Power AP30G120W N-channel insulated gate bipolar transistor Datasheet

AP30G120W
Pb Free Plating Product
Advanced Power
Electronics Corp.
N-CHANNEL INSULATED GATE
BIPOLAR TRANSISTOR
Features
VCES
1200V
IC
▼ High speed switching
▼ Low Saturation Voltage
VCE(sat)=3.0V@IC=30A
▼ Industry Standard TO-3P Package
30A
C
G
▼ RoHS Compliant
G
TO-3P
C
E
E
Absolute Maximum Ratings
Rating
Units
VCES
Symbol
Collector-Emitter Voltage
1200
V
VGE
Gate-Emitter Voltage
±30
V
IC@TC=25℃
Continuous Collector Current
60
A
IC@TC=100℃
Continuous Collector Current
30
A
ICM
Pulsed Collector Current
160
A
Parameter
1
PD@TC=25℃
Maximum Power Dissipation
208
W
TSTG
Storage Temperature Range
-55 to 150
℃
TJ
Operating Junction Temperature Range
-55 to 150
℃
TL
Maximum Lead Temp. for Soldering Purposes
300
℃
, 1/8" from case for 5 seconds .
Notes:
1.Repetitive rating : Pulse width limited by max . junction temperature .
Thermal Data
Value
Units
Rthj-c
Thermal Resistance Junction-Case
Parameter
0.6
℃/W
Rthj-a
Thermal Resistance Junction-Ambient
40
℃/W
Symbol
Electrical Characteristics@T j=25oC(unless otherwise specified)
Symbol
BVCES
Parameter
Min.
1200
Typ.
-
Max.
-
VGE=±30V, VCE=0V
-
-
±500
nA
VCE=1200V, VGE=0V
-
-
1
mA
V
Collect-to-Emitter Breakdown Voltage
Test Conditions
VGE=0V, IC=250uA
IGES
Gate-to-Emitter Leakage Current
ICES
Collector-Emitter Leakage Current
VCE(sat)
Collector-Emitter Saturation Voltage
VGE(th)
Units
V
VGE=15V, IC=30A
-
3
3.6
VGE=15V, IC=60A
-
3.8
-
V
Gate Threshold Voltage
VCE=VGE, IC=1mA
3
4.4
7
V
Qg
Total Gate Charge
IC=30A
-
55
88
nC
Qge
Gate-Emitter Charge
VCC=500V
-
12
-
nC
Qgc
Gate-Collector Charge
-
27
-
nC
td(on)
Turn-on Delay Time
-
20
-
ns
tr
Rise Time
-
20
-
ns
td(off)
Turn-off Delay Time
-
65
-
ns
tf
Fall Time
VGE=15V
VCC=600V,
Ic=30A,
VGE=15V,
RG=5Ω,
Inductive Load
-
200
300
ns
Eon
Turn-On Switching Loss
-
1.8
-
mJ
Eoff
Turn-Off Switching Loss
-
1.1
-
mJ
Cies
Input Capacitance
VGE=0V
-
1320
2110
pF
Coes
Output Capacitance
VCE=30V
-
105
-
pF
Cres
Reverse Transfer Capacitance
f=1.0MHz
-
9
-
pF
Data and specifications subject to change without notice
200411064-1/3
AP30G120W
160
100
20V
18V
15V
20V
18V
15V
12V
o
T C =150 C
80
IC , Collector Current (A)
IC , Collector Current (A)
T C =25 o C
120
12V
80
V GE =10V
40
60
V GE =10V
40
20
0
0
0
3
6
9
0
12
V CE , Collector-Emitter Voltage (V)
Fig 1. Typical Output Characteristics
6
9
12
Fig 2. Typical Output Characteristics
160
6
V GE = 15 V
VCE(sat) ,Saturation Voltage(V)
V GE =15V
140
IC , Collector Current(A)
3
V CE , Collector-Emitter Voltage (V)
120
T C =25 ℃
100
T C =150 ℃
80
60
40
5
I C = 60 A
4
I C =30A
3
2
20
0
1
0
2
4
6
8
10
12
0
40
80
120
160
Junction Temperature ( o C)
V CE , Collector-Emitter Voltage (V)
Fig 3. Typical Saturation Voltage
Characteristics
Fig 4. Typical Collector- Emitter Voltage
v.s. Junction Temperature
f=1.0MHz
10000
C ies
Capacitance (pF)
Normalized VGE(th) (V)
1.4
1.1
C oes
100
0.8
C res
1
0.5
-50
0
50
100
Junction Temperature ( o C )
Fig 5. Gate Threshold Voltage
150
1
10
100
V CE , Collector-Emitter Voltage (V)
Fig 6. Typical Capacitance Characterisitics
v.s. Junction Temperature
2/3
AP30G120W
1
1000
Normalized Thermal Response (Rthjc)
V GE =15V
IC, Peak Collector Current(A)
T C =125 o C
100
10
Safe Operating Area
1
Duty factor=0.5
0.2
0.1
0.1
0.05
PDM
t
0.02
T
0.01
Duty factor = t/T
Peak Tj = PDM x Rthjc + T C
Single Pulse
0.01
1
10
100
1000
10000
0.00001
0.0001
0.001
V CE , Collector-Emitter Voltage(V)
0.01
0.1
1
t , Pulse Width (s)
Fig 7. Turn-off SOA
Fig 8. Effective Transient Thermal
Impedance
20
20
o
TC=150 C
I C = 60 A
30 A
15 A
15
VCE , Collector-Emitter Voltage(V)
VCE , Collector-Emitter Voltage(V)
T C =25 o C
10
5
0
I C = 60 A
30 A
15 A
15
10
5
0
0
4
8
12
16
20
0
V GE , Gate-Emitter Voltage(V)
Fig 9. Saturation Voltage vs. VGE
8
12
16
20
Fig 10. Saturation Voltage vs. VGE
250
VGE , Gate -Emitter Voltage (V)
20
200
Power Dissipation (W)
4
V GE , Gate-Emitter Voltage(V)
150
100
50
I C = 3 0A
V CC =200V
V CC =300V
V CC =500V
16
12
8
4
0
0
0
50
100
150
200
0
20
40
60
Junction Temperature ( ℃ )
Q G , Gate Charge (nC)
Fig11. Power Dissipation vs. Junction
Temperature
Fig 12. Gate Charge Characterisitics
80
3/3
Similar pages