IRF CPV362M4F Igbt sip module Datasheet

PD -5.046
CPV362M4F
IGBT SIP MODULE
Fast IGBT
1
Features
• Fully isolated printed circuit board mount package
• Switching-loss rating includes all "tail" losses
TM
• HEXFRED soft ultrafast diodes
• Optimized for medium operating (1 to 10 kHz)
See Fig. 1 for Current vs. Frequency curve
3
Q1
D1
9
Q3
D3
4
6
Q2
D2
12
D5
Q5
15
10
Q4
D4
18
16
D6
Q6
Product Summary
7
13
Output Current in a Typical 5.0 kHz Motor Drive
11 ARMS per phase (3.1 kW total) with TC = 90°C, T J = 125°C, Supply Voltage 360Vdc,
Power Factor 0.8, Modulation Depth 115% (See Figure 1)
19
Description
The IGBT technology is the key to International Rectifier's advanced line of
IMS (Insulated Metal Substrate) Power Modules. These modules are more
efficient than comparable bipolar transistor modules, while at the same time
having the simpler gate-drive requirements of the familiar power MOSFET.
This superior technology has now been coupled to a state of the art materials
system that maximizes power throughput with low thermal resistance. This
package is highly suited to motor drive applications and where space is at a
premium.
IMS-2
Absolute Maximum Ratings
Parameter
VCES
IC @ TC = 25°C
IC @ TC = 100°C
ICM
ILM
IF @ TC = 100°C
IFM
VGE
VISOL
PD @ T C = 25°C
PD @ TC = 100°C
TJ
TSTG
Collector-to-Emitter Voltage
Continuous Collector Current, each IGBT
Continuous Collector Current, each IGBT
Pulsed Collector Current 
Clamped Inductive Load Current ‚
Diode Continuous Forward Current
Diode Maximum Forward Current
Gate-to-Emitter Voltage
Isolation Voltage, any terminal to case, 1 minute
Maximum Power Dissipation, each IGBT
Maximum Power Dissipation, each IGBT
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 sec.
Mounting torque, 6-32 or M3 screw
Max.
Units
600
8.8
4.8
26
26
3.4
26
±20
2500
23
9.1
-40 to +150
V
A
V
VRMS
W
°C
300 (0.063 in. (1.6mm) from case)
5-7 lbf•in (0.55-0.8 N•m)
Thermal Resistance
Parameter
RθJC (IGBT)
RθJC (DIODE)
RθCS (MODULE)
Wt
Junction-to-Case, each IGBT, one IGBT in conduction
Junction-to-Case, each diode, one diode in conduction
Case-to-Sink, flat, greased surface
Weight of module
Typ.
Max.
–––
–––
0.1
20 (0.7)
5.5
9.0
–––
–––
Units
°C/W
g (oz)
9/16/97
CPV362M4F
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
V(BR)CES
∆V(BR)CES/∆TJ
VCE(on)
VGE(th)
∆VGE(th)/∆TJ
gfe
ICES
V FM
IGES
Parameter
Min. Typ.
Collector-to-Emitter Breakdown Voltageƒ 600 –––
Temperature Coeff. of Breakdown Voltage ––– 0.72
Collector-to-Emitter Saturation Voltage ––– 1.41
––– 1.66
––– 1.42
Gate Threshold Voltage
3.0 –––
Temperature Coeff. of Threshold Voltage
––– -11
Forward Transconductance „
2.9 5.0
Zero Gate Voltage Collector Current
––– –––
––– –––
Diode Forward Voltage Drop
––– 1.4
––– 1.3
Gate-to-Emitter Leakage Current
––– –––
Max. Units
Conditions
–––
V
VGE = 0V, IC = 250µA
––– V/°C VGE = 0V, IC = 1.0mA
1.7
IC = 4.8A
VGE = 15V
See Fig. 2, 5
–––
V
IC = 8.8A
–––
IC = 4.8A, TJ = 150°C
6.0
VCE = VGE, IC = 250µA
––– mV/°C VCE = VGE, IC = 250µA
–––
S
VCE = 100V, IC = 4.8A
250
µA
VGE = 0V, VCE = 600V
1700
VGE = 0V, VCE = 600V, TJ = 150°C
1.7
V
IC = 8.0A
See Fig. 13
1.6
IC = 8.0A, TJ = 150°C
±100 nA
VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Qg
Qge
Qgc
td(on)
tr
td(off)
tf
Eon
Eoff
Ets
td(on)
tr
td(off)
tf
Ets
Cies
Coes
Cres
t rr
Parameter
Total Gate Charge (turn-on)
Gate - Emitter Charge (turn-on)
Gate - Collector Charge (turn-on)
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Total Switching Loss
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Diode Reverse Recovery Time
Irr
Diode Peak Reverse Recovery Current
Q rr
Diode Reverse Recovery Charge
di(rec)M/dt
Diode Peak Rate of Fall of Recovery
During tb
Notes:
 Repetitive rating; VGE =20V, pulse width
limited by max. junction temperature.
( See fig. 20 )
Min.
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Typ.
30
4.0
13
49
22
200
214
0.23
0.33
0.45
48
25
435
364
0.93
340
63
5.9
37
55
3.5
4.5
65
124
240
210
Max. Units
Conditions
45
IC = 4.8A
6.0
nC
VCC = 400V
20
See Fig. 8
–––
TJ = 25°C
–––
ns
IC = 4.8A, VCC = 480V
300
VGE = 15V, RG = 50Ω
320
Energy losses include "tail" and
–––
diode reverse recovery
–––
mJ See Fig. 9, 10, 18
0.70
–––
TJ = 150°C,
See Fig. 10,11, 18
–––
ns
IC = 4.8A, VCC = 480V
–––
VGE = 15V, RG = 50Ω
–––
Energy losses include "tail" and
–––
mJ diode reverse recovery
–––
VGE = 0V
–––
pF
VCC = 30V
See Fig. 7
–––
ƒ = 1.0MHz
55
ns
TJ = 25°C See Fig.
90
TJ = 125°C
14
IF = 8.0A
50
A
TJ = 25°C See Fig.
15
VR = 200V
8.0
TJ = 125°C
138
nC TJ = 25°C See Fig.
16 di/dt = 200A/µs
360
TJ = 125°C
––– A/µs TJ = 25°C See Fig.
–––
TJ = 125°C
17
‚ VCC=80%(VCES), VGE=20V, L=10µH,
„ Pulse width 5.0µs, single
RG= 50Ω, ( See fig. 19 )
shot.
ƒ Pulse width ≤ 80µs; duty factor ≤ 0.1%.
CPV362M4F
2.63
9
7
LOAD CURRENT (A)
2.34
T c = 9 0° C
T j = 1 25 ° C
P ow er F ac tor = 0 .8
M o d ula tio n D ep th = 1 .15
V c c = 50 % o f R a ted V o lta g e
6
2.05
1.75
5
1.46
4
1.17
3
0.88
2
0.58
1
0.29
Total Output Power (kW)
8
0.00
0
0.1
1
10
100
f, Frequency (KHz)
Fig. 1 - Typical Load Current vs. Frequency
(Load Current = IRMS of fundamental)
100
TJ = 25 oC
TJ = 150 oC
10
V GE = 15V
20µs PULSE WIDTH
1
1
10
V CE, Collector-to-Emitter Voltage (V)
Fig. 2 - Typical Output Characteristics
I C, Collector-to-Emitter Current (A)
I C , Collector-to-Emitter Current (A)
100
TJ = 150 oC
10
TJ = 25 oC
VCC = 50V
5µs PULSE WIDTH
1
5
6
7
8
9
10
11
12
13
14
VGE, Gate-to-Emitter Voltage (V)
Fig. 3 - Typical Transfer Characteristics
CPV362M4F
2.5
V CE, Collector-to-Emitter Voltage(V)
Maximum DC Collector Current(A)
10
8
6
4
2
0
25
50
75
100
125
I C = 9.6A
2.0
I C = 4.8A
1.5
I C = 2.4A
1.0
-60 -40 -20
150
°
T C , Case Temperature ( C)
C)
Fig. 4 - Maximum Collector Current vs. Case
Temperature
VGE = 15V
80 us PULSE WIDTH
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature ( °C)
Fig. 5 - Typical Collector-to-Emitter Voltage
vs. Junction Temperature
T h erm al R esp onse (Z th JC )
10
D = 0.50
1
0.20
0.10
0.05
0.02
0.01
PD M
0 .1
t
SINGLE PULSE
(T H ERMA L RES PO NSE)
t
Notes :
1. Du ty fact or D = t
0.01
0.000 01
1
1
/t
2
2
2. P e ak TJ = P D M x Z th JC + T C
0.00 01
0 .00 1
0.01
0.1
1
t 1 , R e ct an g ula r P u ls e D ur at io n (s e c)
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
10
CPV362M4F
VGE = 0V,
f = 1MHz
Cies = Cge + Cgc , Cce SHORTED
Cres = Cgc
Coes = Cce + Cgc
C, Capacitance (pF)
800
600
Cies
400
200
Coes
20
VGE, Gate-to-Emitter Voltage (V)
1000
VCC = 400V
I C = 4.8A
16
12
8
4
Cres
0
1
10
0
100
0
VCE , Collector-to-Emitter Voltage (V)
Fig. 7 - Typical Capacitance vs.
Collector-to-Emitter Voltage
10
VCC = 480V
VGE = 15V
TJ = 25 °C
I C = 4.8A
0.45
0.44
0.43
0.42
10
20
30
40
RG , Gate Resistance(Ω)
(Ohm)
Fig. 9 - Typical Switching Losses vs. Gate
Resistance
12
18
24
30
Fig. 8 - Typical Gate Charge vs.
Gate-to-Emitter Voltage
Total Switching Losses (mJ)
Total Switching Losses (mJ)
0.46
6
QG , Total Gate Charge (nC)
50
RG = 50Ohm
50Ω
VGE = 15V
VCC = 480V
IC = 9.6A
1
IC = 4.8A
IC = 2.4A
0.1
-60 -40 -20
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature ( °C )
Fig. 10 - Typical Switching Losses vs.
Junction Temperature
CPV362M4F
10 0
I C , C ollect or-to-E m itte r C urrent (A )
RG = 50Ohm
50 Ω
T J = 150 °C
VCC = 480V
VGE = 15V
1.5
1.0
0.5
0.0
0
2
4
6
8
VGGE E= 20 V
T J = 125° C
SA FE O PE RAT ING AR EA
10
1
10
1
I C , Collector-to-emitter Current (A)
10
100
V C E , C o llec to r-to -E m i tte r V olta ge (V )
Fig. 11 - Typical Switching Losses vs.
Collector-to-Emitter Current
Fig. 12 - Turn-Off SOA
100
Insta ntaneo us F orw ard Cu rrent - I F (A )
Total Switching Losses (mJ)
2.0
10
TJ = 15 0°C
TJ = 12 5°C
TJ = 2 5°C
1
0.1
0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2
F orwa rd V olta ge D rop - V FM (V )
Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current
1000
CPV362M4F
100
100
VR = 2 0 0 V
T J = 1 2 5 °C
TJ = 2 5 ° C
VR = 2 0 0 V
TJ = 1 2 5 ° C
T J = 2 5 °C
80
I F = 8 .0 A
I IR R M - (A )
t r r - (n s)
IF = 16 A
60
I F = 16 A
10
IF = 8 .0A
40
I F = 4.0 A
IF = 4.0 A
20
0
100
1
100
1000
di f /d t - (A /µ s)
1000
di f /dt - (A / µs)
Fig. 14 - Typical Reverse Recovery vs. dif/dt
Fig. 15 - Typical Recovery Current vs. dif/dt
10000
500
VR = 2 0 0 V
T J = 1 2 5 °C
TJ = 2 5 ° C
VR = 2 0 0 V
TJ = 1 2 5 ° C
T J = 2 5 °C
di(re c)M/d t - (A / µs)
Q R R - (nC )
400
300
I F = 1 6A
200
I F = 8 .0 A
IF = 4.0 A
1000
IF = 8.0A
I F = 1 6A
100
IF = 4.0 A
0
100
di f / dt - (A /µs )
Fig. 16 - Typical Stored Charge vs. dif/dt
1000
100
100
1000
di f /dt - (A /µs)
Fig. 17 - Typical di(rec)M /dt vs. dif/dt
CPV362M4F
9 0% V ge
Same t ype
device as
D.U.T.
+ Vg e
Vce
430µF
80%
of Vce
D.U.T.
Ic
90 % Ic
1 0% V ce
Ic
5% Ic
td (off)
tf
E off =
Fig. 18a - Test Circuit for Measurement of
ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf
t1
∫
t1 +5µ S
Vce
V ce icIcd tdt
t1
t2
Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining
Eoff, td(off), tf
G ATE VO LTA G E D .U .T.
1 0% +V g
trr
Q rr =
Ic
∫
trr
id
Ic dtdt
tx
+V g
tx
10% V cc
10 % Ir r
V cc
DUT V O LTA G E
AN D C URR E NT
V ce
Vcc
V pk
Irr
10% Ic
9 0% Ic
tr
td( on)
Ipk
Ic
DIO DE RE CO V E RY
W AV E FO RM S
5% Vc e
t1
∫
t2
c e ieIc
dt dt
E on = VVce
t1
t2
Er ec =
DIO D E RE V E RS E
RE C O V ER Y EN ER G Y
t3
Fig. 18c - Test Waveforms for Circuit of Fig. 18a,
Defining Eon, td(on), tr
∫
t4
VVd
d idIc
d t dt
t3
t4
Fig. 18d - Test Waveforms for Circuit of Fig. 18a,
Defining Erec, trr, Qrr, Irr
CPV362M4F
V g G ATE S IG N AL
DE VICE UNDE R TE S T
CURR EN T D .U .T.
VO L TA G E IN D.U.T.
CURR EN T IN D1
t0
t1
t2
Figure 18e. Macro Waveforms for Figure 18a's Test Circuit
D.U.T.
L
10 00V
V c*
RL =
480V
4 X I C @25°C
0 - 480V
50V
60 00µ F
100 V
Figure 19. Clamped Inductive Load Test
Circuit
Figure 20. Pulsed Collector Current
Test Circuit
CPV362M4F
Notes:
 Repetitive rating: VGE=20V; pulse width limited by maximum junction temperature (figure 20)
‚ VCC=80%(VCES), VGE=20V, L=10µH, RG = 22Ω (figure 19)
ƒ Pulse width ≤ 80µs; duty factor ≤ 0.1%.
„ Pulse width 5.0µs, single shot.
Case Outline — IMS-2
3.91 ( .154)
2X
62.43 (2.458)
7.87 (.310)
53.85 ( 2.120)
5.46 ( .215)
21.97 (.865)
1
2
3
4
5
6
7
8
9 10 1 1 1 2 13 14 1 5 1 6 17 18 19
0.38 (.015)
NO TE S:
1. Tolerance unless otherwis e
spec ified ± 0.254 (.010) .
2. Controlling D imension: Inch.
3. Dimens ions ar e shown in
Millimeter ( Inc hes) .
4. Term inal numbers are shown
for refer enc e only.
3.94 (.155)
1.27 ( .050)
4.06 ± 0.51
(.160 ± .020)
5.08 (.200)
6X
1.27 (.050)
13X
2.54 (.100)
6X
3.05 ± 0.38
(.120 ± .015)
0.76 (.030)
13X
0.51 (.020)
6.10 (.240)
IMS-2 Package Outline (13 Pins)
D im e n s io n s in M illim e te rs a n d (In c h e s)
WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331
EUROPEAN HEADQUARTERS: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020
IR CANADA: 7321 Victoria Park Ave., Suite 201, Markham, Ontario L3R 2Z8, Tel: (905) 475 1897
IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590
IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111
IR FAR EAST: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo Japan 171 Tel: 81 3 3983 0086
IR SOUTHEAST ASIA: 315 Outram Road, #10-02 Tan Boon Liat Building, Singapore 0316 Tel: 65 221 8371
http://www.irf.com/
Data and specifications subject to change without notice.
9/97
Similar pages