AD AD7653ASTZRL 16-bit 1 msps pulsar unipolar adc with reference Datasheet

16-Bit 1 MSPS PulSAR
Unipolar ADC with Reference
AD7653
Data Sheet
FEATURES
FUNCTIONAL BLOCK DIAGRAM
Throughput:
1 MSPS (Warp mode)
800 kSPS (Normal mode)
666 kSPS (Impulse mode)
16-bit resolution
Analog input voltage range: 0 V to 2.5 V
No pipeline delay
Parallel and serial 5 V/3 V interface
SPI®/QSPITM/MICROWIRETM/DSP compatible
Single 5 V supply operation
Power dissipation
92 mW typ @ 666 kSPS, 138 µW @ 1 kSPS without REF
128 mW typ @ 1 MSPS with REF
48-lead LQFP and 48-lead LFCSP packages
Pin-to-pin compatible with PulSAR ADCs
APPLICATIONS
AGND
AVDD
The AD7653 is a 16-bit, 1 MSPS, charge redistribution SAR
analog-to-digital converter that operates from a single 5 V
power supply. The part contains a high speed 16-bit sampling
ADC, internal conversion clock, internal reference, error
correction circuits, and both serial and parallel system interface
ports. It features a very high sampling rate mode (Warp), a fast
mode (Normal) for asynchronous conversion rate applications,
and a reduced power mode (Impulse) for low power applications where power is scaled with the throughput. The AD7653
is fabricated using Analog Devices’ high performance, 0.6
micron CMOS process, with correspondingly low cost. It is
available in a 48-lead LQFP and a tiny 48-lead LFCSP with
operation specified from –40°C to +85°C.
DGND
OVDD
IN
16
SWITCHED
CAP DAC
INGND
OGND
SERIAL
PORT
REF
PARALLEL
INTERFACE
PDREF
PDBUF
CLOCK
PD
RESET
DATA[15:0]
BUSY
RD
CS
CONTROL LOGIC AND
CALIBRATION CIRCUITRY
SER/PAR
OB/2C
BYTESWAP
WARP
IMPULSE
CNVST
02966-0-001
Figure 1.
Table 1. PulSAR™ Selection
True Bipolar
True
Differential
18-Bit
Multichannel/
Simultaneous
GENERAL DESCRIPTION
DVDD
AD7653
Type/kSPS
PseudoDifferential
Data acquisition
Instrumentation
Digital signal processing
Spectrum analysis
Medical instruments
Battery-powered systems
Process control
Rev. C
REFBUFIN REF REFGND
100–250
AD7651
AD7660/AD7661
AD7663
AD7675
500–570
AD7650/AD7652
AD7664/AD7666
AD7666
AD7676
AD7678
AD7679
AD7654
AD7655
800–
1000
AD7653
AD7667
AD7671
AD7677
AD7674
PRODUCT HIGHTLIGHTS
1.
2.
3.
4.
Fast Throughput.
The AD7653 is a 1 MSPS, charge redistribution, 16-bit SAR
ADC with internal error correction circuitry.
Internal Reference.
The AD7653 has an internal reference with a typical
temperature drift of 7 ppm/°C.
Single-Supply Operation.
The AD7653 operates from a single 5 V supply. In Impulse
mode, its power dissipation decreases with the throughput.
Serial or Parallel Interface.
Versatile parallel or 2-wire serial interface arrangement is
compatible with both 3 V and 5 V logic.
Document Feedback
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700 ©2003–2017 Analog Devices, Inc. All rights reserved.
Technical Support
www.analog.com
AD7653* PRODUCT PAGE QUICK LINKS
Last Content Update: 12/07/2017
COMPARABLE PARTS
DESIGN RESOURCES
View a parametric search of comparable parts.
• AD7653 Material Declaration
• PCN-PDN Information
EVALUATION KITS
• Quality And Reliability
• AD7653 Evaluation Kit
• Symbols and Footprints
DOCUMENTATION
DISCUSSIONS
Application Notes
View all AD7653 EngineerZone Discussions.
• AN-931: Understanding PulSAR ADC Support Circuitry
• AN-932: Power Supply Sequencing
SAMPLE AND BUY
Data Sheet
Visit the product page to see pricing options.
• AD7653: 16-Bit 1 MSPS PulSAR Unipolar ADC with
Reference Data Sheet
TECHNICAL SUPPORT
Product Highlight
• 8- to 18-Bit SAR ADCs ... From the Leader in High
Performance Analog
Submit a technical question or find your regional support
number.
DOCUMENT FEEDBACK
REFERENCE MATERIALS
Submit feedback for this data sheet.
Technical Articles
• MS-2210: Designing Power Supplies for High Speed ADC
This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not
trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.
AD7653
Data Sheet
TABLE OF CONTENTS
Features .............................................................................................. 1
Typical Connection Diagram ................................................... 17
Applications ....................................................................................... 1
Power Dissipation vs. Throughput .......................................... 19
General Description ......................................................................... 1
Conversion Control ................................................................... 19
Functional Block Diagram .............................................................. 1
Digital Interface .......................................................................... 20
Product Hightlights .......................................................................... 1
Parallel Interface ......................................................................... 20
Revision History ............................................................................... 2
Serial Interface ............................................................................ 20
Specifications..................................................................................... 3
Master Serial Interface ............................................................... 21
Timing Specifications....................................................................... 5
Slave Serial Interface .................................................................. 22
Absolute Maximum Ratings............................................................ 7
Microprocessor Interfacing ....................................................... 24
ESD Caution .................................................................................. 7
Application Hints ........................................................................... 25
Pin Configuration and Function Descriptions ............................. 8
Bipolar and Wider Input Ranges .............................................. 25
Definitions of Specifications ......................................................... 11
Layout .......................................................................................... 25
Typical Performance Characteristics ........................................... 12
Outline Dimensions ....................................................................... 26
Circuit Information ........................................................................ 15
Ordering Guide .......................................................................... 26
Converter Operation .................................................................. 15
REVISION HISTORY
12/2017—Rev. B to Rev. C
Changes to Figure 4 .......................................................................... 8
Updated Outline Dimensions ....................................................... 26
Changes to Ordering Guide .......................................................... 26
9/2016—Rev. A to Rev. B.
Changes to Figure 4 and Table 6 ..................................................... 8
Changes to Microprocessor Interface Section, SPI Interface
(ADSP-2191M) Section, and Figure 37 ....................................... 24
Deleted Evaluating the AD7653’s Performance Section............ 25
Updated Outline Dimensions ............................................................... 26
Changes to Ordering Guide................................................................... 26
9/2003—Rev. 0 to Rev. A.
Change to Product Highlights .........................................................1
Changes to Specifications .................................................................3
Changes to Absolute Maximum Ratings ........................................7
Changes to Figure 15...................................................................... 13
Changes to Figure 22...................................................................... 16
Changes to Voltage Reference Input section .............................. 18
Changes to Figure 31...................................................................... 20
8/2003—Revision 0: Initial Version
Rev. C | Page 2 of 26
Data Sheet
AD7653
SPECIFICATIONS
Table 2. –40°C to +85°C, AVDD = DVDD = 5 V, OVDD = 2.7 V to 5.25 V, unless otherwise noted
Parameter
RESOLUTION
ANALOG INPUT
Voltage Range
Operating Input Voltage
Analog Input CMRR
Input Current
Input Impedance 1
THROUGHPUT SPEED
Complete Cycle
Throughput Rate
Time between Conversions
Complete Cycle
Throughput Rate
Complete Cycle
Throughput Rate
DC ACCURACY
Integral Linearity Error
No Missing Codes
Differential Linearity Error
Transition Noise
Unipolar Zero Error, TMIN to TMAX 3
Unipolar Zero Error Temperature Drift
Full-Scale Error, TMIN to TMAX3
Full-Scale Error Temperature Drift
Power Supply Sensitivity
AC ACCURACY
Signal-to-Noise
Spurious Free Dynamic Range
Total Harmonic Distortion
Signal-to-(Noise + Distortion)
–3 dB Input Bandwidth
SAMPLING DYNAMICS
Aperture Delay
Aperture Jitter
Transient Response
REFERENCE
Internal Reference Voltage
Internal Reference Temperature Drift
Line Regulation
Turn-On Settling Time
Temperature Pin
Voltage Output @ 25°C
Temperature Sensitivity
Output Resistance
External Reference Voltage Range
External Reference Current Drain
Conditions
Min
16
VIN – VINGND
VIN
0
–0.1
VINGND
fIN = 10 kHz
1 MSPS Throughput
–0.1
In Warp Mode
In Warp Mode
In Warp Mode
In Normal Mode
In Normal Mode
In Impulse Mode
In Impulse Mode
Typ
Max
Unit
Bits
VREF
+3
V
V
+0.5
V
dB
µA
1
1000
1
1.25
800
1.5
666
µs
kSPS
ms
µs
kSPS
µs
kSPS
+6
±0.4
±2
LSB 2
Bits
LSB
LSB
LSB
ppm/°C
% of FSR
ppm/°C
LSB
86
98
–98
–96
86
30
12
dB 4
dB
dB
dB
dB
dB
MHz
2
5
ns
ps rms
ns
65
12
1
0
0
–6
15
–2
+3
0.7
±25
±0.2
REF = 2.5 V
±0.12
AVDD = 5 V ± 5%, with REF
fIN = 100 kHz
fIN = 100 kHz
fIN = 45 kHz
fIN = 100 kHz
fIN = 100 kHz
–60 dB Input, fIN = 100 kHz
Full-Scale Step
250
VREF @ 25°C
–40°C to +85°C
AVDD = 5 V ± 5%
CREF = 10 µF
2.48
2.3
1 MSPS Throughput
Rev. C | Page 3 of 26
2.50
±7
±24
5
300
1
4.3
2.5
300
2.52
AVDD – 1.85
V
ppm/°C
ppm/V
ms
mV
mV/°C
kΩ
V
µA
AD7653
Parameter
DIGITAL INPUTS
Logic Levels
VIL
VIH
IIL
IIH
DIGITAL OUTPUTS
Data Format 5
Pipeline Delay 6
VOL
VOH
POWER SUPPLIES
Specified Performance
AVDD
DVDD
OVDD
Operating Current 8
AVDD 9
AVDD 10
DVDD 11
OVDD11
Power Dissipation without REF
Power Dissipation with REF
TEMPERATURE RANGE 12
Specified Performance
Data Sheet
Conditions
Min
Typ
–0.3
2.0
–1
–1
ISINK = 1.6 mA
ISOURCE = –500 µA
Unit
+0.8
DVDD + 0.3
+1
+1
V
V
µA
µA
0.4
V
V
5.25
5.25
5.25 7
V
V
V
OVDD – 0.6
4.75
4.75
2.7
1 MSPS Throughput
With Reference and Buffer
Reference and Buffer Alone
5
5
18.7
3
6.7
200
92
138
128
666 kSPS Throughput11
1 kSPS Throughput11
1 MSPS Throughput8
TMIN to TMAX
Max
–40
145
mA
mA
mA
µA
mW
µW
mW
+85
°C
115
See Analog Input section.
LSB means least significant bit. With the 0 V to 2.5 V input range, 1 LSB is 38.15 µV.
3
See Definitions of Specifications section. These specifications do not include the error contribution from the external reference.
4
All specifications in dB are referred to a full-scale input FS. Tested with an input signal at 0.5 dB below full-scale, unless otherwise specified.
5
Parallel or serial 16-bit.
6
Conversion results are available immediately after completed conversion.
7
The max should be the minimum of 5.25 V and DVDD + 0.3 V.
8
In Warp mode.
9
With REF, PDREF and PDBUF are LOW; without REF, PDREF and PDBUF are HIGH.
10
With PDREF, PDBUF LOW and PD HIGH.
11
Impulse Mode. Tested in Parallel Reading mode.
12
Consult factory for extended temperature range.
1
2
Rev. C | Page 4 of 26
Data Sheet
AD7653
TIMING SPECIFICATIONS
Table 3. –40°C to +85°C, AVDD = DVDD = 5 V, OVDD = 2.7 V to 5.25 V, unless otherwise noted
Parameter
Refer to Figure 26 and Figure 27
Convert Pulse Width
Time between Conversions (Warp Mode/Normal Mode/Impulse Mode) 1
CNVST LOW to BUSY HIGH Delay
BUSY HIGH All Modes Except Master Serial Read after Convert
(Warp Mode/Normal Mode/Impulse Mode)
Aperture Delay
End of Conversion to BUSY LOW Delay
Conversion Time (Warp Mode/Normal Mode/Impulse Mode)
Acquisition Time
RESET Pulse Width
Refer to Figure 28, Figure 29, and Figure 30 (Parallel Interface Modes)
CNVST LOW to DATA Valid Delay (Warp Mode/Normal Mode/Impulse Mode)
DATA Valid to BUSY LOW Delay
Bus Access Request to DATA Valid
Bus Relinquish Time
Refer to Figure 32 and Figure 33 (Master Serial Interface Modes) 2
CS LOW to SYNC Valid Delay
CS LOW to Internal SCLK Valid Delay2
CS LOW to SDOUT Delay
CNVST LOW to SYNC Delay (Warp Mode/Normal Mode/Impulse Mode)
SYNC Asserted to SCLK First Edge Delay
Internal SCLK Period 3
Internal SCLK HIGH3
Internal SCLK LOW3
SDOUT Valid Setup Time3
SDOUT Valid Hold Time3
SCLK Last Edge to SYNC Delay3
CS HIGH to SYNC HI-Z
CS HIGH to Internal SCLK HI-Z
CS HIGH to SDOUT HI-Z
BUSY HIGH in Master Serial Read after Convert3
(Warp Mode/Normal Mode/Impulse Mode)
CNVST LOW to SYNC Asserted Delay
(Warp Mode/Normal Mode/Impulse Mode)
SYNC Deasserted to BUSY LOW Delay
Refer to Figure 34 and Figure 35 (Slave Serial Interface Modes) 2
External SCLK Setup Time
External SCLK Active Edge to SDOUT Delay
SDIN Setup Time
SDIN Hold Time
External SCLK Period
External SCLK HIGH
External SCLK LOW
Symbol
Min
t1
t2
t3
10
1/1.25/1.5
t4
t5
t6
t7
t8
t9
t10
t11
t12
t13
t14
t15
t16
t17
t18
t19
t20
t21
t22
t23
t24
t25
t26
t27
Typ
Unit
35
ns
µs
ns
0.75/1/1.25
2
10
0.75/1/1.25
250
10
0.75/1/1.25
12
45
15
5
10
10
10
25/275/525
3
25
12
7
4
2
3
40
10
10
10
t28
See Table 4
t29
t30
0.75/1/1.25
25
t31
t32
t33
t34
t35
t36
t37
Max
5
3
5
5
25
10
10
2
Rev. C | Page 5 of 26
µs
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
µs
ns
18
In Warp mode only, the maximum time between conversions is 1 ms; otherwise, there is no required maximum time.
In serial interface modes, the SYNC, SCLK, and SDOUT timings are defined with a maximum load CL of 10 pF; otherwise, the load is 60 pF maximum.
3
In Serial Master Read during Convert Mode. See Table 4 for Serial Master Read after Convert mode.
1
µs
ns
ns
µs
ns
ns
ns
ns
ns
ns
ns
ns
ns
AD7653
Data Sheet
Table 4. Serial Clock Timings in Master Read after Convert
DIVSCLK[1]
DIVSCLK[0]
SYNC to SCLK First Edge Delay Minimum
Internal SCLK Period Minimum
Internal SCLK Period Maximum
Internal SCLK HIGH Minimum
Internal SCLK LOW Minimum
SDOUT Valid Setup Time Minimum
SDOUT Valid Hold Time Minimum
SCLK Last Edge to SYNC Delay Minimum
BUSY HIGH Width Maximum (Warp)
BUSY HIGH Width Maximum (Normal)
BUSY HIGH Width Maximum (Impulse)
Symbol
t18
t19
t19
t20
t21
t22
t23
t24
t28
t28
t28
Rev. C | Page 6 of 26
0
0
3
25
40
12
7
4
2
3
1.5
1.75
2
0
1
17
50
70
22
21
18
4
55
2
2.25
2.5
1
0
17
100
140
50
49
18
30
130
3
3.25
3.5
1
1
17
200
280
100
99
18
80
290
5.25
5.55
5.75
Unit
ns
ns
ns
ns
ns
ns
ns
ns
µs
µs
µs
Data Sheet
AD7653
ABSOLUTE MAXIMUM RATINGS
1.6mA
Table 5. AD7653 Absolute Maximum Ratings
Parameter
IN1, TEMP1,REF, REFBUFIN,
INGND, REFGND to AGND
Ground Voltage Differences
AGND, DGND, OGND
Supply Voltages
AVDD, DVDD, OVDD
AVDD to DVDD, AVDD to OVDD
DVDD to OVDD
Digital Inputs
PDREF, PDBUF2
Internal Power Dissipation3
Internal Power Dissipation4
Junction Temperature
Storage Temperature Range
Lead Temperature Range
(Soldering 10 sec)
Rating
AVDD + 0.3 V to
AGND – 0.3 V
TO OUTPUT
PIN
IOL
1.4V
CL
60pF*
500µA
±0.3 V
IOH
* IN SERIAL INTERFACE MODES,THE SYNC, SCLK, AND
SDOUT TIMINGS ARE DEFINED WITH A MAXIMUM LOAD
CL OF 10pF; OTHERWISE,THE LOAD IS 60pF MAXIMUM.
–0.3 V to +7 V
±7 V
–0.3 V to +7 V
–0.3 V to DVDD + 0.3 V
±20 mA
700 mW
2.5 W
150°C
–65°C to +150°C
300°C
02966-0-006
Figure 2. Load Circuit for Digital Interface Timing,
SDOUT, SYNC, SCLK Outputs CL = 10 pF
2V
0.8V
tDELAY
tDELAY
2V
0.8V
2V
0.8V
02966-0-007
Figure 3. Voltage Reference Levels for Timing
See Analog Input section.
2
See Voltage Reference Input section.
3
Specification is for the device in free air:
48-Lead LQFP; θJA = 91°C/W, θJC = 30°C/W
4
Specification is for the device in free air:
48-Lead LFCSP; θJA = 26°C/W.
1
ESD CAUTION
Stresses at or above those listed under Absolute Maximum
Ratings may cause permanent damage to the product. This is a
stress rating only; functional operation of the product at these
or any other conditions above those indicated in the operational
section of this specification is not implied. Operation beyond
the maximum operating conditions for extended periods may
affect product reliability.
Rev. C | Page 7 of 26
AD7653
Data Sheet
48
47
46
45
44
43
42
41
40
39
38
37
PDBUF
PDREF
REFBUFIN
TEMP
AVDD
IN
AGND
AGND
NC
INGND
REFGND
REF
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS
AD7653
TOP VIEW
(Not to Scale)
36
35
34
33
32
31
30
29
28
27
26
25
AGND
CNVST
PD
RESET
CS
RD
DGND
BUSY
D15
D14
D13
D12
D4/EXT/INT
D5/INVSYNC
D6/INVSCLK
D7/RDC/SDIN
OGND
OVDD
DVDD
DGND
D8/SDOUT
D9/SCLK
D10/SYNC
D11/RDERROR
13
14
15
16
17
18
19
20
21
22
23
24
AGND 1
AVDD 2
NC 3
BYTESWAP 4
OB/2C 5
WARP 6
IMPULSE 7
SER/PAR 8
D0 9
D1 10
D2/DIVSCLK0 11
D3/DIVSCLK1 12
NOTES
1. NC = NO CONNECT. DO NOT CONNECT TO THIS PIN.
2. THE LFCSP PACKAGE HAS AN EXPOSED PAD. THIS EPAD CAN
BE CONNECTED AGND. THIS CONNECTION IS NOT REQUIRED
TO MEET ELECTRICAL PERFORMANCE SPECIFICATIONS.
02966-0-002
Figure 4. 48-Lead LQFP (ST-48) and 48-Lead LFCSP (CP-48-1)
Table 6. Pin Function Descriptions
Pin No.
0
Mnemonic
EPAD
Type 1
1, 36,
41, 42
2, 44
3, 40
4
AGND
P
AVDD
NC
BYTESWAP
P
5
OB/2C
DI
6
WARP
DI
7
IMPULSE
DI
8
SER/PAR
DI
9, 10
D[0:1]
DO
11, 12
D[2:3]or
DIVSCLK[0:1]
DI/O
DI
Description
Exposed Pad. The LFCSP package has an exposed pad. This EPAD can be connected to AGND. This
connection is not required to meet electrical performance specifications.
Analog Power Ground Pin.
Input Analog Power Pin. Nominally 5 V.
No Connect.
Parallel Mode Selection (8-/16-bit). When LOW, the LSB is output on D[7:0] and the MSB is output on
D[15:8]. When HIGH, the LSB is output on D[15:8] and the MSB is output on D[7:0].
Straight Binary/Binary Twos Complement. When OB/2C is HIGH, the digital output is straight binary;
when LOW, the MSB is inverted, resulting in a twos complement output from its internal shift
register.
Mode Selection. When this pin is HIGH and the IMPULSE pin is LOW, this input selects the fastest
mode, the maximum throughput is achievable, and a minimum conversion rate must be applied in
order to guarantee full specified accuracy. When LOW, full accuracy is maintained independent of
the minimum conversion rate.
Mode Selection. When IMPULSE is HIGH and WARP is LOW, this input selects a reduced power
mode. In this mode, the power dissipation is approximately proportional to the sampling rate.
Serial/Parallel Selection Input. When LOW, the parallel port is selected; when HIGH, the serial
interface mode is selected and some bits of the DATA bus are used as a serial port.
Bit 0 and Bit 1 of the Parallel Port Data Output Bus. When SER/PAR is HIGH, these outputs are in high
impedance.
When SER/PAR is LOW, these outputs are used as Bit 2 and Bit 3 of the parallel port data output bus.
When SER/PAR is HIGH, EXT/INT is LOW, and RDC/SDIN is LOW (serial master read after convert),
these inputs, part of the serial port, are used to slow down, if desired, the internal serial clock that
clocks the data output. In other serial modes, these pins are not used.
Rev. C | Page 8 of 26
Data Sheet
AD7653
Pin No.
13
Mnemonic
D4 or EXT/INT
Type 1
DI/O
14
D5 or
INVSYNC
DI/O
15
D6 or
INVSCLK
DI/O
16
D7 or
RDC/SDIN
DI/O
17
18
OGND
OVDD
P
P
19
20
21
DVDD
DGND
D8 or
SDOUT
P
P
DO
22
D9 or
SCLK
DI/O
23
D10 or
SYNC
DO
24
D11 or
RDERROR
DO
25–28
D[12:15]
DO
29
BUSY
DO
30
31
DGND
RD
P
DI
Description
When SER/PAR is LOW, this output is used as Bit 4 of the parallel port data output bus.
When SER/PAR is HIGH, this input, part of the serial port, is used as a digital select input for choosing the internal data clock or an external data clock. With EXT/INT tied LOW, the internal clock is
selected on the SCLK output. With EXT/INT set to logic HIGH, output data is synchronized to an
external clock signal connected to the SCLK input.
When SER/PAR is LOW, this output is used as Bit 5 of the parallel port data output bus.
When SER/PAR is HIGH, this input, part of the serial port, is used to select the active state of the
SYNC signal. It is active in both master and slave modes. When LOW, SYNC is active HIGH. When
HIGH, SYNC is active LOW.
When SER/PAR is LOW, this output is used as Bit 6 of the parallel port data output bus.
When SER/PAR is HIGH, this input, part of the serial port, is used to invert the SCLK signal. It is active
in both master and slave modes.
When SER/PAR is LOW, this output is used as Bit 7 of the parallel port data output bus.
When SER/PAR is HIGH, this input, part of the serial port, is used as either an external data input or a
read mode selection input depending on the state of EXT/INT.
When EXT/INT is HIGH, RDC/SDIN could be used as a data input to daisy-chain the conversion
results from two or more ADCs onto a single SDOUT line. The digital data level on SDIN is output on
DATA with a delay of 16 SCLK periods after the initiation of the read sequence.
When EXT/INT is LOW, RDC/SDIN is used to select the read mode. When RDC/SDIN is HIGH, the data
is output on SDOUT during conversion. When RDC/SDIN is LOW, the data can be output on SDOUT
only when the conversion is complete.
Input/Output Interface Digital Power Ground.
Input/Output Interface Digital Power. Nominally at the same supply as the host interface
(5 V or 3 V).
Digital Power. Nominally at 5 V.
Digital Power Ground.
When SER/PAR is LOW, this output is used as Bit 8 of the parallel port data output bus.
When SER/PAR is HIGH, this output, part of the serial port, is used as a serial data output synchronized to SCLK. Conversion results are stored in an on-chip register. The AD7653 provides the
conversion result, MSB first, from its internal shift register. The DATA format is determined by the
logic level of OB/2C. In serial mode when EXT/INT is LOW, SDOUT is valid on both edges of SCLK. In
serial mode when EXT/INT is HIGH, if INVSCLK is LOW, SDOUT is updated on the SCLK rising edge
and valid on the next falling edge; if INVSCLK is HIGH, SDOUT is updated on the SCLK falling edge
and valid on the next rising edge.
When SER/PAR is LOW, this output is used as Bit 9 of the parallel port data or SCLK output bus.
When SER/PAR is HIGH, this pin, part of the serial port, is used as a serial data clock input or output,
depending upon the logic state of the EXT/INT pin. The active edge where the data SDOUT is
updated depends upon the logic state of the INVSCLK pin.
When SER/PAR is LOW, this output is used as Bit 10 of the parallel port data output bus.
When SER/PAR is HIGH, this output, part of the serial port, is used as a digital output frame
synchronization for use with the internal data clock (EXT/INT = logic LOW). When a read sequence is
initiated and INVSYNC is LOW, SYNC is driven HIGH and remains HIGH while the SDOUT output is
valid. When a read sequence is initiated and INVSYNC is HIGH, SYNC is driven LOW and remains
LOW while the SDOUT output is valid.
When SER/PAR is LOW, this output is used as Bit 11 of the parallel port data output bus. When
SER/PAR and EXT/INT are HIGH, this output, part of the serial port, is used as an incomplete read
error flag. In slave mode, when a data read is started and not complete when the following
conversion is complete, the current data is lost and RDERROR is pulsed HIGH.
Bit 12 to Bit 15 of the Parallel Port Data Output Bus. These pins are always outputs regardless of the
state of SER/PAR.
Busy Output. Transitions HIGH when a conversion is started and remains HIGH until the conversion
is complete and the data is latched into the on-chip shift register. The falling edge of BUSY could be
used as a data ready clock signal.
Must Be Tied to Digital Ground.
Read Data. When CS and RD are both LOW, the interface parallel or serial output bus is enabled.
Rev. C | Page 9 of 26
AD7653
Data Sheet
Pin No.
32
Mnemonic
CS
Type 1
DI
33
RESET
DI
34
PD
DI
35
CNVST
DI
37
38
39
43
45
46
47
REF
REFGND
INGND
IN
TEMP
REFBUFIN
PDREF
AI/O
AI
AI
AI
AO
AI/O
DI
48
PDBUF
DI
1
Description
Chip Select. When CS and RD are both LOW, the interface parallel or serial output bus is enabled. CS
is also used to gate the external clock.
Reset Input. When set to a logic HIGH, this pin resets the AD7653 and the current conversion, if any,
is aborted. If not used, this pin could be tied to DGND.
Power-Down Input. When set to logic HIGH, power consumption is reduced and conversions are
inhibited after the current one is completed.
Start Conversion. A falling edge on CNVST puts the internal sample/hold into the hold state and
initiates a conversion. In Impulse mode (IMPULSE HIGH, WARP LOW), if CNVST is held LOW when the
acquisition phase (t8) is complete, the internal sample/hold is put into the hold state and a
conversion is immediately started.
Reference Input Voltage. On-chip reference output voltage.
Reference Input Analog Ground.
Analog Input Ground.
Primary Analog Input with a Range of 0 V to 2.5 V.
Temperature Sensor Voltage Output.
Reference Input Voltage. The reference output and the reference buffer input.
This pin allows the choice of internal or external voltage references. When LOW, the on-chip
reference is turned on. When HIGH, the internal reference is switched off and an external reference
must be used.
This pin allows the choice of buffering an internal or external reference with the internal buffer.
When LOW, the buffer is selected. When HIGH, the buffer is switched off.
AI = Analog Input; AI/O = Bidirectional Analog; AO = Analog Output; DI = Digital Input; DI/O = Bidirectional Digital; DO = Digital Output; P = Power.
Rev. C | Page 10 of 26
Data Sheet
AD7653
DEFINITIONS OF SPECIFICATIONS
Integral Nonlinearity Error (INL)
Signal-to-Noise Ratio (SNR)
Linearity error refers to the deviation of each individual code
from a line drawn from negative full scale through positive full
scale. The point used as negative full scale occurs ½ LSB before
the first code transition. Positive full scale is defined as a level
1½ LSB beyond the last code transition. The deviation is
measured from the middle of each code to the true straight line.
SNR is the ratio of the rms value of the actual input signal to the
rms sum of all other spectral components below the Nyquist
frequency, excluding harmonics and dc. The value for SNR is
expressed in decibels.
Differential Nonlinearity Error (DNL)
In an ideal ADC, code transitions are 1 LSB apart. Differential
nonlinearity is the maximum deviation from this ideal value. It
is often specified in terms of resolution for which no missing
codes are guaranteed.
Full-Scale Error
The last transition (from 011…10 to 011…11 in twos
complement coding) should occur for an analog voltage 1½ LSB
below the nominal full scale (2.49994278 V for the 0 V to 2.5 V
range). The full-scale error is the deviation of the actual level of
the last transition from the ideal level.
Unipolar Zero Error
The first transition should occur at a level ½ LSB above analog
ground (19.073 µV for the 0 V to 2.5 V range). Unipolar zero
error is the deviation of the actual transition from that point.
Spurious-Free Dynamic Range (SFDR)
Signal-to-(Noise + Distortion) Ratio (S/[N+D])
S/(N+D) is the ratio of the rms value of the actual input signal
to the rms sum of all other spectral components below the
Nyquist frequency, including harmonics but excluding dc. The
value for S/(N+D) is expressed in decibels.
Aperture Delay
Aperture delay is a measure of the acquisition performance and
is measured from the falling edge of the CNVST input to when
the input signal is held for a conversion.
Transient Response
Transient response is the time required for the AD7653 to
achieve its rated accuracy after a full-scale step function is
applied to its input.
Overvoltage Recovery
Overvoltage recovery is the time required for the ADC to
recover to full accuracy after an analog input signal 150% of the
full-scale value is reduced to 50% of the full-scale value.
Reference Voltage Temperature Coefficient
SFDR is the difference, in decibels (dB), between the rms
amplitude of the input signal and the peak spurious signal.
Reference voltage temperature coefficient is the change of
internal reference voltage output voltage V over the operating
temperature range and normalized by the output voltage at
25°C, expressed in ppm/°C. The equation follows:
Effective Number of Bits (ENOB)
ENOB is a measurement of the resolution with a sine wave
input. It is related to S/(N+D) by the following formula:
TCV ( ppm / °C ) =
ENOB = (S/[N+D]dB – 1.76)/6.02
and is expressed in bits.
Total Harmonic Distortion (THD)
THD is the ratio of the rms sum of the first five harmonic
components to the rms value of a full-scale input signal, and is
expressed in decibels.
V (T 2) – V (T 1)
× 106
V (25°C) × (T 2 – T 1)
where:
V(25°C) = V at +25°C.
V(T2) = V at Temperature 2 (+85°C).
V(T1) = V at Temperature 1 (–40°C).
Rev. C | Page 11 of 26
AD7653
Data Sheet
TYPICAL PERFORMANCE CHARACTERISTICS
2.0
4
3
1.5
2
1.0
DNL (LSB)
INL (LSB)
1
0
–1
0.5
0
–2
–0.5
–3
–4
16384
0
49152
32768
CODE
–1.0
65536
16384
0
02966-0-023
65536
02966-0-026
Figure 8. Differential Nonlinearity vs. Code
Figure 5. Integral Nonlinearity vs. Code
160000
140000
114641
112516
120000
49152
32768
CODE
146148
140000
120000
100000
COUNTS
60000
60000
40000
15906
0
0
17001
679
0
0
0
7FFB 7FFC 7FFD 7FFE 7FFF 8000 8001 8002 8003 8004
CODE IN HEX
02966-0-027
0
–60
–80
–100
–120
SNR, S/[N+D] (dB)
SNR = 86.0dB
THD = 90.3dB
SFDR = 91.5dB
S/[N+D] = 84.8dB
–40
0
53
2856
7FFC 7FFD 7FFE 7FFF 8000 8001
CODE IN HEX
3099
8002
9
0
8003
8004
02966-0-028
Figure 9. Histogram of 261,120 Conversions of a
DC Input at the Code Center
fS = 1000kSPS
fIN = 101kHz
–20
AMPLITUDE (dB of Full Scale)
54473
20000
377
Figure 6. Histogram of 261,120 Conversions of a
DC Input at the Code Transition
90
15.0
87
14.5
SNR
84
81
14.0
S/[N+D]
13.5
13.0
78
ENOB
–140
12.5
75
–160
–180
54482
40000
20000
0
80000
0
100
300
200
FREQUENCY (kHz)
400
72
500
02966-0-029
1
10
100
FREQUENCY (kHz)
12.0
1000
02966-0-030
Figure 10. SNR, S/(N+D), and ENOB vs. Frequency
Figure 7. FFT Plot
Rev. C | Page 12 of 26
ENOB (Bits)
COUNTS
100000
80000
Data Sheet
AD7653
SFDR
–70
80
–80
60
–90
THD
–100
40
THIRD
HARMONIC
–110
THIRD
HARMONIC
–115
–125
–55
0
1000
10
100
FREQUENCY (kHz)
5
25
45
65
85
125
105
02966-0-034
Figure 14. THD and Harmonics vs. Temperature
100000
91
10000
90
89
SNR
S/[N+D]
86
85
84
AVDD, WARP/NORMAL
DVDD, WARP/NORMAL
1000
OPERATING CURRENT (µA)
SNR, S/[N+D] REFERRED TO FULL SCALE (dB)
–15
02966-0-031
92
87
–35
TEMPERATURE (°C)
Figure 11. THD, Harmonics, and SFDR vs. Frequency
88
SECOND
HARMONIC
THD
–105
20
SECOND
HARMONIC
1
THD, HARMONICS (dB)
100
SFDR (dB)
THD, HARMONICS (dB)
–60
–120
–95
120
–50
100
10
DVDD, IMPULSE
AVDD, IMPULSE
1
OVDD, ALL MODES
0.1
0.01
83
82
–60
–50
–40
–30
–20
–10
INPUT LEVEL (dB)
PDREF = PDBUF = HIGH
0.001
10
0
1000
100
100000
SAMPLE RATE (SPS)
02966-A-032
Figure 12. SNR and S/(N+D) vs. Input Level (Referred to Full Scale)
1000000
02966-0-036
Figure 15. Operating Current vs. Sample Rate
6
14.75
89
10000
14.50
SNR
S[N+D]
87
14.25
ENOB
ENOB (Bits)
SNR, S/[N+D] (dB)
88
14.00
86
ZERO ERROR, FULL SCALE (LSB)
5
4
3
2
FULL SCALE
1
0
–1
ZERO ERROR
–2
–3
–4
–5
85
–55
–35
–15
5
25
45
65
TEMPERATURE (°C)
85
105
–6
–55
13.75
125
–35
–15
5
25
45
65
TEMPERATURE (°C)
02966-0-033
85
105
125
02966-0-040
Figure 16. Zero Error, Full Scale with Reference vs. Temperature
Figure 13. SNR, S/(N+D), and ENOB vs. Temperature
Rev. C | Page 13 of 26
AD7653
Data Sheet
2.5020
50
OVDD = 2.7V @ 85°C
2.5019
2.5018
40
2.5017
t12 DELAY (ns)
VREF (V)
2.5016
2.5015
2.5014
2.5013
2.5012
2.5011
OVDD = 2.7V @ 25°C
30
OVDD = 5V @ 85°C
20
OVDD = 5V @ 25°C
10
2.5010
2.5009
2.5008
–40
–20
0
20
40
80
60
TEMPERATURE (°C)
100
0
120
Figure 17. Typical Reference Output Voltage vs. Temperature
80
NUMBER OF UNITS
70
60
50
40
30
20
10
–30 –26 –22 –18 –14 –10 –6 –2
2
6
10 14 18 22 26 30
REFERENCE DRIFT (ppm/°C)
50
100
150
Figure 19. Typical Delay vs. Load Capacitance CL
90
0
0
CL (pF)
02966-0-038
02966-0-039
Figure 18. Reference Voltage Temperature Coefficient Distribution (335
Units)
Rev. C | Page 14 of 26
200
02966-0-035
Data Sheet
AD7653
CIRCUIT INFORMATION
IN
REF
REFGND
MSB
32,768C 16,384C
LSB
4C
2C
C
SWA
SWITCHES
CONTROL
C
BUSY
COMP
INGND
CONTROL
LOGIC
OUTPUT
CODE
65,536C
SWB
CNVST
02966-0-005
Figure 20. ADC Simplified Schematic
The AD7653 is a very fast, low power, single supply, precise
16-bit analog-to-digital converter (ADC). The AD7653 features
different modes to optimize performance according to the
application. In Warp mode, the part can convert 1 million
samples per second.
The AD7653 provides the user with an on-chip track/hold,
successive approximation ADC that does not exhibit any
pipeline or latency, making it ideal for multiple multiplexed
channel applications.
The AD7653 can be operated from a single 5 V supply and can
be interfaced to either 5 V or 3 V digital logic. It is housed in
either a 48-lead LQFP or a 48-lead LFCSP that saves space and
allows flexible configurations as either a serial or a parallel
interface. The AD7653 is a pin-to-pin compatible upgrade of
the AD7651/AD7652.
CONVERTER OPERATION
The AD7653 is a successive approximation ADC based on a
charge redistribution DAC. Figure 20 shows a simplified
schematic of the ADC. The capacitive DAC consists of an array
of 16 binary weighted capacitors and an additional LSB
capacitor. The comparator’s negative input is connected to a
dummy capacitor of the same value as the capacitive DAC array.
During the acquisition phase, the common terminal of the array
tied to the comparator’s positive input is connected to AGND
via SWA. All independent switches are connected to the analog
input IN. Thus, the capacitor array is used as a sampling
capacitor and acquires the analog signal on IN. Similarly, the
dummy capacitor acquires the analog signal on INGND.
When CNVST goes LOW, a conversion phase is initiated. When
the conversion phase begins, SWA and SWB are opened. The
capacitor array and dummy capacitor are then disconnected
from the inputs and connected to REFGND. Therefore, the
differential voltage between IN and INGND captured at the end
of the acquisition phase is applied to the comparator inputs,
causing the comparator to become unbalanced. By switching
each element of the capacitor array between REFGND and REF,
the comparator input varies by binary weighted voltage steps
(VREF/2, VREF/4, …VREF/65536). The control logic toggles
these switches, starting with the MSB, to bring the comparator
back into a balanced condition.
After this process is completed, the control logic generates the
ADC output code and brings the BUSY output LOW.
Modes of Operation
The AD7653 features three modes of operations: Warp, Normal,
and Impulse. Each mode is best suited for specific applications.
Warp mode allows the fastest conversion rate up to 1 MSPS.
However in this mode and this mode only, the full specified
accuracy is guaranteed only when the time between conversions
does not exceed 1 ms. If the time between two consecutive
conversions is longer than 1 ms (e.g., after power-up), the first
conversion result should be ignored. This mode makes the
AD7653 ideal for applications where both high accuracy and
fast sample rate are required.
Normal mode is the fastest mode (800 kSPS) without any
limitations on the time between conversions. This mode makes
the AD7653 ideal for asynchronous applications such as data
acquisition systems, where both high accuracy and fast sample
rate are required.
Impulse mode, the lowest power dissipation mode, allows
power saving between conversions. When operating at 1 kSPS,
for example, it typically consumes only 138 µW. This feature
makes the AD7653 ideal for battery-powered applications.
Rev. C | Page 15 of 26
AD7653
Data Sheet
Transfer Functions
Table 7. Output Codes and Ideal Input Voltages
Using the OB/2C digital input, the AD7653 offers two output
codings: straight binary and twos complement. The LSB size is
VREF/65536, which is about 38.15 µV. The AD7653’s ideal
transfer characteristic is shown in Figure 21 and Table 7.
Description
FSR – 1 LSB
FSR – 2 LSB
Midscale + 1 LSB
Midscale
Midscale – 1 LSB
–FSR + 1 LSB
–FSR
1 LSB = V REF /65536
ADC CODE (Straight Binary)
Analog
Input
2.499962 V
2.499923 V
1.250038 V
1.25 V
1.249962 V
38 µV
0V
111...111
111...110
111...101
Digital Output Code (Hex)
Straight
Twos
Binary
Complement
FFFF 1
7FFF1
FFFE
7FFE
8001
0001
8000
0000
7FFF
FFFF
0001
8001
0000 2
80002
This is also the code for overrange analog input (VIN – VINGND above
VREF – VREFGND).
2
This is also the code for underrange analog input (VIN below VINGND).
1
000...010
000...001
000...000
0V
1 LSB
0.5 LSB
VREF – 1 LSB
VREF – 1.5 LSB
ANALOG INPUT
02966-0-003
Figure 21. ADC Ideal Transfer Function
20Ω
ANALOG
SUPPLY
(5V)
+
+
100nF
10µF
AVDD
10µF
DGND
GND
100nF
100nF
DVDD
OVDD
+
DIGITAL SUPPLY
(3.3V OR 5V)
10µF
OGND
SERIAL
PORT
SCLK
REF
CR4
100nF
SDOUT
REFBUFIN1
REFGND
AD7653
ANALOG INPUT
(0V TO 2.5V)
15Ω
U12
CC
CNVST
IN
D3
OB/2C
SER/PAR
WARP
BYTESWAP
2.7nF
INGND
PDREF
µC/µP/DSP
BUSY
DVDD
IMPULSE
PD
PDBUF
RESET
CS
RD
CLOCK
NOTES
1THE CONFIGURATION SHOWN IS USING THE INTERNAL REFERENCE AND INTERNAL BUFFER.
2THE AD8021 IS RECOMMENDED. SEE DRIVER AMPLIFIER CHOICE SECTION.
3OPTIONAL LOW JITTER.
4A 10µF CERAMIC CAPACITOR (X5R, 1206 SIZE) IS RECOMMENDED (e.g., PANASONIC ECJ3YB0J106M).
SEE VOLTAGE REFERENCE INPUT SECTION.
Figure 22. Typical Connection Diagram
Rev. C | Page 16 of 26
02966-A-004
Data Sheet
AD7653
TYPICAL CONNECTION DIAGRAM
Figure 22 shows a typical connection diagram for the AD7653.
Analog Input
Figure 23 shows an equivalent circuit of the input structure of
the AD7653.
The two diodes, D1 and D2, provide ESD protection for the
analog inputs IN and INGND. Care must be taken to ensure
that the analog input signal never exceeds the supply rails by
more than 0.3 V. This will cause these diodes to become
forward-biased and start conducting current. These diodes can
handle a forward-biased current of 100 mA maximum. For
instance, these conditions could eventually occur when the
input buffer’s (U1) supplies are different from AVDD. In such a
case, an input buffer with a short-circuit current limitation can
be used to protect the part.
During the conversion phase, when the switches are opened, the
input impedance is limited to C1. R1 and C2 make a 1-pole
low-pass filter that reduces undesirable aliasing effects and
limits the noise.
When the source impedance of the driving circuit is low, the
AD7653 can be driven directly. Large source impedances will
significantly affect the ac performance, especially total
harmonic distortion.
Driver Amplifier Choice
Although the AD7653 is easy to drive, the driver amplifier
needs to meet the following requirements:
•
AVDD
IN
OR INGND
D1
C1
R1
C2
D2
AGND
•
02966-0-008
Figure 23. Equivalent Analog Input Circuit
This analog input structure allows the sampling of the differenttial signal between IN and INGND. Unlike other converters,
INGND is sampled at the same time as IN. By using this differential input, small signals common to both inputs are rejected.
For instance, by using INGND to sense a remote signal ground,
ground potential differences between the sensor and the local
ADC ground are eliminated.
During the acquisition phase, the impedance of the analog
input IN can be modeled as a parallel combination of capacitor
C1 and the network formed by the series connection of R1 and
C2. C1 is primarily the pin capacitance. R1 is typically 168 Ω
and is a lumped component made up of some serial resistors
and the on resistance of the switches. C2 is typically 60 pF and
is mainly the ADC sampling capacitor.
•
The driver amplifier and the AD7653 analog input circuit
must be able to settle for a full-scale step of the capacitor
array at a 16-bit level (0.0015%). In the amplifier’s data
sheet, settling at 0.1% to 0.01% is more commonly
specified. This could differ significantly from the settling
time at a 16-bit level and should be verified prior to driver
selection. The tiny op amp AD8021, which combines
ultralow noise and high gain-bandwidth, meets this settling
time requirement even when used with gains up to 13.
The noise generated by the driver amplifier needs to be
kept as low as possible in order to preserve the SNR and
transition noise performance of the AD7653. The noise
coming from the driver is filtered by the AD7653 analog
input circuit 1-pole low-pass filter made by R1 and C2 or
by the external filter, if one is used.
The driver needs to have a THD performance suitable to
that of the AD7653.
The AD8021 meets these requirements and is appropriate for
almost all applications. The AD8021 needs a 10 pF external
compensation capacitor that should have good linearity as an
NPO ceramic or mica type.
The AD8022 could also be used if a dual version is needed and
gain of 1 is present. The AD829 is an alternative in applications
where high frequency (above 100 kHz) performance is not
required. In gain of 1 applications, it requires an 82 pF
compensation capacitor. The AD8610 is an option when low
bias current is needed in low frequency applications.
Rev. C | Page 17 of 26
AD7653
Data Sheet
Voltage Reference Input
The AD7653 allows the choice of either a very low temperature
drift internal voltage reference or an external 2.5 V reference.
For applications that use multiple AD7653s, it is more effective
to use the internal buffer to buffer the reference voltage.
Unlike many ADCs with internal references, the internal
reference of the AD7653 provides excellent performance and
can be used in almost all applications.
Care should be taken with the voltage reference’s temperature
coefficient, which directly affects the full-scale accuracy, if this
parameter matters. For instance, a ±15 ppm/°C temperature
coefficient of the reference changes full scale by ±1 LSB/°C.
To use the internal reference along with the internal buffer,
PDREF and PDBUF should both be LOW. This will produce a
1.207 V voltage on REFBUFIN which, amplified by the buffer,
will result in a 2.5 V reference on the REF pin.
Note that VREF can be increased to AVDD – 1.85 V. Since the
input range is defined in terms of VREF, this would essentially
increase the range to 0 V to 3 V with an AVDD above 4.85 V.
The AD780 can be selected with a 3 V reference voltage.
The output impedance of REFBUFIN is 11 kΩ (minimum)
when the reference is enabled. It is useful to decouple
REFBUFIN with a 100 nF ceramic capacitor. Thus, the 100 nF
capacitor provides an RC filter for noise reduction.
The TEMP pin, which measures the temperature of the
AD7653, can be used as shown in Figure 24. The output of the
TEMP pin is applied to one of the inputs of the analog switch
(e.g., ADG779), and the ADC itself is used to measure its own
temperature. This configuration is very useful for improving the
calibration accuracy over the temperature range.
To use an external reference along with the internal buffer,
PDREF should be HIGH and PDBUF should be LOW. This
powers down the internal reference and allows the 2.5 V
reference to be applied to REFBUFIN.
TEMP
ADG779
To use an external reference directly on the REF pin, PDREF
and PDBUF should both be HIGH.
PDREF and PDBUF, respectively, power down the internal
reference and the internal reference. Note that the PDREF and
PDBUF input current should never exceed 20 mA. This could
eventually occur when input voltage is above AVDD (for
instance at power-up). In this case, a 100 Ω series resistor is
recommended.
The internal reference is temperature compensated to 2.5 V ±
20 mV. The reference is trimmed to provide a typical drift of 7
ppm/°C. This typical drift characteristic is shown in Figure 17.
For improved drift performance, an external reference such as
the AD780 can be used.
The AD7653 voltage reference input REF has a dynamic input
impedance; it should, therefore, be driven by a low impedance
source with efficient decoupling between the REF and
REFGND inputs. This decoupling depends on the choice of the
voltage reference, but usually consists of a low ESR capacitor
connected to REF and REFGND with minimum parasitic
inductance. A 10 μF (X5R, 1206 size) ceramic chip capacitor (or
47 μF tantalum capacitor) is appropriate when using either the
internal reference or one of these recommended reference
voltages:

The low noise, low temperature drift ADR421 and AD780

The low power ADR291

The low cost AD1582
IN
ANALOG INPUT
(UNIPOLAR)
AD8021
CC
TEMPERATURE
SENSOR
AD7653
02966-0-024
Figure 24. Temperature Sensor Connection Diagram
Power Supply
The AD7653 uses three power supply pins: an analog 5 V
supply AVDD, a digital 5 V core supply DVDD, and a digital
input/output interface supply OVDD. OVDD allows direct
interface with any logic between 2.7 V and DVDD + 0.3 V. To
reduce the supplies needed, the digital core (DVDD) can be
supplied through a simple RC filter from the analog supply, as
shown in Figure 22. The AD7653 is independent of power
supply sequencing once OVDD does not exceed DVDD by
more than 0.3 V, and is thus free of supply voltage induced
latch-up.
Rev. C | Page 18 of 26
Data Sheet
AD7653
POWER DISSIPATION VS. THROUGHPUT
Operating currents are very low during the acquisition phase,
allowing significant power savings when the conversion rate is
reduced (see Figure 25). This power savings depends on the
mode used. In Impulse mode, the AD7653 automatically
reduces power consumption at the end of each conversion
phase. This makes the part ideal for very low power battery
applications. The digital interface and the reference remain
active even during the acquisition phase. To reduce operating
digital supply currents even further, digital inputs need to be
driven close to the power supply rails (i.e., DVDD or DGND),
and OVDD should not exceed DVDD by more than 0.3 V.
POWER DISSIPATION (µW)
1000000
100000
The CNVST trace should be shielded with ground and a low
value serial resistor (i.e., 50 Ω) termination should be added
close to the output of the component that drives this line.
For applications where SNR is critical, the CNVST signal should
have very low jitter. This may be achieved by using a dedicated
oscillator for CNVST generation, or to clock CNVST with a
high frequency, low jitter clock, as shown in Figure 22.
t2
t1
CNVST
BUSY
t4
t3
WARP MODE POWER
t6
t5
MODE
ACQUIRE
CONVERT
10000
ACQUIRE
t7
CONVERT
t8
02966-0-011
Figure 26. Basic Conversion Timing
1000
t9
IMPULSE MODE POWER
100
10
10
RESET
PDREF = PDBUF = HIGH
100
1000
10000
100000
SAMPLE RATE (SPS)
1000000
BUSY
02966-0-041
DATA
Figure 25. Power Dissipation vs. Sampling Rate
t8
CONVERSION CONTROL
CNVST
Figure 26 shows the detailed timing diagrams of the conversion
process. The AD7653 is controlled by the CNVST signal, which
initiates conversion. Once initiated, it cannot be restarted or
aborted, even by the power-down input PD, until the
conversion is complete. CNVST operates independently of CS
and RD.
In Impulse mode, conversions can be automatically initiated. If
CNVST is held LOW when BUSY is LOW, the AD7653 controls
the acquisition phase and automatically initiates a new conversion. By keeping CNVST LOW, the AD7653 keeps the
conversion process running by itself. It should be noted that the
analog input must be settled when BUSY goes low. Also, at
power-up, CNVST should be brought LOW once to initiate the
conversion process. In this mode, the AD7653 can run slightly
faster than the guaranteed 666 kSPS limits in Impulse mode.
This feature does not exist in Warp and Normal modes.
02966-0-011
Figure 27. RESET Timing
CS = RD = 0
t1
CNVST
t10
BUSY
t3
DATA
BUS
t4
t11
PREVIOUS CONVERSION DATA
NEW DATA
02966-0-012
Figure 28. Master Parallel Data Timing for Reading (Continuous Read)
Although CNVST is a digital signal, it should be designed with
special care with fast, clean edges, and levels with minimum
overshoot and undershoot or ringing.
Rev. C | Page 19 of 26
AD7653
Data Sheet
DIGITAL INTERFACE
CS
The AD7653 has a versatile digital interface; it can be interfaced
with the host system by using either a serial or a parallel interface. The serial interface is multiplexed on the parallel data bus.
The AD7653 digital interface also accommodates both 3 V and
5 V logic by simply connecting the OVDD supply pin of the
AD7653 to the host system interface digital supply. Finally, by
using the OB/2C input pin, both twos complement and straight
binary coding can be used.
The two signals, CS and RD, control the interface. CS and RD
have a similar effect because they are OR’d together internally.
When at least one of these signals is HIGH, the interface
outputs are in high impedance. Usually CS allows the selection
of each AD7653 in multicircuit applications and is held LOW in
a single AD7653 design. RD is generally used to enable the
conversion result on the data bus.
RD
BUSY
DATA
BUS
CURRENT
CONVERSION
t12
02966-0-013
Figure 29. Slave Parallel Data Timing for Reading
(Read after Convert Mode)
CS = 0
t1
CNVST,
RD
PARALLEL INTERFACE
The AD7653 is configured to use the parallel interface when
SER/PAR is held LOW. The data can be read either after each
conversion, which is during the next acquisition phase, or
during the following conversion, as shown in Figure 29 and
Figure 30, respectively. When the data is read during the
conversion, however, it is recommended that it is read only
during the first half of the conversion phase. This avoids any
potential feedthrough between voltage transients on the digital
interface and the most critical analog conversion circuitry.
BUSY
The AD7653 is configured to use the serial interface when
SER/PAR is held HIGH. The AD7653 outputs 16 bits of data,
MSB first, on the SDOUT pin. This data is synchronized with
the 16 clock pulses provided on the SCLK pin. The output data
is valid on both the rising and falling edges of the data clock.
t4
t3
DATA
BUS
PREVIOUS
CONVERSION
t12
t13
02966-0-014
Figure 30. Slave Parallel Data Timing for Reading
(Read during Convert Mode)
The BYTESWAP pin allows a glueless interface to an 8-bit bus.
As shown in Figure 31, the LSB byte is output on D[7:0] and the
MSB is output on D[15:8] when BYTESWAP is LOW. When
BYTESWAP is HIGH, the LSB and MSB bytes are swapped and
the LSB is output on D[15:8] and the MSB is output on D[7:0].
By connecting BYTESWAP to an address line, the 16-bit data
can be read in two bytes on either D[15:8] or D[7:0].
SERIAL INTERFACE
t13
CS
RD
BYTESWAP
PINS D[15:8]
PINS D[7:0]
HI-Z
HI-Z
HIGH BYTE
t12
LOW BYTE
LOW BYTE
t12
HIGH BYTE
HI-Z
t13
HI-Z
02966-A-025
Figure 31. 8-Bit Parallel Interface
Rev. C | Page 20 of 26
Data Sheet
AD7653
Usually, because the AD7653 is used with a fast throughput, the
Master Read During Conversion mode is the most
recommended serial mode. In this mode, the serial clock and
data toggle at appropriate instants, minimizing potential
feedthrough between digital activity and critical conversion
decisions.
MASTER SERIAL INTERFACE
Internal Clock
The AD7653 is configured to generate and provide the serial
data clock SCLK when the EXT/INT pin is held LOW. The
AD7653 also generates a SYNC signal to indicate to the host
when the serial data is valid. The serial clock SCLK and the
SYNC signal can be inverted, if desired. Depending on the
RDC/SDIN input, the data can be read after each conversion or
during the following conversion. Figure 32 and Figure 33 show
the detailed timing diagrams of these two modes.
RDC/SDIN = 0
EXT/INT = 0
CS, RD
In Read After Conversion mode, it should be noted that unlike
in other modes, the BUSY signal returns LOW after the 16 data
bits are pulsed out and not at the end of the conversion phase,
which results in a longer BUSY width.
INVSCLK = INVSYNC = 0
t3
CNVST
t28
BUSY
t30
t29
t25
SYNC
t14
t18
t19
t20
SCLK
t24
t21
1
2
D15
D14
3
14
15
t26
16
t15
t27
SDOUT
X
t16
D2
D1
D0
t23
t22
02966-0-015
Figure 32. Master Serial Data Timing for Reading (Read after Convert)
EXT/INT = 0
RDC/SDIN = 1
INVSCLK = INVSYNC = 0
CS, RD
t1
CNVST
t3
BUSY
t17
t25
SYNC
t14
t19
t20 t21
t15
SCLK
1
t24
2
3
14
15
t18
SDOUT
X
t16
t22
t26
16
t27
D15
D14
D2
D1
D0
t23
02966-0-016
Figure 33. Master Serial Data Timing for Reading (Read Previous Conversion during Convert)
Rev. C | Page 21 of 26
AD7653
Data Sheet
SLAVE SERIAL INTERFACE
External Clock
The AD7653 is configured to accept an externally supplied
serial data clock on the SCLK pin when the EXT/INT pin is
held HIGH. In this mode, several methods can be used to read
the data. The external serial clock is gated by CS. When CS and
RD are both LOW, the data can be read after each conversion or
during the following conversion. The external clock can be
either a continuous or a discontinuous clock. A discontinuous
clock can be either normally HIGH or normally LOW when
inactive. Figure 34 and Figure 35 show the detailed timing
diagrams of these methods.
EXT/INT = 1
RD
While the AD7653 is performing a bit decision, it is important
that voltage transients be avoided on digital input/output pins,
or degradation of the conversion result could occur. This is
particularly important during the second half of the conversion
phase because the AD7653 provides error correction circuitry
that can correct for an improper bit decision made during the
first half of the conversion phase. For this reason, it is recommended that when an external clock is being provided, it is a
discontinuous clock that is toggling only when BUSY is LOW,
or, more importantly, that it does not transition during the latter
half of BUSY HIGH.
RD = 0
INVSCLK = 0
BUSY
t36
SCLK
t35
t37
1
2
t31
3
14
15
16
17
18
t32
X
SDOUT
D15
t16
D14
D13
D1
D0
X15
X14
X14
X13
X1
X0
Y15
Y14
t 34
SDIN
X15
t33
02966-0-017
Figure 34. Slave Serial Data Timing for Reading (Read after Convert)
EXT/INT = 1
CS
RD = 0
INVSCLK = 0
CNVST
BUSY
t3
t35
t36 t 37
SCLK
1
2
t31
14
15
16
t32
X
SDOUT
3
D15
D14
D13
D1
D0
t 16
02966-0-018
Figure 35. Slave Serial Data Timing for Reading (Read Previous Conversion during Convert)
Rev. C | Page 22 of 26
Data Sheet
AD7653
External Clock Data Read During Conversion
External Discontinuous Clock Data Read After
Conversion
Though the maximum throughput cannot be achieved using
this mode, it is the most recommended of the serial slave
modes. Figure 34 shows the detailed timing diagrams of this
method. After a conversion is complete, indicated by BUSY
returning LOW, the conversion’s result can be read while both
CS and RD are LOW. Data is shifted out MSB first with 16 clock
pulses and is valid on the rising and falling edges of the clock.
Among the advantages of this method is the fact that
conversion performance is not degraded because there are no
voltage transients on the digital interface during the conversion
process. Another advantage is the ability to read the data at any
speed up to 40 MHz, which accommodates both the slow digital
host interface and the fastest serial reading.
Finally, in this mode only, the AD7653 provides a daisy-chain
feature using the RDC/SDIN pin for cascading multiple
converters together. This feature is useful for reducing component count and wiring connections when desired, as, for
instance, in isolated multiconverter applications.
Figure 35 shows the detailed timing diagrams of this method.
During a conversion, while both CS and RD are both LOW, the
result of the previous conversion can be read. The data is shifted
out MSB first with 16 clock pulses, and is valid on both the
rising and falling edges of the clock. The 16 bits must be read
before the current conversion is complete; otherwise,
RDERROR is pulsed HIGH and can be used to interrupt the
host interface to prevent incomplete data reading. There is no
daisy-chain feature in this mode, and the RDC/SDIN input
should always be tied either HIGH or LOW.
To reduce performance degradation due to digital activity, a fast
discontinuous clock (at least 18 MHz when Impulse mode is
used, 25 MHz when Normal mode is used, or 40 MHz when
Warp mode is used) is recommended to ensure that all the bits
are read during the first half of the conversion phase. It is also
possible to begin to read data after conversion and continue to
read the last bits after a new conversion has been initiated. This
allows the use of a slower clock speed like 14 MHz in Impulse
mode, 18 MHz in Normal mode, and 25 MHz in Warp mode.
The concatenation of two devices is shown in Figure 36.
Simultaneous sampling is possible by using a common CNVST
signal. It should be noted that the RDC/SDIN input is latched
on the edge of SCLK opposite the one used to shift out the data
on SDOUT. Thus, the MSB of the upstream converter follows
the LSB of the downstream converter on the next SCLK cycle.
BUSY
OUT
BUSY
BUSY
AD7653
AD7653
#1
(DOWNSTREAM)
#2
(UPSTREAM)
RDC/SDIN
SDOUT
CNVST
RDC/SDIN
SDOUT
DATA
OUT
CNVST
CS
CS
SCLK
SCLK
SCLK IN
CS IN
CNVST IN
02966-0-019
Figure 36. Two AD7653s in a Daisy-Chain Configuration
Rev. C | Page 23 of 26
AD7653
Data Sheet
MICROPROCESSOR INTERFACING
The AD7653 is ideally suited for traditional dc measurement
applications supporting a microprocessor, and for ac signal
processing applications interfacing to a digital signal processor.
The AD7653 is designed to interface either with a parallel 8-bit
or 16-bit wide interface, or with a general-purpose serial port or
I/O ports on a microcontroller. A variety of external buffers can
be used with the AD7653 to prevent digital noise from coupling
into the ADC. The following section discusses the use of an
AD7653 with an SPI equipped DSP, the ADSP-2191M.
face (SPI) on the ADSP-2191M is configured for master
mode—(MSTR) = 1, Clock Polarity bit (CPOL) = 0, Clock
Phase bit (CPHA) = 1, and SPI Interrupt Enable (TIMOD) =
00—by writing to the SPI control register (SPICLTx). To meet
all timing requirements, the SPI clock should be limited to
17 Mbps, which allows it to read an ADC result in less than 1
µs. When a higher sampling rate is desired, use of one of the
parallel interface modes is recommended.
DVDD
AD7653*
ADSP-2191M*
SER/PAR
SPI Interface (ADSP-2191M)
Figure 37 shows an interface diagram between the AD7653 and
the SPI equipped ADSP-2191M. To accommodate the slower
speed of the DSP, the AD7653 acts as a slave device and data
must be read after conversion. This mode also allows the daisychain feature. The convert command can be initiated in
response to an internal timer interrupt. The reading process can
be initiated in response to the end-of-conversion signal (BUSY
going LOW) using an interrupt line of the DSP. The serial inter-
Rev. C | Page 24 of 26
EXT/INT
BUSY
RD
INVSCLK
CS
SDOUT
SCLK
CNVST
PFx
SPIxSEL (PFx)
MISOx
SCKx
PFx or TFSx
* ADDITIONAL PINS OMITTED FOR CLARITY
02966-0-021
Figure 37. Interfacing the AD7653 to an SPI Interface
Data Sheet
AD7653
APPLICATION HINTS
BIPOLAR AND WIDER INPUT RANGES
In some applications, it is desirable to use a bipolar or wider
analog input range such as ±10 V, ±5 V, or 0 V to 5 V. Although
the AD7653 has only one unipolar range, simple modifications
of input driver circuitry allow bipolar and wider input ranges to
be used without any performance degradation. Figure 38 shows
a connection diagram that allows this. Component values
required and resulting full-scale ranges are shown in Table 8.
When desired, accurate gain and offset can be calibrated by
acquiring a ground and voltage reference using an analog
multiplexer (U2) as shown in Figure 38.
The power supply lines to the AD7653 should use as large a
trace as possible to provide low impedance paths and to reduce
the effect of glitches on the power supply lines. Good
decoupling is also important to lower the supply’s impedance
presented to the AD7653, and to reduce the magnitude of the
supply spikes. Decoupling ceramic capacitors, typically 100 nF,
should be placed on each power supply pin—AVDD, DVDD,
and OVDD—close to, and ideally right up against these pins
and their corresponding ground pins. Additionally, low ESR
10 µF capacitors should be located near the ADC to further
reduce low frequency ripple.
CF
R1
R2
ANALOG
INPUT
15Ω
U1
IN
2.7nF
AD7653
U2
R3
R4
100nF
INGND
REF
CREF
REFGND
02966-0-022
Figure 38. Using the AD7653 in 16-Bit Bipolar and/or Wider Input Ranges
Table 8. Component Values and Input Ranges
Input Range
±10 V
±5 V
0 V to –5 V
R1 (Ω)
500
500
500
R2 (kΩ)
4
2
1
R3 (kΩ)
2.5
2.5
None
Running digital lines under the device should be avoided since
these will couple noise onto the die. The analog ground plane
should be allowed to run under the AD7653 to avoid noise
coupling. Fast switching signals like CNVST or clocks should be
shielded with digital ground to avoid radiating noise to other
sections of the board, and should never run near analog signal
paths. Crossover of digital and analog signals should be
avoided. Traces on different but close layers of the board should
run at right angles to each other to will reduce the effect of
crosstalk through the board.
R4 (kΩ)
2
1.67
0
LAYOUT
The AD7653 has very good immunity to noise on the power
supplies. However, care should still be taken with regard to
grounding layout.
The printed circuit board that houses the AD7653 should be
designed so that the analog and digital sections are separated
and confined to certain areas of the board. This facilitates the
use of ground planes that can be separated easily. Digital and
analog ground planes should be joined in only one place,
preferably underneath the AD7653, or as close as possible to the
AD7653. If the AD7653 is in a system where multiple devices
require analog-to-digital ground connections, the connection
should still be made at one point only, a star ground point that
should be established as close as possible to the AD7653.
The DVDD supply of the AD7653 can be a separate supply or
can come from the analog supply AVDD or the digital interface
supply OVDD. When the system digital supply is noisy or when
fast switching digital signals are present, if no separate supply is
available, the user should connect DVDD to AVDD through an
RC filter (see Figure 22), and the system supply to OVDD and
the remaining digital circuitry. When DVDD is powered from
the system supply, it is useful to insert a bead to further reduce
high frequency spikes.
The AD7653 has five different ground pins: INGND, REFGND,
AGND, DGND, and OGND. INGND is used to sense the
analog input signal. REFGND senses the reference voltage and,
because it carries pulsed currents, should be a low impedance
return to the reference. AGND is the ground to which most
internal ADC analog signals are referenced; it must be
connected with the least resistance to the analog ground plane.
DGND must be tied to the analog or digital ground plane
depending on the configuration. OGND is connected to the
digital system ground.
Rev. C | Page 25 of 26
AD7653
Data Sheet
OUTLINE DIMENSIONS
0.75
0.60
0.45
9.20
9.00 SQ
8.80
1.60
MAX
37
48
36
1
PIN 1
0.15
0.05
7.20
7.00 SQ
6.80
TOP VIEW
1.45
1.40
1.35
0.20
0.09
7°
3.5°
0°
0.08
COPLANARITY
SEATING
PLANE
(PINS DOWN)
25
12
13
24
0.27
0.22
0.17
VIEW A
0.50
BSC
LEAD PITCH
051706-A
VIEW A
ROTATED 90° CCW
COMPLIANT TO JEDEC STANDARDS MS-026-BBC
Figure 39. 48-Lead Quad Flat Package [LQFP]
(ST-48)
Dimensions shown in millimeters
0.30
0.23
0.18
0.60 MAX
0.60 MAX
37
48
1
36
PIN 1
INDICATOR
6.85
6.75 SQ
6.65
0.50
REF
5.25
5.10 SQ
4.95
EXPOSED
PAD
12
25
0.50
0.40
0.30
TOP VIEW
1.00
0.85
0.80
12° MAX
SIDE VIEW
PKG-001049
13
24
BOTTOM VIEW
0.20 MIN
5.50 REF
0.80 MAX
0.65 TYP
0.05 MAX
0.02 NOM
COPLANARITY
0.08
0.20 REF
SEATING
PLANE
PIN 1
INDICATOR
FOR PROPER CONNECTION OF
THE EXPOSED PAD, REFER TO
THE PIN CONFIGURATION AND
FUNCTION DESCRIPTIONS
SECTION OF THIS DATA SHEET.
COMPLIANT TO JEDEC STANDARDS MO-220-VKKD-2
11-13-2017-B
7.10
7.00 SQ
6.90
Figure 40. 48-Lead Lead Frame Chip Scale Package [LFCSP]
7 mm × 7 mm Body and 0.85 mm Package Height
(CP-48-1)
Dimensions shown in millimeters
ORDERING GUIDE
Model1
AD7653ASTZ
AD7653ASTZRL
AD7653ACPZ
AD7653ACPZRL
Temperature Range
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
Package Description
48-Lead Quad Flat Package [LQFP]
48-Lead Quad Flat Package [LQFP]
48-Lead Lead Frame Chip Scale Package [LFCSP]
48-Lead Lead Frame Chip Scale Package [LFCSP]
1
Z = RoHS Compliant Part.
©2003–2017 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D02966-0-12/17(C)
Rev. C | Page 26 of 26
Package Option
ST-48
ST-48
CP-48-1
CP-48-1
Similar pages