AD ADL5243-EVALZ 100 mhz to 4000 mhz rf/if digitally controlled vga Datasheet

Data Sheet
100 MHz to 4000 MHz
RF/IF Digitally Controlled VGA
ADL5243
FEATURES
GENERAL DESCRIPTION
Operating frequency from 100 MHz to 4000 MHz
Digitally controlled VGA with serial and parallel interfaces
6-bit, 0.5 dB digital step attenuator
31.5 dB gain control range with ±0.25 dB step accuracy
Gain Block Amplifier 1
Gain: 19.2 dB at 2140 MHz
OIP3: 40.2 dBm at 2140 MHz
P1dB: 19.8 dBm at 2140 MHz
Noise figure: 2.9 dB at 2140 MHz
¼ W Driver Amplifier 2
Gain: 14.2 dB at 2140 MHz
OIP3: 41.1 dBm at 2140 MHz
P1dB: 26.0 dBm at 2140 MHz
Noise figure: 3.7 dB at 2140 MHz
Gain block, DSA, or ¼ W driver amplifier can be first
Low quiescent current of 175 mA
The companion ADL5240 integrates a gain block with DSA
The ADL5243 is a high performance, digitally controlled
variable gain amplifier operating from 100 MHz to 4000 MHz.
APPLICATIONS
The ADL5243 consumes 175 mA and operates off a single
supply ranging from 4.75 V to 5.25 V. The VGA is packaged in a
thermally efficient, 5 mm × 5 mm, 32-lead LFCSP and is fully
specified for operation from −40°C to +85°C. A fully populated
evaluation board is available.
The VGA integrates two high performance amplifiers and a
digital step attenuator (DSA). Amplifier 1 (AMP1) is an
internally matched gain block amplifier with 20 dB gain, and
Amplifier 2 (AMP2) is a broadband ¼ W driver amplifier. The
DSA is 6-bit with a 31.5 dB gain control range, 0.5 dB steps, and
±0.25 dB step accuracy. The attenuation of the DSA can be
controlled using a serial or parallel interface.
The gain block and DSA are internally matched to 50 Ω at their
inputs and outputs, and all three internal devices are separately
biased. The separate bias allows all or part of the ADL5243 to be
used, which allows for easy reuse throughout a design. The
pinout of the ADL5243 also enables the gain block, DSA, or
¼ W driver amplifier to be first, giving the VGA maximum
flexibility in a signal chain.
Wireless infrastructure
Automated test equipment
RF/IF gain control
SEL
D0/CLK
D1/DATA
D2/LE
D3
D4
D5
D6
FUNCTIONAL BLOCK DIAGRAM
32
31
30
29
28
27
26
25
VDD 1
24 VDD
SERIAL/PARALLEL INTERFACE
NC 2
23 NC
NC 3
22 NC
DSAIN 4
21 DSAOUT
0.5dB
1dB
2dB
4dB
8dB
16dB
NC 5
20 NC
ADL5243
AMP1OUT/VCC 6
19 AMP2IN
NC 7
AMP2
AMP1
18 NC
15
16
VBIAS
09431-001
14
AMP2OUT/VCC2
13
NC
NC
12
NC
11
NC
10
AMP1IN
17 NC
9
NC
NC 8
Figure 1.
Rev. A
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700
www.analog.com
Fax: 781.461.3113
©2011 Analog Devices, Inc. All rights reserved.
ADL5243
Data Sheet
TABLE OF CONTENTS
Features .............................................................................................. 1
Basic Layout Connections......................................................... 20
General Description ......................................................................... 1
SPI Timing................................................................................... 21
Functional Block Diagram .............................................................. 1
ADL5243 Amplifier 2 Matching .............................................. 23
Revision History ............................................................................... 2
ADL5243 Loop Performance.................................................... 26
Specifications..................................................................................... 3
Thermal Considerations............................................................ 26
Absolute Maximum Ratings............................................................ 9
ESD Caution.................................................................................. 9
Soldering Information and Recommended PCB
Land Pattern................................................................................ 26
Pin Configuration and Function Descriptions........................... 10
Evaluation Board ............................................................................ 27
Typical Performance Characteristics ........................................... 11
Outline Dimensions ....................................................................... 30
Applications Information .............................................................. 20
Ordering Guide .......................................................................... 30
REVISION HISTORY
8/11—Rev. 0 to Rev. A
Changes to Features Section............................................................ 1
7/11—Revision 0: Initial Version
Rev. A | Page 2 of 32
Data Sheet
ADL5243
SPECIFICATIONS
VDD = 5V, VCC = 5V, VCC2 = 5V, TA = 25oC.
Table 1.
Parameter
OVERALL FUNCTION
Frequency Range
AMPLIFIER 1 FREQUENCY = 150 MHz
Gain
vs. Frequency
vs. Temperature
vs. Supply
Input Return Loss
Output Return Loss
Output 1 dB Compression Point
Output Third-Order Intercept
Noise Figure
AMPLIFIER 1 FREQUENCY = 450 MHz
Gain
vs. Frequency
vs. Temperature
vs. Supply
Input Return Loss
Output Return Loss
Output 1 dB Compression Point
Output Third-Order Intercept
Noise Figure
AMPLIFIER 1 FREQUENCY = 748 MHz
Gain
vs. Frequency
vs. Temperature
vs. Supply
Input Return Loss
Output Return Loss
Output 1 dB Compression Point
Output Third-Order Intercept
Noise Figure
AMPLIFIER 1 FREQUENCY = 943 MHz
Gain
vs. Frequency
vs. Temperature
vs. Supply
Input Return Loss
Output Return Loss
Output 1 dB Compression Point
Output Third-Order Intercept
Noise Figure
Conditions
Min
Typ
100
Max
Unit
4000
MHz
Using the AMP1IN and AMP1OUT pins
±50 MHz
−40°C ≤ TA ≤ +85°C
4.75 V to 5.25 V
S11
S22
∆f = 1 MHz, POUT = 3 dBm/tone
18.2
±0.97
±0.07
±0.03
−10.4
−8.2
18.4
29.5
2.8
dB
dB
dB
dB
dB
dB
dBm
dBm
dB
20.6
±0.10
±0.36
±0.01
−17.8
−16.5
19.5
38.4
2.8
dB
dB
dB
dB
dB
dB
dBm
dBm
dB
20.8
±0.02
±0.32
±0.01
−22.0
−21.6
19.6
39.6
2.7
dB
dB
dB
dB
dB
dB
dBm
dBm
dB
Using the AMP1IN and AMP1OUT pins
±50 MHz
−40°C ≤ TA ≤ +85°C
4.75 V to 5.25 V
S11
S22
∆f = 1 MHz, POUT = 3 dBm/tone
Using the AMP1IN and AMP1OUT pins
±50 MHz
−40°C ≤ TA ≤ +85°C
4.75 V to 5.25 V
S11
S22
∆f = 1 MHz, POUT = 3 dBm/tone
Using the AMP1IN and AMP1OUT pins
19.0
±18 MHz
−40°C ≤ TA ≤ +85°C
4.75 V to 5.25 V
S11
S22
18.5
∆f = 1 MHz, POUT = 3 dBm/tone
Rev. A | Page 3 of 32
20.3
±0.01
±0.28
±0.02
−24.0
−21.5
19.9
40.4
2.7
22.0
dB
dB
dB
dB
dB
dB
dBm
dBm
dB
ADL5243
Parameter
AMPLIFIER 1 FREQUENCY = 1960 MHz
Gain
vs. Frequency
vs. Temperature
vs. Supply
Input Return Loss
Output Return Loss
Output 1 dB Compression Point
Output Third-Order Intercept
Noise Figure
AMPLIFIER 1 FREQUENCY = 2140 MHz
Gain
vs. Frequency
vs. Temperature
vs. Supply
Input Return Loss
Output Return Loss
Output 1 dB Compression Point
Output Third-Order Intercept
Noise Figure
AMPLIFIER 1 FREQUENCY = 2630 MHz
Gain
vs. Frequency
vs. Temperature
vs. Supply
Input Return Loss
Output Return Loss
Output 1 dB Compression Point
Output Third-Order Intercept
Noise Figure
AMPLIFIER 1 FREQUENCY = 3600 MHz
Gain
vs. Frequency
vs. Temperature
vs. Supply
Input Return Loss
Output Return Loss
Output 1 dB Compression Point
Output Third-Order Intercept
Noise Figure
AMPLIFIER 2 FREQUENCY = 748 MHz
Gain
vs. Frequency
Input Return Loss
Output Return Loss
Output 1 dB Compression Point
Output Third-Order Intercept
Noise Figure
Data Sheet
Conditions
Using the AMP1IN and AMP1OUT pins
Min
Typ
Max
19.5
±0.02
±0.26
±0.04
−13.5
−12.4
19.6
40.4
2.9
±30 MHz
−40°C ≤ TA ≤ +85°C
4.75 V to 5.25 V
S11
S22
∆f = 1 MHz, POUT = 3 dBm/tone
Unit
dB
dB
dB
dB
dB
dB
dBm
dBm
dB
Using the AMP1IN and AMP1OUT pins
17.5
±30 MHz
−40°C ≤ TA ≤ +85°C
4.75 V to 5.25 V
S11
S22
17.5
∆f = 1 MHz, POUT = 3 dBm/tone
19.2
±0.02
±0.26
±0.05
−13.3
−12.2
19.8
40.2
2.9
21.5
dB
dB
dB
dB
dB
dB
dBm
dBm
dB
19.0
±0.03
±0.22
±0.05
−17.3
−12.3
19.5
39.5
2.9
21.5
dB
dB
dB
dB
dB
dB
dBm
dBm
dB
Using the AMP1IN and AMP1OUT pins
17.5
±60 MHz
−40°C ≤ TA ≤ +85°C
4.75 V to 5.25 V
S11
S22
17.5
∆f = 1 MHz, POUT = 3 dBm/tone
Using the AMP1IN and AMP1OUT pins
±100 MHz
−40°C ≤ TA ≤ +85°C
4.75 V to 5.25 V
S11
S22
∆f = 1 MHz, POUT = 3 dBm/tone
18.0
±0.10
±0.05
±0.12
−30.7
−9.0
18.0
34.6
3.3
dB
dB
dB
dB
dB
dB
dBm
dBm
dB
17.5
±0.14
−12.7
−8.6
24.7
41.5
5.6
dB
dB
dB
dB
dBm
dBm
dB
Using the AMP2IN and AMP2OUT pins
±50 MHz
S11
S22
∆f = 1 MHz, POUT = 5 dBm/tone
Rev. A | Page 4 of 32
Data Sheet
Parameter
AMPLIFIER 2 FREQUENCY = 943 MHz
Gain
vs. Frequency
vs. Temperature
vs. Supply
Input Return Loss
Output Return Loss
Output 1 dB Compression Point
Output Third-Order Intercept
Noise Figure
AMPLIFIER 2 FREQUENCY = 2140 MHz
Gain
vs. Frequency
vs. Temperature
vs. Supply
Input Return Loss
Output Return Loss
Output 1 dB Compression Point
Output Third-Order Intercept
Noise Figure
AMPLIFIER 2 FREQUENCY = 2630 MHz
Gain
vs. Frequency
vs. Temperature
vs. Supply
Input Return Loss
Output Return Loss
Output 1 dB Compression Point
Output Third-Order Intercept
Noise Figure
DSA FREQUENCY = 150 MHz
Insertion Loss
vs. Frequency
vs. Temperature
Attenuation Range
Attenuation Step Error
Attenuation Absolute Error
Input Return Loss
Output Return Loss
Input Third-Order Intercept
ADL5243
Conditions
Using the AMP2IN and AMP2OUT pins
Min
Typ
Max
16.5
±0.05
±0.39
±0.10
−11.2
−8.1
25.0
43.3
5.3
±18 MHz
−40°C ≤ TA ≤ +85°C
4.75 V to 5.25 V
S11
S22
∆f = 1 MHz, POUT = 5 dBm/tone
Unit
dB
dB
dB
dB
dB
dB
dBm
dBm
dB
Using the AMP2IN and AMP2OUT pins
13.0
±30 MHz
−40°C ≤ TA ≤ +85°C
4.75 V to 5.25 V
S11
S22
∆f = 1 MHz, POUT = 5 dBm/tone
14.2
±0.03
±0.50
±0.09
−10.7
−8.1
26.0
41.1
3.7
15.5
dB
dB
dB
dB
dB
dB
dBm
dBm
dB
Using the AMP2IN and AMP2OUT pins
±60 MHz
−40°C ≤ TA ≤ +85°C
4.75 V to 5.25 V
S11
S22
∆f = 1 MHz, POUT = 5 dBm/tone
13.0
±0.13
±0.56
±0.09
−9.4
−8.3
24.5
40.4
4.1
dB
dB
dB
dB
dB
dB
dBm
dBm
dB
−1.5
±0.12
±0.10
28.8
±0.18
±1.35
−13.5
−13.3
45.2
dB
dB
dB
dB
dB
dB
dB
dB
dBm
Using the DSAIN and DSAOUT pins, minimum
attenuation
±50 MHz
−40°C ≤ TA ≤ +85°C
Between maximum and minimum attenuation states
All attenuation states
All attenuation states
∆f = 1 MHz, POUT = 5 dBm/tone
Rev. A | Page 5 of 32
ADL5243
Parameter
DSA FREQUENCY = 450 MHz
Insertion Loss
vs. Frequency
vs. Temperature
Attenuation Range
Attenuation Step Error
Attenuation Absolute Error
Input Return Loss
Output Return Loss
Input Third-Order Intercept
DSA FREQUENCY = 748 MHz
Insertion Loss
vs. Frequency
vs. Temperature
Attenuation Range
Attenuation Step Error
Attenuation Absolute Error
Input Return Loss
Output Return Loss
Input Third-Order Intercept
DSA FREQUENCY = 943 MHz
Insertion Loss
vs. Frequency
vs. Temperature
Attenuation Range
Attenuation Step Error
Attenuation Absolute Error
Input Return Loss
Output Return Loss
Input 1 dB Compression Point
Input Third-Order Intercept
DSA FREQUENCY = 1960 MHz
Insertion Loss
vs. Frequency
vs. Temperature
Attenuation Range
Attenuation Step Error
Attenuation Absolute Error
Input Return Loss
Output Return Loss
Input 1 dB Compression Point
Input Third-Order Intercept
Data Sheet
Conditions
Using the DSAIN and DSAOUT pins, minimum
attenuation
±50 MHz
−40°C ≤ TA ≤ +85°C
Between maximum and minimum attenuation states
All attenuation states
All attenuation states
∆f = 1 MHz, POUT = 5 dBm/tone
Using the DSAIN and DSAOUT pins, minimum
attenuation
±50 MHz
−40°C ≤ TA ≤ +85°C
Between maximum and minimum attenuation states
All attenuation states
All attenuation states
∆f = 1 MHz, POUT = 5 dBm/tone
Using the DSAIN and DSAOUT pins, minimum
attenuation
±18 MHz
−40°C ≤ TA ≤ +85°C
Between maximum and minimum attenuation states
All attenuation states
All attenuation states
∆f = 1 MHz, POUT = 5 dBm/tone
Using the DSAIN and DSAOUT pins, minimum
attenuation
±30 MHz
−40°C ≤ TA ≤ +85°C
Between maximum and minimum attenuation states
All attenuation states
All attenuation states
∆f = 1 MHz, POUT = 5 dBm/tone
Rev. A | Page 6 of 32
Min
Typ
Max
Unit
−1.4
±0.02
±0.12
30.7
±0.14
±0.39
−17.7
−17.4
41.2
dB
dB
dB
dB
dB
dB
dB
dB
dBm
−1.5
±0.02
±0.12
30.9
±0.15
±0.30
−17.1
−17.1
40.4
dB
dB
dB
dB
dB
dB
dB
dB
dBm
−1.6
±0.01
±0.13
30.9
±0.15
±0.28
−16.0
−15.9
30.5
48.3
dB
dB
dB
dB
dB
dB
dB
dB
dBm
dBm
−2.5
±0.04
±0.18
30.8
±0.15
±0.35
−10.3
−9.6
31.5
44.7
dB
dB
dB
dB
dB
dB
dB
dB
dBm
dBm
Data Sheet
Parameter
DSA FREQUENCY = 2140 MHz
Insertion Loss
vs. Frequency
vs. Temperature
Attenuation Range
Attenuation Step Error
Attenuation Absolute Error
Input Return Loss
Output Return Loss
Input 1 dB Compression Point
Input Third-Order Intercept
DSA FREQUENCY = 2630 MHz
Insertion Loss
vs. Frequency
vs. Temperature
Attenuation Range
Attenuation Step Error
Attenuation Absolute Error
Input Return Loss
Output Return Loss
Input 1 dB Compression Point
Input Third-Order Intercept
DSA FREQUENCY = 3600 MHz
Insertion Loss
vs. Frequency
vs. Temperature
Attenuation Range
Attenuation Step Error
Attenuation Absolute Error
Input Return Loss
Output Return Loss
Input 1 dB Compression Point
Input Third-Order Intercept
DSA Gain Settling
Minimum Attenuation to Maximum
Attenuation
Maximum Attenuation to Minimum
Attenuation
LOOP FREQUENCY = 943 MHz
Gain
vs. Frequency
Gain Range
Input Return Loss
Output Return Loss
Output 1 dB Compression Point
Output Third-Order Intercept
Noise Figure
ADL5243
Conditions
Using the DSAIN and DSAOUT pins, minimum
attenuation
±30 MHz
−40°C ≤ TA ≤ +85°C
Between maximum and minimum attenuation states
All attenuation states
All attenuation states
∆f = 1 MHz, POUT = 5 dBm/tone
Using the DSAIN and DSAOUT pins, minimum
attenuation
±60 MHz
−40°C ≤ TA ≤ +85°C
Between maximum and minimum attenuation states
All attenuation states
All attenuation states
∆f = 1 MHz, POUT = 5 dBm/tone
Using the DSAIN and DSAOUT pins, minimum
attenuation
±100 MHz
−40°C ≤ TA ≤ +85°C
Between maximum and minimum attenuation states
All attenuation states
All attenuation states
∆f = 1 MHz, POUT = 5 dBm/tone
Using the DSAIN and DSAOUT pins
Min
Typ
Max
Unit
−2.6
±0.02
±0.19
30.9
±0.13
±0.32
−9.8
−9.3
31.5
44.6
dB
dB
dB
dB
dB
dB
dB
dB
dBm
dBm
−2.8
±0.02
±0.21
31.2
±0.18
±0.24
−10.0
−9.6
31.5
43.8
dB
dB
dB
dB
dB
dB
dB
dB
dBm
dBm
−3.0
±0.02
±0.23
31.7
±0.38
±0.18
−12.3
−11.7
31.0
42.2
dB
dB
dB
dB
dB
dB
dB
dB
dBm
dBm
36
ns
36
ns
34.0
±0.10
29.3
−14.2
−10.1
25.1
42.8
2.9
dB
dB
dB
dB
dB
dBm
dBm
dB
AMP1–DSA–AMP2, DSA at minimum attenuation
±18 MHz
Between maximum and minimum attenuation states
S11
S22
∆f = 1 MHz, POUT = 5 dBm/tone
Rev. A | Page 7 of 32
ADL5243
Parameter
LOOP FREQUENCY = 2140 MHz
Gain
vs. Frequency
Gain Range
Input Return Loss
Output Return Loss
Output 1 dB Compression Point
Output Third-Order Intercept
Noise Figure
LOOP FREQUENCY = 2630 MHz
Gain
vs. Frequency
Gain Range
Input Return Loss
Output Return Loss
Output 1 dB Compression Point
Output Third-Order Intercept
Noise Figure
POWER SUPPLIES
Voltage
Supply Current
Data Sheet
Conditions
AMP1 – DSA – AMP2, DSA at minimum attenuation
Min
±30 MHz
Between maximum and minimum attenuation states
S11
S22
∆f = 1 MHz, POUT = 5 dBm/tone
Typ
Max
Unit
31.3
±0.03
32.5
−9.3
−5.4
25.3
40.0
3.1
dB
dB
dB
dB
dB
dBm
dBm
dB
29.5
±0.56
30.0
−12.6
−5.8
24.6
39.3
3.1
dB
dB
dB
dB
dB
dBm
dBm
dB
AMP1 – DSA – AMP2, DSA at minimum attenuation
±60 MHz
Between maximum and minimum attenuation states
S11
S22
∆f = 1 MHz, POUT = 5 dBm/tone
4.75
AMP1
AMP2
DSA
Rev. A | Page 8 of 32
5.0
89
86
0.5
5.25
120
120
V
mA
mA
mA
Data Sheet
ADL5243
ABSOLUTE MAXIMUM RATINGS
ESD CAUTION
Table 2.
Parameter
Supply Voltage (VDD, VCC, VCC2)
Input Power
AMP1IN
AMP2IN (50 Ω Impedance)
DSAIN
Internal Power Dissipation
θJA (Exposed Paddle Soldered Down)
θJC (Exposed Paddle)
Maximum Junction Temperature
Lead Temperature (Soldering, 60 sec)
Operating Temperature Range
Storage Temperature Range
Rating
6.5 V
16 dBm
20 dBm
30 dBm
1.0 W
34.8°C/W
6.2°C/W
150°C
240°C
−40°C to +85°C
−65°C to +150°C
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
Rev. A | Page 9 of 32
ADL5243
Data Sheet
32
31
30
29
28
27
26
25
SEL
D0/CLK
D1/DATA
D2/LE
D3
D4
D5
D6
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS
1
2
3
4
5
6
7
8
PIN 1
INDICATOR
ADL5243
TOP VIEW
(Not to Scale)
24
23
22
21
20
19
18
17
VDD
NC
NC
DSAOUT
NC
AMP2IN
NC
NC
NOTES
1. NC = NO CONNECT. DO NOT CONNECT TO THIS PIN.
2. THE EXPOSED PAD MUST BE CONNECTED TO GROUND.
09431-002
NC
AMP1IN
NC
NC
NC
NC
AMP2OUT/VCC2
VBIAS
9
10
11
12
13
14
15
16
VDD
NC
NC
DSAIN
NC
AMP1OUT/VCC
NC
NC
Figure 2. Pin Configuration
Table 3. Pin Function Descriptions
Pin No.
1, 24
2, 3, 5, 7, 8, 9, 11, 12, 13, 14,
17, 18, 20, 22, 23
4
6
Mnemonic
VDD
NC
Description
Supply Voltage for DSA. Connect this pin to a 5 V supply.
No Connect. Do not connect to this pin.
DSAIN
AMP1OUT/VCC
10
15
AMP1IN
AMP2OUT/VCC2
16
19
21
25
26
27
28
29
30
31
VBIAS
AMP2IN
DSAOUT
D6
D5
D4
D3
D2/LE
D1/DATA
D0/CLK
32
SEL
RF Input to DSA.
RF Output from Amplifier 1/Supply Voltage for Amplifier 1. Bias to Gain Block
Amplifier 1 is provided through a choke to this pin when connected to VCC.
RF Input to Gain Block Amplifier 1.
RF Output from Amplifier 2/Supply Voltage for Amplifier 2. Bias to Driver Amplifier 2 is
provided through a choke to this pin when connected to VCC2.
Bias for Driver Amplifier 2.
RF Input to Amplifier 2.
RF Output from DSA.
Data Bit in Parallel Mode (LSB). Connect to supply in serial mode.
Data Bit in Parallel Mode. Connect to ground in serial mode.
Data Bit in Parallel Mode. Connect to ground in serial mode.
Data Bit in Parallel Mode. Connect to ground in serial mode.
Data Bit in Parallel Mode/Latch Enable in Serial Mode.
Data Bit in Parallel Mode (MSB)/Data in Serial Mode.
Connect this pin to ground in parallel mode. This pin functions as a clock in serial
mode.
Select Pin. Connect this pin to the supply for parallel mode operation; connect this pin
to ground for serial mode operation.
Exposed Paddle. The exposed paddle must be connected to ground.
EPAD
Rev. A | Page 10 of 32
Data Sheet
ADL5243
TYPICAL PERFORMANCE CHARACTERISTICS
40
45
26
40
24
35
22
30
20
25
18
20
30
P1dB (dBm)
P1dB
25
20
15
GAIN
10
0.4
0.8
1.2
1.6
2.0
2.4
2.8
+85°C
+25°C
–40°C
16
NF
3.2
3.6
FREQUENCY (GHz)
14
Figure 3. AMP1: Gain, P1dB, OIP3 at POUT = 3 dBm/Tone and Noise Figure vs.
Frequency
0
0.4
0.8
42
40
21.0
38
20.5
36 1960MHz
OIP3 (dBm)
19.5
19.0
+25°C
+85°C
18.5
2.4
943MHz
2.8
10
3.6
3.2
450MHz
748MHz
2140MHz
34
2630MHz
32
30
3600MHz
28
150MHz
26
18.0
24
17.5
0
0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2
3.6
FREQUENCY (GHz)
20
–4
–2
0
2
4
6
8
10
12
14
16
3.6
4.0
POUT PER TONE (dBm)
Figure 4. AMP1: Gain vs. Frequency and Temperature
09431-007
22
09431-004
17.0
2.0
FREQUENCY (GHz)
21.5
–40°C
1.6
Figure 6. AMP1: OIP3 at Pout = 3 dBm/Tone and P1dB vs. Frequency and
Temperature
22.0
20.0
1.2
15
09431-006
5
0
Figure 7. AMP1: OIP3 vs. POUT and Frequency
0
5.0
–5
4.5
–10
S22
–15
NOISE FIGURE (dB)
S-PARAMETERS (dB)
OIP3 (dBm)
35
0
GAIN (dB)
28
OIP3
09431-003
NOISE FIGURE, GAIN, P1dB, OIP3 (dB, dBm)
45
S11
–20
S12
–25
–30
–35
4.0
+85°C
3.5
+25°C
3.0
–40°C
2.5
–40
0.5
0.9
1.3
1.7
2.1
2.5
FREQUENCY (GHz)
2.9
3.3
3.7
4.1
09431-005
–50
0.1
Figure 5. AMP1: Input Return Loss (S11), Output Return Loss (S22), and
Reverse Isolation (S12) vs. Frequency
Rev. A | Page 11 of 32
1.5
0
0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2
FREQUENCY (GHz)
Figure 8. AMP1: Noise Figure vs. Frequency and Temperature
09431-008
2.0
–45
ADL5243
Data Sheet
27.0
45
26.5
43
26.0
41
25.5
39
25.0
37
40
35
P1dB (dBm)
30
P1dB
25
20
GAIN
15
10
24.5
NF
5
0
0.925
0.930
0.935
0.940
0.945
0.950
0.955
0.960
0.965
FREQUENCY (GHz)
24.0
0.925
0.930
0.935
0.940
0.945
0.950
0.955
0.960
33
0.965
FREQUENCY (GHz)
Figure 9. AMP2–943 MHz: Gain, P1dB, OIP3 at POUT = 5 dBm/Tone and Noise
Figure vs. Frequency
Figure 12. AMP2–943 MHz: OIP3 at POUT = 5 dBm/Tone and P1dB vs.
Frequency and Temperature
18.0
45
44
17.5
961MHz
43
OIP3 (dBm)
–40°C
17.0
GAIN (dB)
35
+85°C
+25°C
–40°C
09431-012
45
OIP3 (dBm)
OIP3
09431-009
NOISE FIGURE, GAIN, P1dB, OIP3 (dB, dBm)
50
+25°C
16.5
+85°C
16.0
925MHz
42
943MHz
41
40
39
15.5
0.930
0.935
0.940
0.945
0.950
0.955
0.960
0.965
FREQUENCY (GHz)
37
–4
09431-010
7.5
–5
7.0
4
6
8
10
12
14
16
18
6.5
NOISE FIGURE (dB)
S-PARAMETERS (dB)
S22
–10
S11
–20
+85°C
6.0
5.5
+25°C
5.0
–40°C
–40°C
4.5
S12
–30
4.0
0.85
0.90
0.95
1.00
FREQUENCY (GHz)
1.05
1.10
3.5
0.80
09431-011
–35
0.80
2
Figure 13. AMP2–943 MHz: OIP3 vs. POUT and Frequency
0
–25
0
POUT PER TONE (dBm)
Figure 10. AMP2–943 MHz: Gain vs. Frequency and Temperature
–15
–2
Figure 11. AMP2–943 MHz: Input Return Loss (S11), Output Return Loss (S22,)
and Reverse Isolation (S12) vs. Frequency
0.83
0.86
0.89
0.92
0.95
0.98
FREQUENCY (GHz)
1.01
1.04
1.07
1.10
09431-014
15.0
0.925
09431-013
38
Figure 14. AMP2–943 MHz: Noise Figure vs. Frequency and Temperature
Rev. A | Page 12 of 32
Data Sheet
ADL5243
28.0
43
27.5
41
27.0
39
26.5
37
26.0
35
OIP3
40
30
P1dB (dBm)
P1dB
25
20
GAIN
15
OIP3 (dBm)
35
10
+85°C
+25°C
–40°C
0
2.11
2.12
2.13
2.14
2.15
2.16
2.17
FREQUENCY (GHz)
Figure 15. AMP2–2140 MHz: Gain, P1dB, OIP3 at POUT = 5 dBm/Tone and
Noise Figure vs. Frequency
25.0
2.11
2.12
2.13
33
2.14
2.15
31
2.17
2.16
09431-018
25.5
NF
5
09431-015
NOISE FIGURE, GAIN, P1dB, OIP3 (dB, dBm)
45
FREQUENCY (GHz)
Figure 18. AMP2–2140 MHz: OIP3 at POUT = 5 dBm/Tone and P1dB vs.
Frequency and Temperature
16.0
42
15.5
41
–40°C
14.5
+25°C
14.0
+85°C
40
13.5
38
37
13.0
36
12.5
35
2.12
2.13
2.14
2.15
2.16
2.17
FREQUENCY (GHz)
34
–6
09431-016
12.0
2.11
2.14GHz
39
–4
–2
0
2
4
6
8
10
12
14
16
18
20
22
POUT PER TONE (dBm)
09431-019
15.0
OIP3 (dBm)
GAIN (dB)
2.17GHz
2.11GHz
Figure 19. AMP2–2140 MHz: OIP3 vs. POUT and Frequency
Figure 16. AMP2–2140 MHz: Gain vs. Frequency and Temperature
5.5
0
5.0
–5
S22
–15
–20
S12
–25
4.0
+25°C
3.5
–40°C
3.0
2.5
2.05
2.10
2.15
2.20
FREQUENCY (GHz)
2.25
2.30
2.0
2.00
09431-017
–30
2.00
+85°C
4.5
Figure 17. AMP2–2140 MHz: Input Return Loss (S11), Output Return Loss
(S22), and Reverse Isolation (S12) vs. Frequency
2.03
2.06
2.09
2.12
2.15
2.18
FREQUENCY (GHz)
2.21
2.24
2.27
2.30
09431-020
–10
NOISE FIGURE (dB)
S-PARAMETERS (dB)
S11
Figure 20. AMP2–2140 MHz: Noise Figure vs. Frequency and Temperature
Rev. A | Page 13 of 32
Data Sheet
40
35
P1dB (dBm)
30
P1dB
25
20
GAIN
15
10
42.0
27.5
41.5
27.0
41.0
26.5
40.5
26.0
40.0
25.5
39.5
25.0
39.0
24.5
38.5
38.0
24.0
NF
5
0
2.57
28.0
2.59
+85°C
+25°C
–40°C
23.5
2.61
2.63
2.65
2.67
2.69
FREQUENCY (GHz)
Figure 21. AMP2–2630 MHz: Gain, P1dB, OIP3 at POUT = 5 dBm/Tone and
Noise Figure vs. Frequency
23.0
2.57
2.59
2.61
37.0
2.69
2.67
42
2.69GHz
41
2.63GHz
40
39
–40°C
2.57GHz
OIP3 (dBm)
38
GAIN (dB)
2.65
FREQUENCY (GHz)
14.5
13.5
2.63
Figure 24. AMP2–2630 MHz: OIP3 at POUT = 5 dBm/Tone and P1dB vs.
Frequency and Temperature
15.0
14.0
37.5
09431-024
OIP3
09431-021
NOISE FIGURE, GAIN, P1dB, OIP3 (dB, dBm)
45
OIP3 (dBm)
ADL5243
+25°C
13.0
+85°C
12.5
37
36
35
34
33
12.0
32
11.5
2.61
2.63
2.65
2.67
2.69
FREQUENCY (GHz)
30
–6
2
4
6
8
10
12
14
16
18
20
22
6.0
5.5
–5
S11
5.0
NOISE FIGURE (dB)
S22
–15
–20
S12
+85°C
4.5
+25°C
4.0
3.5
–40°C
3.0
–25
2.5
2.60
2.65
2.70
FREQUENCY (GHz)
2.75
2.80
2.0
2.50
09431-023
2.55
Figure 23. AMP2–2630 MHz: Input Return Loss (S11), Output Return Loss
(S22), and Reverse Isolation (S12) vs. Frequency
2.53
2.56
2.59
2.62
2.65
2.68
FREQUENCY (GHz)
2.71
2.74
2.77
2.80
09431-026
S-PARAMETERS (dB)
0
Figure 25. AMP2–2630 MHz: OIP3 vs. POUT and Frequency
0
–30
2.50
–2
POUT PER TONE (dBm)
Figure 22. AMP2–2630 MHz: Gain vs. Frequency and Temperature
–10
–4
09431-025
2.59
09431-022
11.0
2.57
31
Figure 26. AMP2–2630 MHz: Noise Figure vs. Frequency and Temperature
Rev. A | Page 14 of 32
Data Sheet
ADL5243
0
1.0
0dB
450MHz
748MHz
943MHz
0.8
–5
1960MHz
2140MHz
2630MHz
3600MHz
0.6
ABSOLUTE ERROR (dB)
ATTENUATION (dB)
–10
–15
–20
–25
–30
0.4
0.2
0
–0.2
–0.4
–0.6
–35
0.5
0.9
1.3
1.7
2.1
2.5
2.9
3.3
3.7
4.1
FREQUENCY (GHz)
–1.0
09431-027
–40
0.1
0
20
24
28
32
–5
INPUT RETURN LOSS (dB)
ATTENUATION (dB)
16
0
4dB
8dB
–11
12
Figure 30. DSA: Absolute Error vs. Attenuation
0dB
–6
8
ATTENUATION (dB)
Figure 27. DSA: Attenuation vs. Frequency
–1
4
09431-030
–0.8
31.5dB
–16
16dB
–21
+85°C
+25°C
–40°C
–26
0dB
–10
–15
31.5dB
–20
–25
–31
0.9
1.3
1.7
2.1
2.5
2.9
3.3
3.7
4.1
FREQUENCY (GHz)
0.5
0.9
1.3
1.7
2.1
2.5
2.9
3.3
3.7
Figure 31. DSA: Input Return Loss vs. Frequency, All States
0.5
0
1960MHz
2140MHz
2630MHz
3600MHz
0.3
–5
OUTPUT RETURN LOSS (dB)
450MHz
748MHz
943MHz
4.1
FREQUENCY (GHz)
Figure 28. DSA: Attenuation vs. Frequency and Temperature
0.4
0.2
0.1
0
–0.1
–0.2
–0.3
0dB
–10
–15
31.5dB
–20
–25
–0.5
0
4
8
12
16
20
24
ATTENUATION (dB)
28
32
–30
0.1
0.5
0.9
1.3
1.7
2.1
2.5
2.9
3.3
3.7
4.1
FREQUENCY (GHz)
Figure 32. DSA: Output Return Loss vs. Frequency, All States
Figure 29. DSA: Step Error vs. Attenuation
Rev. A | Page 15 of 32
09431-032
–0.4
09431-029
STEP ERROR (dB)
–30
0.1
09431-028
0.5
09431-031
31.5dB
–36
0.1
ADL5243
Data Sheet
36
50
150
1960MHz
IIP3
35
45
100
35
30
IP1dB
31
30
0.9
1.2
1.5
1.8
2.1
2.4
2.7
3.0
3.3
2630MHz
0
–50
25
–100
20
3.6
–150
FREQUENCY (GHz)
09431-033
32
50
943MHz
0
4
8
12
16
20
24
28
32
960
965
ATTENUATION (dB)
Figure 33. DSA: Input P1dB and Input IP3 vs. Frequency, Minimum
Attenuation State
09431-036
33
PHASE (Degrees)
40
IIP3 (dBm)
34
Figure 36. DSA: Phase vs. Attenuation
3
CH3 2.00V
CH4 200mV
M10ns 10GS/s A CH3
IT 1.0ps/pt
1.24V
09431-034
4
OIP3
45
40
GAIN
35
30
P1dB
25
20
15
10
NF
5
0
925
930
935
940
945
950
955
FREQUENCY (MHz)
09431-037
NOISE FIGURE, GAIN, P1dB, OIP3 (dB, dBm)
50
Figure 37. Loop–943 MHz: Gain, P1dB, OIP3 at POUT = 5 dBm/Tone and Noise
Figure vs. Frequency, Minimum Attenuation State
Figure 34. DSA: Gain Settling Time, 0 dB to 31.5 dB
0
S22
–10
S-PARAMETERS (dB)
–20
3
4
S11
–30
–40
–50
S12
–60
–70
CH3 2.00V
CH4 200mV
M10ns 10GS/s A CH3
IT 1.0ps/pt
1.24V
Figure 35. DSA: Gain Settling Time, 31.5 dB to 0 dB
–90
0.70
0.75
0.80
0.85
0.90
0.95
FREQUENCY (GHz)
1.00
1.05
1.10
09431-038
–80
09431-035
IP1dB (dBm)
2140MHz
Figure 38. Loop–943 MHz: Input Return Loss (S11), Output Return Loss (S22),
and Reverse Isolation (S12) vs. Frequency, Minimum Attenuation State
Rev. A | Page 16 of 32
Data Sheet
ADL5243
46
42
925MHz
2.14GHz
40
OIP3 (dBm)
40
38
36
38
37
36
34
6
8
10
12
14
16
18
20
22
POUT PER TONE (dBm)
34
09431-039
5
7
9
11
13
15
17
19
21
Figure 42. Loop–2140 MHz: OIP3 vs. POUT and Frequency, Minimum
Attenuation State
45
45
NOISE FIGURE, GAIN, P1dB, OIP3 (dB, dBm)
OIP3
40
35
GAIN
30
P1dB
25
20
15
10
2.12
2.13
2.14
2.15
2.16
2.17
FREQUENCY (GHz)
Figure 40. Loop–2140 MHz: Gain, P1dB, OIP3 at POUT = 5 dBm/Tone and Noise
Figure vs. Frequency, Minimum Attenuation State
OIP3
40
35
GAIN
30
P1dB
25
20
15
10
5
0
2.57
09431-040
NF
5
NF
2.59
2.61
2.63
2.65
2.67
2.69
FREQUENCY (GHz)
Figure 43. Loop–2630 MHz: Gain, P1dB, OIP3 at POUT = 5 dBm/Tone and Noise
Figure vs. Frequency, Minimum Attenuation State
5
5
0
0
S22
–10
S11
–15
–20
–25
–30
–35
S22
–5
S-PARAMETERS (dB)
–5
–10
S11
–15
–20
–25
–30
–35
S12
–40
S12
–40
–45
2.05
2.10
2.15
2.20
FREQUENCY (GHz)
2.25
2.30
–50
2.50
09431-041
–45
2.00
3
POUT PER TONE (dBm)
Figure 39. Loop–943 MHz: OIP3 vs. POUT and Frequency, Minimum
Attenuation State
0
2.11
1
09431-043
4
09431-042
35
32
NOISE FIGURE, GAIN, P1dB, OIP3 (dB, dBm)
2.17GHz
39
Figure 41. Loop–2140 MHz: Input Return Loss (S11), Output Return Loss
2.55
2.60
2.65
2.70
2.75
FREQUENCY (GHz)
2.80
2.85
2.90
09431-044
OIP3 (dBm)
943MHz
961MHz
42
S-PARAMETERS (dB)
2.11GHz
41
44
Figure 44. Loop–2630 MHz: Input Return Loss (S11), Output Return Loss
(S22), and Reverse Isolation (S12) vs. Frequency, Minimum Attenuation State
(S22), and Reverse Isolation (S12) vs. Frequency, Minimum Attenuation State
Rev. A | Page 17 of 32
ADL5243
Data Sheet
45
42
2.69GHz
40
35
2.63GHz
PERCENTAGE (%)
15
35
10
34
5
20.0
GAIN (dB)
09431-048
19.9
19.8
19.7
0
19.6
18
19.5
16
19.4
14
19.3
6
8
10
12
POUT PER TONE (dBm)
19.2
4
19.1
2
19.0
0
09431-045
33
18.9
36
20
18.8
37
25
18.7
2.57GHz
18.6
38
30
18.3
OIP3 (dBm)
39
18.5
40
18.4
41
Figure 48. AMP1: Gain Distribution at 2140 MHz
Figure 45. Loop–2630 MHz: OIP3 vs. POUT and Frequency, Minimum
Attenuation State
110
25
20
100
95
PERCENTAGE (%)
SUPPLY CURRENT (mA)
105
5.25V
90
5.00V
85
4.75V
15
10
80
5
P1dB (dBm)
Figure 46. AMP1: Supply Current vs. Voltage and Temperature
09431-049
20.5
20.4
20.3
20.2
20.1
20.0
19.9
TEMPERATURE (°C)
0
19.8
90
19.7
80
19.6
70
19.5
60
19.4
50
19.3
40
19.2
30
19.1
20
19.0
10
18.9
0
09431-046
70
–40 –30 –20 –10
18.8
75
Figure 49. AMP1: P1dB Distribution at 2140 MHz
110
35
105
30
5.25V
90
25
PERCENTAGE (%)
95
5.00V
5.00V
85
80
4.75V
75
20
15
10
70
60
–40 –30 –20 –10
0
10
20
30
40
50
60
70
80
90
TEMPERATURE (°C)
Figure 47. AMP2: Supply Current vs. Voltage and Temperature
0
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
OIP3 (dBm)
Figure 50. AMP1: OIP3 Distribution at 2140 MHz
Rev. A | Page 18 of 32
09431-050
5
65
09431-047
SUPPLY CURRENT (mA)
100
Data Sheet
ADL5243
100
70
90
60
50
70
PERCENTAGE (%)
PERCENTAGE (%)
80
60
50
40
30
40
30
20
20
3.8
NOISE FIGURE (dB)
0
09431-051
3.7
3.6
3.5
3.4
3.3
3.2
3.1
3.0
2.9
2.8
2.7
2.6
2.5
2.4
2.3
0
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
OIP3 (dBm)
09431-054
10
10
Figure 54. AMP2: OIP3 Distribution at 2140 MHz
Figure 51. AMP1: Noise Figure Distribution at 2140 MHz
60
40
35
50
PERCENTAGE (%)
PERCENTAGE (%)
30
25
20
15
40
30
20
10
Figure 52. AMP2: Gain Distribution at 2140 MHz
45
40
35
30
25
20
15
10
5
09431-053
26.9
26.8
26.7
26.6
26.5
26.4
26.3
26.2
26.1
26.0
25.9
25.8
25.7
25.6
25.5
25.4
25.3
0
25.2
PERCENTAGE (%)
4.4
4.5
4.3
4.1
4.2
4.0
3.9
3.8
3.7
3.6
3.5
3.4
3.3
3.2
NOISE FIGURE (dB)
Figure 55. AMP2: Noise Figure Distribution at 2140 MHz
50
P1dB (dBm)
3.1
09431-052
15.0
14.9
14.8
14.7
14.6
14.5
14.4
14.3
14.2
14.1
14.0
13.9
13.8
13.7
13.6
13.5
13.4
13.3
GAIN (dB)
3.0
0
0
Figure 53. AMP2: P1dB Distribution at 2140 MHz
Rev. A | Page 19 of 32
09431-055
10
5
ADL5243
Data Sheet
APPLICATIONS INFORMATION
BASIC LAYOUT CONNECTIONS
The basic connections for operating the ADL5243 are shown in Figure 56. The schematic is configured for 2140 MHz operation.
SERIAL PARALLEL INTERFACE
VDD
VDD
C17
1
2
C1
100pF
3
4
DSAIN
AMP1OUT
470nH
VDD
NC
NC
NC
NC
DSAIN
NC
6
AMP1OUT/VCC
7
NC
NC
C15
68pF
NC
AMP2IN
NC
NC
24
23
22
C5
100pF
21
C21
0.1µF
AMP1IN
DSAOUT
20
19
18
17
AMP2IN
C27
2.2pF
C28
1.8pF
C8
10pF
VCC2
9 10 11 12 13 14 15 16
C14
1.2nF
C13
1µF
DSAOUT
ADL5243
5
8
VDD
L2
9.5nH
C22
1pF
C3
10pF
C25
10nF
C20
10µF
VCC
C23
10pF
AMP2OUT
Figure 56. Basic Connections
Rev. A | Page 20 of 32
09431-056
C4
0.1µF
SEL
D0/CLK
D1/DATA
D2/LE
D3
D4
D5
D6
32 31 30 29 28 27 26 25
NC
AMP1IN
NC
NC
NC
NC
AMP2OUT/VCC2
VBIAS
0.01µF
Data Sheet
ADL5243
Amplifier 1 Power Supply
AMP1 in the ADL5243 is a broadband gain block. The dc bias is
supplied through Inductor L1 and is connected to the
AMP1OUT pin. Three decoupling capacitors (C13, C14, and
C25) are used to prevent RF signals from propagating on the dc
lines. The dc supply ranges from 4.75 V to 5.25 V and should be
connected to the VCC test pin.
Additionally, bias is provided through this pin. Figure 56 shows
the output matching components and is configured for 2140 MHz.
DSA RF Input Interface
Pin 4 is the RF input for the DSA of the ADL5243. The input
impedance of the DSA is close to 50 Ω over the entire frequency
range; therefore, no external components are required. Only a
dc blocking capacitor (C1) is required.
Amplifier 1 RF Input Interface
DSA RF Output Interface
Pin 10 is the RF input for AMP1 of the ADL5243. The amplifier
is internally matched to 50 Ω at the input; therefore, no external
components are required. Only a dc blocking capacitor (C21) is
required.
Pin 21 is the RF output for the DSA of the ADL5243. The
output impedance of the DSA is close to 50 Ω over the entire
frequency range; therefore, no external components are
required. Only a dc blocking capacitor (C5) is required.
Amplifier 1 RF Output Interface
DSA SPI Interface
Pin 6 is the RF output for AMP1 of the ADL5243. The amplifier
is internally matched to 50 Ω at the output as well; therefore, no
external components are required. Only a dc blocking capacitor
(C4) is required. The bias is provided through this pin via a
choke inductor, L1.
The DSA of the ADL5243 can operate in either serial or parallel
mode. Pin 32 (SEL) controls the mode of operation. For serial
mode operation, connect SEL to ground, and for parallel mode
operation, connect SEL to VDD. In parallel mode, Pin 25 to Pin
30 (D6 to D1) are the data bits, with D6 being the LSB. Connect
Pin 31 (D0) to ground during parallel mode of operation. In
serial mode, Pin 29 is the latch enable (LE), Pin 30 is the data
(DATA), and Pin 31 is the clock (CLK). Pin 26, Pin 27, and Pin 28
are not used in the serial mode and should be connected to
ground. Pin 25 (D6) should be connected to VDD during the
serial mode of operation. To prevent noise from coupling onto
the digital signals, an RC filter can be used on each data line.
Amplifier 2 Power Supply
The collector bias for AMP2 is supplied through Inductor L2
and is connected to the AMP2OUT pin, whereas the base bias is
provided through Pin 16. The base bias is connected to the
same supply pin as the collector bias. Three decoupling
capacitors (C3, C20, and C25) are used to prevent RF signals
from propagating on the dc lines. The dc supply ranges from
4.75 V to 5.25 V and should be connected to the VCC2 test pin.
SPI TIMING
Amplifier 2 RF Input Interface
SPI Timing Sequence
Pin 19 is the RF input for AMP2 of the ADL5243. The input of
the amplifier is easily matched to 50 Ω with a combination of
series and shunt capacitors and a microstrip line serving as an
inductor. Figure 56 shows the input matching components and
is configured for 2140 MHz.
Figure 58 shows the timing sequence for the SPI function using
a 6-bit operation. The clock can be as fast as 20 MHz. In serial
mode operation, Register B5 (MSB) is first, and Register B0
(LSB) is last.
Amplifier 2 RF Output Interface
Pin 15 is the RF input for AMP2 of the ADL5243. The output of
the amplifier is easily matched to 50 Ω with a combination of series
and shunt capacitors and a microstrip line serving as an inductor.
Table 4. Mode Selection Table
Pin 32 (SEL)
Connect to Ground
Connect to Supply
Table 5. SPI Timing Specifications
Parameter
FCLK
t1
t2
t3
t4
t5
t6
Limit
10
30
30
10
10
10
30
Unit
MHz
ns min
ns min
ns min
ns min
ns min
ns min
Test Conditions/Comments
Data clock frequency
Clock high time
Clock low time
Data to clock setup time
Clock to data hold time
Clock low to LE setup time
LE pulse width
Rev. A | Page 21 of 32
Functionality
Serial mode
Parallel mode
ADL5243
Data Sheet
t1
t5
CLK
t2
t3
t4
MSB
B5
DATA
B4
B3
B2
B1
LSB
B0
09431-057
t6
LE
Figure 57. SPI Timing Diagram (Data Loaded MSB First)
D0/CLK
MSB
B5
D1/DATA
B4
B3
B1
B2
LSB
B0
09431-058
D2/LE
D6
Figure 58. SPI Timing Sequence
Table 6. DSA Attenuation Truth Table—Serial Mode
Attenuation State
0 dB (Reference)
0.5 dB
1.0 dB
2.0 dB
4.0 dB
8.0 dB
16.0 dB
31.5 dB
B5 (MSB)
1
1
1
1
1
1
0
0
B4
1
1
1
1
1
0
1
0
B3
1
1
1
1
0
1
1
0
B2
1
1
1
0
1
1
1
0
B1
1
1
0
1
1
1
1
0
B0 (LSB)
1
0
1
1
1
1
1
0
D4
1
1
1
0
1
1
1
0
D5
1
1
0
1
1
1
1
0
D6 (LSB)
1
0
1
1
1
1
1
0
Table 7. DSA Attenuation Truth Table—Parallel Mode
Attenuation State
0 dB (Reference)
0.5 dB
1.0 dB
2.0 dB
4.0 dB
8.0 dB
16.0 dB
31.5 dB
D1 (MSB)
1
1
1
1
1
1
0
0
D2
1
1
1
1
1
0
1
0
D3
1
1
1
1
0
1
1
0
Rev. A | Page 22 of 32
Data Sheet
ADL5243
ADL5243 AMPLIFIER 2 MATCHING
The AMP2 input and output of the ADL5243 can be easily
matched to 50 Ω with two or three external components and
the microstrip line used as an inductor. Table 8 lists the required
matching components values. All capacitors are Murata
GRM155 series (0402 size), and Inductor L1 is a Coilcraft®
0603CS series (0603 size). For all frequency bands, the
placement of Capacitors C22, C26, and C28 is critical. Table 9
lists the recommended component spacing of C22, C26, and
C28 for the various frequencies. The component spacing is
referenced from the center of the component to the edge of the
package. Figure 59 to Figure 62 show the graphical representation of the matching network.
Table 8. Component Values
Frequency
748 MHz
943 MHz
2140 MHz
2630 MHz
C27
0Ω
0Ω
2.2 pF
2.7 pF
C26
Open
3.9 pF
Open
1.1 pF
C28
5.1 pF
Open
1.8 pF
Open
C8
12 pF
6 pF
10 pF
10 pF
C22
1.3 pF
1.3 pF
1 pF
1.3 pF
C23
100 pF
100 pF
10 pF
20 pF
L2
56 nH
56 nH
9.5 nH
9.5 nH
R10
18 Ω
18 Ω
0Ω
0Ω
Table 9. Component Spacing
Frequency
748 MHz
943 MHz
2140 MHz
2630 MHz
C26: λ1 (mils)
N/A
236
N/A
126
C28: λ2 (mils)
315
N/A
366
N/A
Rev. A | Page 23 of 32
C22: λ3 (mils)
201
394
244
240
R12
3.9 nH
3.3 nH
0Ω
0Ω
ADL5243
Data Sheet
NC 20
λ2
R10
18Ω
λ1
ADL5243
AMP2IN 19
NC
NC
AMP2OUT/VCC2
VBIAS
C27
0Ω
13
14
15
16
C26
OPEN
AMP2IN
C8
12pF
C28
5.1pF
NC 18
NC 17
L2
56nH
λ3
R12
3.9nH
C22
1.3pF
C23
100pF
09431-061
AMP2OUT
Figure 59. AMP2: Matching Circuit at 748 MHz
NC 20
λ2
ADL5243
R10
18Ω
λ1
AMP2IN 19
NC
NC
AMP2OUT//VCC2
VBIAS
C27
0Ω
13
14
15
16
λ3
C26
3.9pF
C28
OPEN
AMP2IN
C8
6pF
NC 18
NC 17
L2
56nH
R12
3.3nH
C22
1.3pF
AMP2OUT
09431-062
C23
100pF
Figure 60. AMP2: Matching Circuit at 943 MHz
Rev. A | Page 24 of 32
Data Sheet
ADL5243
NC 20
λ2
ADL5243
R10
0Ω
λ1
AMP2IN 19
NC
NC
AMP2OUT/VCC2
VBIAS
C27
2.2pF
13
14
15
16
C26
OPEN
AMP2IN
C8
10pF
C28
1.8pF
NC 18
NC 17
L2
9.5nH
λ3
R12
0Ω
C22
1pF
C23
10pF
09431-064
AMP2OUT
Figure 61. AMP2: Matching Circuit at 2140 MHz
NC 20
λ2
ADL5243
R10
0Ω
λ1
AMP2IN 19
NC
NC
AMP2OUT//VCC2
VBIAS
C27
2.7pF
13
14
15
16
λ3
C26
1.1pF
C28
OPEN
AMP2IN
C8
10pF
NC 18
NC 17
L2
9.5nH
R12
0Ω
C22
1.3pF
AMP2OUT
09431-065
C23
20pF
Figure 62. AMP2: Matching Circuit at 2630 MHz
Rev. A | Page 25 of 32
ADL5243
Data Sheet
ADL5243 LOOP PERFORMANCE
The typical configuration of the ADL5243 is to connect in
AMP1-DSA-AMP2 mode, as shown in Figure 63. Because
AMP1and DSA are broadband in nature and internally
matched, only an ac-coupling capacitor is required between
them. The AMP2 is externally matched for each frequency band
of operation, and these matching elements should be placed
between the DSA and AMP2 and at the output of AMP2.
Figure 37 to Figure 45 show the performance of the ADL5243
when connected in a loop for the three primary frequency
bands of operation, namely 943 MHz, 2140 MHz, and
2630 MHz.
VCC
VCC2
VDD/SPI
For the best thermal performance, it is recommended to add as
many thermal vias as possible under the exposed pad of the
LFCSP. The above thermal resistance numbers assume a
minimum of 25 thermal vias arranged in a 5 × 5 array with a via
diameter of 13 mils, via pad of 25 mils, and pitch of 25 mils. The
vias are plated with copper, and the drill hole is filled with a
conductive copper paste. For optimal performance, it is
recommended to fill the thermal vias with a conductive paste of
equivalent thermal conductivity, as mentioned above, or use an
external heat sink to dissipate the heat quickly without affecting
the die junction temperature. It is also recommended to extend
the ground pattern as shown in Figure 64 to improve thermal
efficiency.
SOLDERING INFORMATION AND RECOMMENDED
PCB LAND PATTERN
AMP1
DSA
IMN
AMP2
OMN
RFOUT
09431-067
RFIN
ADL5243
Figure 63. ADL5243 Loop Block Diagram
Figure 64 shows the recommended land pattern for the ADL5243.
To minimize thermal impedance, the exposed paddle on the
5 mm × 5 mm LFCSP package is soldered down to a ground
plane. To improve thermal dissipation, 25 thermal vias are
arranged in a 5 × 5 array under the exposed paddle. If multiple
ground layers exist, they should be tied together using vias. For
more information on land pattern design and layout, see the
AN-772 Application Note, A Design and Manufacturing Guide for
the Lead Frame Chip Scale Package (LFCSP).
THERMAL CONSIDERATIONS
1
Rev. A | Page 26 of 32
DSAIN
25 MIL VIA PAD
WITH 13 MIL VIA
8
24
DSAOUT
17
09431-068
The ADL5243 is packaged in a thermally efficient, 5 mm × 5 mm,
32-lead LFCSP. The thermal resistance from junction to air (θJA)
is 34.8°C/W. The thermal resistance for the product was
extracted assuming a standard 4-layer JEDEC board with 25
copper platter thermal vias. The thermal vias are filled with
conductive copper paste, AE3030, with a thermal conductivity
of 7.8 W/mk and thermal expansion as follows: α1 of 4 × 10−5/°C
and α2 of 8.6 × 10−5/°C. The thermal resistance from junction to
case (θJC) is 6.2°C/W, where case is the exposed pad of the lead
frame package.
Figure 64. Recommended Land Pattern
Data Sheet
ADL5243
EVALUATION BOARD
individually biased or connected to the VDD plane through
Resistors R1, R2, and R11.
The schematic of the ADL5243 evaluation board is shown in
Figure 65. All RF traces on the evaluation board have a
characteristic impedance of 50 Ω and are fabricated from
Rogers3003 material. The traces are CPWG with a width of
25 mils, spacing of 20 mils, and dielectric thickness of 10 mils.
The input and output to the DSA and amplifier should be accoupled with capacitors of appropriate value to ensure
broadband performance. The bias to AMP1 is provided through
a choke connected to the AMP1OUT pin and, similarly, bias to
AMP2 is provided through a choke connected to the AMP2OUT
pin. Bypassing capacitors are recommended on all supply lines
to minimize RF coupling. The DSA and the amplifiers can be
When configuring the ADL5243 evaluation board in the
AMP1-DSA-AMP2 loop, remove Capacitors C1, C4, C5, and
C8 and remove Resistor R10. Place 100 pF in place of C2, 10 pF
in place of C6, and 0 Ω in place of C7 and C24. If needed,
placing a shunt capacitor (1.3 pF) at the output of the DSA
improves the output return loss of this loop.
On the digital signal traces, provisions for an RC filter are made
to clean any potential coupled noise. In normal operation,
Resistors R3 to R9 are 0 Ω and Capacitors C9 to C15 are open.
Table 10. Evaluation Board Configurations Options
Component
C1, C5
C4, C21
C13, C14, C15
Function
AC coupling caps for DSA.
AC coupling capacitors for AMP1.
Power supply bypassing capacitors for AMP1. Capacitor C15 should be
closest to the device.
L1
C8
C23
C22
The bias for AMP1 comes through L1 when connected to a 5 V supply. L1
should be high impedance for the frequency of operation, while
providing low resistance for the dc current.
AMP2 input ac-coupling capacitor.
AMP2 output ac-coupling capacitor.
AMP2 shunt output tuning capacitor.
C26
C27
C28
ANP2 shunt input tuning capacitor.
AMP2 series input tuning capacitor.
AMP2 shunt input tuning capacitor.
C3, C25, C20
Power supply bypassing capacitors for AMP2. Capacitor C3 should be
closest to the device.
L2
The bias for AMP2 comes through L2 when connected to a 5 V supply. L1
should be high impedance for the frequency of operation, while
providing low resistance for the dc current.
Power supply bypassing capacitor.
Placeholder for the series component for the other frequency band.
Digital signal filter resistors.
C17
R10, R12
R3, R4, R5, R6, R7,
R8, R9
Default Value
C1, C5 = 100 pF
C4, C21 = 0.1 μF
C13 = 1 μF
C14 = 1.2 nF
C15 = 68 pF
L1 = 470 nH
C8 = 10 pF
C23 = 10 pF
C22 = 1.0 pF at 244 mils from edge of
package
DNP
C27 = 2.2 pF
C28 = 1.8 pF at 366 mils from edge of
package
C3 = 10 pF
C25 = 10 nF
C20 = 10 μF
L2 = 9.5 nH
C17 = 0.1 μF
R10, R12 = 0 Ω
R3, R4, R5, R6, R7, R8, R9 = 0 Ω
C9, C10, C11, C12,
C16, C18, C19
Digital signal filter capacitors.
C9, C10, C11, C12, C16, C18, C19 = open
C2, C6, C7, C24
R1, R2, R11
Replace with capacitors and resistors to connect the device in a loop.
Resistors to connect the supply for the amplifier and the DSA to the same
VDD plane.
Switch to change between serial and parallel mode operation; connect
to a supply for parallel mode and to ground for serial mode operation.
Digital control.
C2, C6, C7, C24 = open
R1, R2 = open
S1
P1
Rev. A | Page 27 of 32
3-pin rocker
9-pin connector
ADL5243
Data Sheet
DATA
CLK
LE
P1
R3
1
R4
0Ω
2
R5
0Ω
3
4
0Ω
R6
3
2
AGND
5
R7
0Ω
6
R8
0Ω
1
S1
0Ω
7
R9
8
0Ω
VDD
C9
DNI
C10
DNI
C11
DNI
C12
DNI
C16
DNI
C18
DNI
C19
DNI
AGND
AGND
AGND
AGND
AGND
AGND
AGND
9
AGND
R2
VDD
VCC
D2/LE 29
D3 28
D4 27
D5 26
D6 25
VBIAS
R10
C8
10pF
AMP2IN
0Ω
AGND
L1
470nH
R1
C7
DNI
C27
2.2pF
16
NC
NC 20
AMP2IN 19
NC 18
NC 17
C5
100pF
C26
DNI
C28
1.8pF
AGND
AGND
AGND
L2
9.5nH
DNI
C13
1µF
C14
1.2nF
C15
68pF
C21
R11
AGND
R12
0Ω
C22
1pF
VDD
DNI
C3
10pF
AGND
AMP1IN
VCC2
0.1µF
C25
10nF
C20
10µF
C23
10pF
AGND
AMP2OUT
Figure 65. ADL5243 Evaluation Board
Rev. A | Page 28 of 32
09431-069
VDD
9
AGND
AMP2OUT/VCC2
NC
8 NC
15
C4
AMP1OUT 0.1µF
14
C24
DNI
C6
DNI
NC 22
DSAOUT 21
ADL5243
NC
5 NC
6 AMP1OUT/VCC
7 NC
NC
3 NC
4 DSAIN
NC
C2
DNI
DSAOUT
VDD 24
NC 23
13
1 VDD
2 NC
12
AGND
AMP1IN
C1
100pF
10
DSAIN
11
C17
0.1µF
SEL1 32
D0/CLK 31
D1/DATA 30
DNI
ADL5243
09431-070
09431-071
Data Sheet
Figure 67. Evaluation Board Layout—Bottom
Figure 66. Evaluation Board Layout—Top
Rev. A | Page 29 of 32
ADL5243
Data Sheet
OUTLINE DIMENSIONS
5.00
BSC SQ
0.60 MAX
0.60 MAX
25
32
24
0.50
BSC
3.45
3.30 SQ
3.15
EXPOSED
PAD
17
TOP VIEW
1.00
0.85
0.80
SEATING
PLANE
0.80 MAX
0.65 TYP
12° MAX
0.30
0.25
0.18
0.50
0.40
0.30
0.05 MAX
0.02 NOM
COPLANARITY
0.08
0.20 REF
PIN 1
INDICATOR
8
16
9
BOTTOM VIEW
0.25 MIN
3.50 REF
FOR PROPER CONNECTION OF
THE EXPOSED PAD, REFER TO
THE PIN CONFIGURATION AND
FUNCTION DESCRIPTIONS
SECTION OF THIS DATA SHEET.
COMPLIANT TO JEDEC STANDARDS MO-220-VHHD-2
05-25-2011-A
4.75
BSC SQ
PIN 1
INDICATOR
1
Figure 68. 32-Lead Lead Frame Chip Scale Package [LFCSP_VQ]
5 mm × 5 mm Body, Very Thin Quad
(CP-32-3)
Dimensions shown in millimeters
ORDERING GUIDE
Model 1
ADL5243ACPZ-R7
ADL5243-EVALZ
1
Temperature Range
−40°C to +85°C
Package Description
32-Lead Lead Frame Chip Scale Package LFCSP_VQ
Evaluation Board
Z = RoHS Compliant Part.
Rev. A | Page 30 of 32
Package Option
CP-32-3
Data Sheet
ADL5243
NOTES
Rev. A | Page 31 of 32
ADL5243
Data Sheet
NOTES
©2011 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D09431-0-8/11(A)
Rev. A | Page 32 of 32
Similar pages