn-On Rise Time tr Turn-Off Delay Time td(off) VDD = 28V, ID = 62A, VGS = 10V, RGEN = 4.5Ω 27 54 ns 14 28 ns 68 136 ns Turn-Off Fall Time tf 19 38 ns Total Gate Charge Qg 102.3 136 nC Gate-Source Charge Qgs Gate-Drain Charge Qgd VDS = 44V, ID = 62A, VGS = 10V 23.1 nC 23.1 nC Drain-Source Diode Characteristics and Maximun Ratings Drain-Source Diode Forward Current IS Drain-Source Diode Forward Voltage b VSD VGS = 0V, IS = 62A Notes : a.Repetitive Rating : Pulse width limited by maximum junction temperature b.Pulse Test : Pulse Width < 300µs, Duty Cycle < 2%. c.Guaranteed by design, not subject to production testing. d.L = 138µH, IAS = 68A, VDD = 25V, RG = 25Ω, Starting TJ = 25 C 2 108.5 A 1.3 V CEP3205/CEB3205 160 150 120 90 VGS=7V 60 VGS=6V 30 0 0 0.5 1 1.5 2 2.5 3 0 2 4 6 8 10 VDS, Drain-to-Source Voltage (V) VGS, Gate-to-Source Voltage (V) Figure 1. Output Characteristics Figure 2. Transfer Characteristics RDS(ON), Normalized RDS(ON), On-Resistance(Ohms) 900 Ciss 600 Coss 300 Crss 0 5 10 15 20 25 2.6 2.2 ID=62A VGS=10V 1.8 1.4 1.0 0.6 0.2 -100 -50 0 50 100 150 200 VDS, Drain-to-Source Voltage (V) TJ, Junction Temperature( C) Figure 3. Capacitance Figure 4. On-Resistance Variation with Temperature VDS=VGS ID=250µA IS, Source-drain current (A) C, Capacitance (pF) VTH, Normalized Gate-Source Threshold Voltage TJ=125 C 40 -55 C 1200 1.2 80 0 1500 1.3 120 VGS=5V 1800 0 25 C VGS=10,9,8V ID, Drain Current (A) ID, Drain Current (A) 180 1.1 1.0 0.9 0.8 0.7 0.6 -50 -25 0 25 50 75 100 125 150 175 VGS=0V 10 1 10 0 10 -1 0.4 0.6 0.8 1.0 1.2 1.4 TJ, Junction Temperature( C) VSD, Body Diode Forward Voltage (V) Figure 5. Gate Threshold Variation with Temperature Figure 6. Body Diode Forward Voltage Variation with Source Current 3 10 VDS=44V ID=62A 10 8 ID, Drain Current (A) VGS, Gate to Source Voltage (V) CEP3205/CEB3205 6 4 2 0 0 20 40 60 RDS(ON)Limit 100ms 10 2 1ms 10ms DC 10 10 80 3 1 TC=25 C TJ=175 C Single Pulse 0 10 -1 10 0 10 1 10 Qg, Total Gate Charge (nC) VDS, Drain-Source Voltage (V) Figure 7. Gate Charge Figure 8. Maximum Safe Operating Area VDD t on V IN RL D VGS RGEN toff tr td(on) td(off) tf 90% 90% VOUT VOUT 10% INVERTED 10% G 90% S VIN 50% 50% 10% PULSE WIDTH Figure 10. Switching Waveforms r(t),Normalized Effective Transient Thermal Impedance Figure 9. Switching Test Circuit 10 0 D=0.5 0.2 10 -1 PDM 0.1 t1 0.05 0.02 0.01 Single Pulse 10 1. RθJC (t)=r (t) * RθJC 2. RθJC=See Datasheet 3. TJM-TC = P* RθJC (t) 4. Duty Cycle, D=t1/t2 -2 10 -5 t2 10 -4 10 -3 10 -2 10 -1 Square Wave Pulse Duration (sec) Figure 11. Normalized Thermal Transient Impedance Curve 4 10 0 10 1 2