EL2250, EL2450 ® Data Sheet May 19, 2006 125MHz Single Supply Dual/Quad Op Amps Features The EL2250/EL2450 are part of a family of the electronics industries fastest single supply op amps available. Prior single supply op amps have generally been limited to bandwidths and slew rates to that of the EL2250/EL2450. The 125MHz bandwidth, 275V/µs slew rate, and 0.05%/0.05° differential gain/differential phase makes this part ideal for single or dual supply video speed applications. With its voltage feedback architecture, this amplifier can accept reactive feedback networks, allowing them to be used in analog filtering applications. The inputs can sense signals below the bottom supply rail and as high as 1.2V below the top rail. Connecting the load resistor to ground and operating from a single supply, the outputs swing completely to ground without saturating. The outputs can also drive to within 1.2V of the top rail. The EL2250/EL2450 will output ±100mA and will operate with single supply voltages as low as 2.7V, making them ideal for portable, low power applications. • Specified for +3V, +5V, or ±5V applications The EL2250/EL2450 are available in PDIP and SO packages in industry standard pin outs. Both parts operate over the industrial temperature range of -40°C to +85°C, and are part of a family of single supply op amps. For single amplifier applications, see the EL2150/EL2157. For dual and triple amplifiers with power down and output voltage clamps, see the EL2257/EL2357. FN7061.3 • Large input common mode range 0V < VCM < VS -1.2V • Output swings to ground without saturating • -3dB bandwidth = 125MHz • ±0.1dB bandwidth = 30MHz • Low supply current = 5mA (per amplifier) • Slew rate = 275V/µs • Low offset voltage = 4mV max • Output current = ±100mA • High open loop gain = 80dB • Differential gain = 0.05% • Differential phase = 0.05° • Pb-free plus anneal available (RoHS compliant) Applications • Video amplifiers • PCMCIA applications • A/D drivers • Line drivers Ordering Information • Portable computers PART NUMBER PART TAPE & MARKING REEL PACKAGE PKG. DWG. # • High speed communications EL2250CN EL2250CN - 8 Ld PDIP MDP0031 • RGB printers, FAX, scanners EL2250CS 2250CS - 8 Ld SO MDP0027 • Broadcast equipment EL2250CS-T7 2250CS 7” 8 Ld SO MDP0027 EL2250CS-T13 2250CS 13” 8 Ld SO MDP0027 EL2250CSZ (Note) 2250CSZ - 8 Ld SO (Pb-free) MDP0027 EL2250CSZ-T7 (Note) 2250CSZ 7” 8 Ld SO (Pb-free) MDP0027 EL2250CSZ-T13 2250CSZ (Note) 13” 8 Ld SO (Pb-free) MDP0027 EL2450CN EL2450CN - 14 Ld PDIP MDP0031 EL2450CS 2450CS - 14 Ld SO MDP0027 EL2450CS-T7 2450CS 7” 14 Ld SO MDP0027 EL2450CS-T13 2450CS 13” 14 Ld SO MDP0027 • Active filtering NOTE: Intersil Pb-free plus anneal products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte tin plate termination finish, which are RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020. 1 CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. 1-888-INTERSIL or1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc. Copyright © Intersil Americas Inc. 2002-2006. All Rights Reserved. All other trademarks mentioned are the property of their respective owners. EL2250, EL2450 Pinouts EL2450 (14 LD SO, PDIP) TOP VIEW EL2250C (8 LD SO, PDIP) TOP VIEW OUTA 1 INA- 2 INA+ 3 GND 4 A + B 2 + OUTA 1 OUTB INA- 2 6 INB- INA+ 3 12 IND+ 5 INB+ VS+ 4 11 GND INB+ 5 8 VS+ 7 INB- 6 OUTB 7 14 OUTD A - + D + - 13 IND- 10 INC+ - + B + C 9 INC- 8 OUTC FN7061.3 May 19, 2006 EL2250, EL2450 Absolute Maximum Ratings (TA = 25°C) Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Curves Storage Temperature Range . . . . . . . . . . . . . . . . . .-65°C to +150°C Ambient Operating Temperature Range . . . . . . . . . .-40°C to +85°C Operating Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . 150°C Supply Voltage between VS and GND . . . . . . . . . . . . . . . . . . +12.6V Input Voltage (IN+, IN-) . . . . . . . . . . . . . . . . . . . GND-0.3V,VS+0.3V Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .±6V Maximum Output Current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90mA Output Short Circuit Duration. . . . . . . . . . . . . . . . . . . . . . . . (Note 1) CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise noted, all tests are at the specified temperature and are pulsed tests, therefore: TJ = TC = TA DC Electrical Specifications VS = +5V, GND = 0V, TA = 25°C, VCM = 1.5V, VOUT = 1.5V, unless otherwise specified. PARAMETER DESCRIPTION TEST CONDITIONS VOS Offset Voltage TCVOS Offset Voltage Temperature Coefficient Measured from TMIN to TMAX IB Input Bias Current VIN = 0V IOS Input Offset Current VIN = 0V TCIOS Input Bias Current Temperature Coefficient Measured from TMIN to TMAX PSRR Power Supply Rejection Ratio VS = +2.7V to +12V CMRR Common Mode Rejection Ratio MIN TYP MAX UNIT 12 mV -12 10 -1200 µV/°C -5.5 -10 µA 150 1200 nA 50 nA/°C 55 70 dB VCM = 0V to +3.8V 45 65 dB VCM = 0V to +3.0V 50 70 dB CMIR Common Mode Input Range 0 RIN Input Resistance Common Mode CIN Input Capacitance SO Package 1 VS-1.2 V 2 MΩ 1 pF PDIP Package 1.5 pF mΩ ROUT Output Resistance AV = +1 40 IS Supply Current (per amplifier) VS = +12V 5 PSOR Power Supply Operating Range 2.7 6.5 mA 12.0 V DC Electrical Specifications VS = +5V, GND = 0V, TA = 25°C, VCM = +1.5V, VOUT = +1.5V, unless otherwise specified. PARAMETER AVOL VOP DESCRIPTION Open Loop Gain Positive Output Voltage Swing TEST CONDITIONS MIN TYP VS = +12V, VOUT = +2V to +9V, RL = 1kΩ to GND 60 80 dB VOUT = +1.5V to +3.5V, RL = 1kΩ to GND 70 dB VOUT = +1.5V to +3.5V, RL = 150Ω to GND 60 dB VS = +12V, AV = +1, RL = 1kΩ to 0V VS = +12V, AV = +1, RL = 150Ω to 0V 9.6 VS = ±5V, AV = +1, RL = 1kΩ to 0V VON IOUT Negative Output Voltage Swing Output Current (Note 1) MAX UNIT 10.8 V 10.0 V 4.0 V VS = ±5V, AV = +1, RL = 150Ω to 0V 3.4 3.8 V VS = +3V, AV = +1, RL = 150Ω to 0V 1.8 1.95 V VS = +12V, AV = +1, RL = 150Ω to 0V 5.5 V S = ±5V, AV = +1, RL = 1kΩ to 0V -4.0 VS = ±5V, AV = +1, RL = 150Ω to 0V -3.7 VS = ±5V, AV = +1, RL = 10Ω to 0V ±75 ±100 8 mV V -3.4 V mA VS = ±5V, AV = +1, RL = 50Ω to 0V ±60VmA NOTE: 1. Internal short circuit protection circuitry has been built into the EL2250/EL2450; see the Applications section 3 FN7061.3 May 19, 2006 EL2250, EL2450 AC Electrical Specifications VS = +5V, GND = 0V, TA = 25°C, VCM = +1.5V, VOUT = +1.5V, AV = +1, RF = 0Ω, RL = 150Ω to GND pin, unless otherwise specified. (Note 1) PARAMETER BW BW DESCRIPTION -3dB Bandwidth (VOUT = 400mVP-P) ±0.1dB Bandwidth (VOUT = 400mVP-P) TEST CONDITIONS MIN TYP MAX UNIT VS = +5V, AV = +1, RF = 0Ω 125 MHz VS = +5V, AV = -1, RF = 500Ω 60 MHz VS = +5V, AV = +2, RF = 500Ω 60 MHz VS = +5V, AV = +10, RF = 500Ω 6 MHz VS = +12V, AV = +1, RF = 0Ω 150 MHz VS = +3V, AV = +1, RF = 0Ω 100 MHz VS = +12V, AV = +1, RF = 0Ω 25 MHz VS = +5V, AV = +1, RF = 0Ω 30 MHz VS = +3V, AV = +1, RF = 0Ω 20 MHz GBWP Gain Bandwidth Product VS = +12V, @ AV = +10 60 MHz PM Phase Margin RL = 1kΩ, CL = 6pF 55 ° SR Slew Rate VS = +10V, RL = 150Ω, VOUT = 0V to +6V 275 V/µs VS = +5V, RL = 150Ω, VOUT = 0V to +3V 300 V/µs 200 tR, tF Rise Time, Fall Time ±0.1V Step 2.8 ns OS Overshoot ±0.1V Step 10 % tPD Propagation Delay ±0.1V Step 3.2 ns tS 0.1% Settling Time VS = ±5V, RL = 500Ω, AV = +1, VOUT = ±3V 40 ns 0.01% Settling Time VS = ±5V, RL = 500Ω, AV = +1, VOUT = ±3V 75 ns dG Differential Gain (Note 2) AV = +2, RF = 1kΩ 0.05 % dP Differential Phase (Note 2) AV = +2, RF = 1kΩ 0.05 ° eN Input Noise Voltage f = 10kHz 48 nV/√Hz iN Input Noise Current f = 10kHz 1.25 pA/√Hz NOTES: 1. All AC tests are performed on a “warmed up” part, except slew rate, which is pulse tested. 2. Standard NTSC signal = 286mVP-P, f = 3.58MHz, as VIN is swept from 0.6V to 1.314V; RL is DC coupled. 4 FN7061.3 May 19, 2006 EL2250, EL2450 Typical Performance Curves Non-Inverting Frequency Response (Gain) Inverting Frequency Response (Gain) Frequency Response for Various RL 5 Non-Inverting Frequency Response (Phase) Inverting Frequency Response (Phase) Frequency Response for Various CL 3dB Bandwidth vs Temperature for Non-Inverting Gains 3dB Bandwidth vs Temperature for Inverting Gains Non-Inverting Frequency Response vs Common Mode Voltage FN7061.3 May 19, 2006 EL2250, EL2450 Typical Performance Curves (Continued) 3dB Bandwidth vs Supply Voltage for Non-Inverting Gains Frequency Response for Various Supply Voltages, AV = + 1 PSSR and CMRR vs Frequency 3dB Bandwidth vs Supply Voltage for Inverting Gains Frequency Response for Various Supply Voltages, AV = + 2 PSRR and CMRR vs Die Temperature Open Loop Gain and Phase vs Frequency Open Loop Voltage Gain vs Die Temperature 6 Closed Loop Output Impedance vs Frequency FN7061.3 May 19, 2006 EL2250, EL2450 Typical Performance Curves (Continued) Large Signal Step Response, VS = +3V Large Signal Step Response, VS = +5V Small Signal Step Response Slew Rate vs Temperature 7 Large Signal Step Response, VS = +12V Large Signal Step Response, VS = ±5V Settling Time vs Settling Accuracy Voltage and Current Noise vs Frequency FN7061.3 May 19, 2006 EL2250, EL2450 Typical Performance Curves (Continued) Differential Gain for Single Supply Operation Differential Phase for Single Supply Operation Differential Gain and Phase for Dual Supply Operation 2nd and 3rd Harmonic Distortion vs Frequency 2nd and 3rd Harmonic Distortion vs Frequency 2nd and 3rd Harmonic Distortion vs Frequency Output Voltage Swing vs Frequency for THD < 0.1% Output Voltage Swing vs Frequency for Unlimited Distortion Output Current vs Die Temperature 8 FN7061.3 May 19, 2006 EL2250, EL2450 Typical Performance Curves (Continued) Supply Current vs Supply Voltage (per amplifier) Supply Current vs Die Temperature (per amplifier) Offset Voltage vs Die Temperature (4 Samples) Input Bias Current vs Input Voltage Positive Output Voltage Swing vs Die Temperature, RL = 150Ω to GND Negative Output Voltage Swing vs Die Temperature, RL = 150Ω to GND 1.8 Package Power Dissipation vs Ambient Temp. SEMI G42-88 Single Layer Test Board 1.2 P JA DIP = 1 θ 1.4 1.25W 1.2 1 81 4 °C /W θJ 0.8 0.6 PD A = IP8 10 0° C/ W 0.4 Channel to Channel Isolation vs Frequency Package Power Dissipation vs Ambient Temp. JEDEC JESD51-3 Low Effective Thermal Conductivity Test Board 1.042W SO 781W 0.8 SO 8θ 0.6 JA = 0.4 14 16 0 θ JA = 12 0° C/ W °C /W 0.2 0.2 0 Input Offset Current and Input Bias Current vs Die Temperature 1 Power Dissipation (W) Power Dissipation (W) 1.6 1.54W Input Resistance vs Die Temperature 0 25 50 75 85 100 125 Ambient Temperature (°C) 9 150 0 0 25 50 75 85 100 125 Ambient Temperature (°C) 150 FN7061.3 May 19, 2006 EL2250, EL2450 Simplified Schematic Applications Information Product Description The EL2250/EL2450 are part of a family of the industries fastest single supply operational amplifiers. Connected in voltage follower mode, their -3dB bandwidth is 125MHz while maintaining a 275V/µs slew rate. With an input and output common mode range that includes ground, these amplifiers were optimized for single supply operation, but will also accept dual supplies. They operate on a total supply voltage range as low as +2.7V or up to +12V. This makes them ideal for +3V applications, especially portable computers. While many amplifiers claim to operate on a single supply, and some can sense ground at their inputs, most fail to truly drive their outputs to ground. If they do succeed in driving to ground, the amplifier often saturates, causing distortion and recovery delays. However, special circuitry built into the EL2250/EL2450 allows the output to follow the input signal to ground without recovery delays. Power Supply Bypassing And Printed Circuit Board Layout As with any high-frequency device, good printed circuit board layout is necessary for optimum performance. Ground plane construction is highly recommended. Lead lengths should be as short as possible. The power supply pins must be well bypassed to reduce the risk of oscillation. The combination of a 4.7µF tantalum capacitor in parallel with a 0.1µF ceramic capacitor has been shown to work well when placed at each supply pin. For single supply operation, where the GND pin is connected to the ground plane, a single 4.7µF tantalum capacitor in parallel with a 0.1µF ceramic capacitor across the VS+ and GND pins will suffice. For good AC performance, parasitic capacitance should be kept to a minimum. Ground plane construction should be 10 used. Carbon or Metal-Film resistors are acceptable with the Metal-Film resistors giving slightly less peaking and bandwidth because of their additional series inductance. Use of sockets, particularly for the SO package should be avoided if possible. Sockets add parasitic inductance and capacitance which will result in some additional peaking and overshoot. Supply Voltage Range and Single-Supply Operation The EL2250/EL2450 have been designed to operate with supply voltages having a span of greater than 2.7V, and less than 12V. In practical terms, this means that the EL2250/EL2450 will operate on dual supplies ranging from ±1.35V to ±6V. With a single-supply, the EL2250/EL2450 will operate from +2.7V to +12V. Performance has been optimized for a single +5V supply. Pins 8 and 4 are the power supply pins on the EL2250. The positive power supply is connected to pin 8. When used in single supply mode, pin 4 is connected to ground. When used in dual supply mode, the negative power supply is connected to pin 4. Pins 4 and 11 are the power supply pins on the EL2450. The positive power supply is connected to pin 4. When used in single supply mode, pin 11 is connected to ground. When used in dual supply mode, the negative power supply is connected to pin 11. As supply voltages continue to decrease, it becomes necessary to provide input and output voltage ranges that can get as close as possible to the supply voltages. The EL2250/EL2450 have an input voltage range that includes the negative supply and extends to within 1.2V of the positive supply. So, for example, on a single +5V supply, the EL2250/EL2450 have an input range which spans from 0V to 3.8V. FN7061.3 May 19, 2006 EL2250, EL2450 The output range of the EL2250/EL2450 is also quite large. It includes the negative rail, and extends to within 1V of the top supply rail with a 1kΩ load. On a +5V supply, the output is therefore capable of swinging from 0V to +4V. On split supplies, the output will swing ±4V. If the load resistor is tied to the negative rail and split supplies are used, the output range is extended to the negative rail. value. While driving a light load, such as 1kΩ, if the input black level is kept above 1.25V, dG and dP are a respectable 0.03% and 0.03°. Choice Of Feedback Resistor, RF In spite of their moderately low 5mA of supply current, the EL2250/EL2450 are capable of providing ±100mA of output current into a 10Ω load, or ±60mA into 50Ω. With this large output current capability, a 50Ω load can be driven to ±3V with VS = ±5V, making it an excellent choice for driving isolation transformers in telecommunications applications. The feedback resistor forms a pole with the input capacitance. As this pole becomes larger, phase margin is reduced. This increases ringing in the time domain and peaking in the frequency domain. Therefore, RF has some maximum value which should not be exceeded for optimum performance. If a large value of RF must be used, a small capacitor in the few picofarad range in parallel with RF can help to reduce this ringing and peaking at the expense of reducing the bandwidth. As far as the output stage of the amplifier is concerned, RF + RG appear in parallel with RL for gains other than +1. As this combination gets smaller, the bandwidth falls off. Consequently, RF has a minimum value that should not be exceeded for optimum performance. For AV = +1, RF = 0Ω is optimum. For AV = -1 or +2 (noise gain of 2), optimum response is obtained with RF between 500Ω and 1kΩ. For AV = -4 or +5 (noise gain of 5), keep RF between 2kΩ and 10kΩ. Video Performance For good video performance, an amplifier is required to maintain the same output impedance and the same frequency response as DC levels are changed at the output. This can be difficult when driving a standard video load of 150Ω, because of the change in output current with DC level. Differential Gain and Differential Phase for the EL2250/EL2450 are specified with the black level of the output video signal set to +1.2V. This allows ample room for the sync pulse even in a gain of +2 configuration. This results in dG and dP specifications of 0.05% and 0.05° while driving 150Ω at a gain of +2. Setting the black level to other values, although acceptable, will compromise peak performance. For example, looking at the single supply dG and dP curves for RL = 150Ω, if the output black level clamp is reduced from 1.2V to 0.6V dG/dP will increase from 0.05%/0.05° to 0.08%/0.25° Note that in a gain of +2 configuration, this is the lowest black level allowed such that the sync tip doesn’t go below 0V. If your application requires that the output goes to ground, then the output stage of the EL2250/EL2450, like all other single supply op amps, requires an external pull down resistor tied to ground. As mentioned above, the current flowing through this resistor becomes the DC bias current for the output stage NPN transistor. As this current approaches zero, the NPN turns off, and dG and dP will increase. This becomes more critical as the load resistor is increased in 11 For other biasing conditions see the Differential Gain and Differential Phase vs. Input Voltage curves. Output Drive Capability Driving Cables and Capacitive Loads When used as a cable driver, double termination is always recommended for reflection-free performance. For those applications, the back-termination series resistor will decouple the EL2250/EL2450 from the cable and allow extensive capacitive drive. However, other applications may have high capacitive loads without a back-termination resistor. In these applications, a small series resistor (usually between 5Ω and 50Ω) can be placed in series with the output to eliminate most peaking. The gain resistor (RG) can then be chosen to make up for any gain loss which may be created by this additional resistor at the output. Video Sync Pulse Remover Application All CMOS Analog to Digital Converters (A/Ds) have a parasitic latch-up problem when subjected to negative input voltage levels. Since the sync tip contains no useful video information and it is a negative going pulse, we can chop it off. Figure 1 shows a unity gain connected amplifier A of an EL2250. Figure 2 shows the complete input video signal applied at the input, as well as the output signal with the negative going sync pulse removed. FIGURE 1. FN7061.3 May 19, 2006 EL2250, EL2450 The maximum power dissipation allowed in a package is determined according to [1]: T JMAX – T AMAX PD MAX = -------------------------------------------θ JA where: TJMAX = Maximum Junction Temperature TAMAX = Maximum Ambient Temperature FIGURE 2. Short Circuit Current Limit The EL2250/EL2450 have internal short circuit protection circuitry that protect it in the event of its output being shorted to either supply rail. This limit is set to around 100mA nominally and reduces with increasing junction temperature. It is intended to handle temporary shorts. If an output is shorted indefinitely, the power dissipation could easily increase such that the part will be destroyed. Maximum reliability is maintained if the output current never exceeds ±90mA. A heat sink may be required to keep the junction temperature below absolute maximum when an output is shorted indefinitely. Power Dissipation θJA = Thermal Resistance of the Package PDMAX = Maximum Power Dissipation in the Package. The maximum power dissipation actually produced by an IC is the total quiescent supply current times the total power supply voltage, plus the power in the IC due to the load, or [2]: V OUT⎞ ⎛ PD MAX = N × ⎜ V s × I SMAX + ( V S – V OUT ) × ----------------⎟ RL ⎠ ⎝ where: N = Number of amplifiers VS = Total Supply Voltage ISMAX = Maximum Supply Current per amplifier With the high output drive capability of the EL2250/EL2450, it is possible to exceed the 150°C Absolute Maximum junction temperature under certain load current conditions. Therefore, it is important to calculate the maximum junction temperature for the application to determine if power-supply voltages, load conditions, or package type need to be modified for the EL2250/EL2450 to remain in the safe operating area. VOUT = Maximum Output Voltage of the Application RL = Load Resistance tied to Ground If we set the two PDMAX equations, [1] & [2], equal to each other, and solve for VS, we can get a family of curves for various loads and output voltages according to [3]: R L × ( T JMAX – T AMAX ) --------------------------------------------------------------- + ( V OUT ) N × θ JA V S = -----------------------------------------------------------------------------------------( IS × R L ) + V OUT Figures 3 through 6 below show total single supply voltage VS vs. RL for various output voltage swings for the PDIP and SO packages. The curves assume WORST CASE conditions of TA = +85°C and IS = 6.5mA per amplifier. 12 FN7061.3 May 19, 2006 EL2250, EL2450 EL2250 Single Supply Voltage vs RLOAD for Various VOUT (PDIP Package) FIGURE 3. EL2250 Single Supply Voltage vs RLOAD for Various VOUT (SO Package) FIGURE 4. 13 EL2450 Single Supply Voltage vs RLOAD for Various VOUT (PDIP Package) FIGURE 5. EL2450 Single Supply Voltage vs RLOAD for Various VOUT (SO Package) FIGURE 6. FN7061.3 May 19, 2006 EL2250, EL2450 EL2250/EL2450 Macromodel (one amplifier) * Revision A, April 1996 * Pin numbers reflect a standard single op amp. * Connections: +input * | -input * | | +Vsupply * | | | -Vsupply * | | | | output .subckt EL2250/el 3 2 7 4 6 * * Input Stage * i1 7 10 250µA i2 7 11 250µA r1 10 11 4k q1 12 2 10 qp q2 13 3 11 qpa r2 12 4 100 r3 13 4 100 * * Second Stage & Compensation * gm 15 4 13 12 4.6m r4 15 4 15Meg c1 15 4 0.36pF * * Poles * e1 17 4 15 4 1.0 r6 17 25 400 c3 25 4 1pF r7 25 18 500 c4 18 4 1pF * * Output Stage * i3 20 4 1.0mA q3 7 23 20 qn q4 7 18 19 qn q5 7 18 21 qn q6 4 20 22 qp q7 7 23 18 qn d1 19 20 da r8 21 6 2 r9 22 6 2 r10 18 21 10k r11 7 23 100k d2 23 24 da d3 24 4 da d4 23 18 da * * Power Supply Current * ips 7 4 3.2mA * * Models * .model qn npn(is=800e-18 bf=150 tf=0.02nS) .model qpa pnp(is=810e-18 bf=50 tf=0.02nS) .model qp pnp(is=800e-18 bf=54 tf=0.02nS) .model da d(tt=0nS) .ends 14 FN7061.3 May 19, 2006 EL2250, EL2450 EL2250/EL2450 Macromodel (one amplifier) All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems. Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see www.intersil.com 15 FN7061.3 May 19, 2006