EMC2DXV5T1, EMC3DXV5T1, EMC4DXV5T1, EMC5DXV5T1 Preferred Devices Dual Common Base−Collector Bias Resistor Transistors http://onsemi.com 3 2 R1 NPN and PNP Silicon Surface Mount Transistors with Monolithic Bias Resistor Network R2 Q2 R2 Q1 The BRT (Bias Resistor Transistor) contains a single transistor with a monolithic bias network consisting of two resistors; a series base resistor and a base−emitter resistor. These digital transistors are designed to replace a single device and its external resistor bias network. The BRT eliminates these individual components by integrating them into a single device. In the EMC2DXV5T1 series, two complementary BRT devices are housed in the SOT−553 package which is ideal for low power surface mount applications where board space is at a premium. Features • • • • 1 R1 4 5 5 1 SOT−553 CASE 463B Simplifies Circuit Design Reduces Board Space Reduces Component Count These are Pb−Free Devices MARKING DIAGRAM MAXIMUM RATINGS (TA = 25°C unless otherwise noted, common for Q1 and Q2, − minus sign for Q1 (PNP) omitted) Symbol Value Unit Collector-Base Voltage Rating VCBO 50 Vdc Collector-Emitter Voltage VCEO 50 Vdc IC 100 mAdc Collector Current Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected. Ux M G G Ux = Specific Device Code x = C, 3, E, or 5 M = Date Code G = Pb−Free Package (Note: Microdot may be in either location) ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet. Preferred devices are recommended choices for future use and best overall value. © Semiconductor Components Industries, LLC, 2004 October, 2005 − Rev. 4 1 Publication Order Number: EMC2DXV5T1/D EMC2DXV5T1, EMC3DXV5T1, EMC4DXV5T1, EMC5DXV5T1 THERMAL CHARACTERISTICS Characteristic Symbol Max Unit 357 (Note 1) 2.9 (Note 1) mW mW/°C 350 (Note 1) °C/W 500 (Note 1) 4.0 (Note 1) mW mW/°C RqJA 250 (Note 1) °C/W TJ, Tstg −55 to +150 °C ONE JUNCTION HEATED Total Device Dissipation TA = 25°C Derate above 25°C PD Thermal Resistance, Junction-to-Ambient RqJA BOTH JUNCTIONS HEATED Total Device Dissipation TA = 25°C Derate above 25°C PD Thermal Resistance, Junction-to-Ambient Junction and Storage Temperature 1. FR−4 @ Minimum Pad DEVICE ORDERING INFORMATION, MARKING AND RESISTOR VALUES Transistor 1 − PNP Device Marking R1 (K) R2 (K) Transistor 2 − NPN R1 (K) R2 (K) Package EMC2DXV5T1 SOT−553* EMC2DXV5T1G SOT−553* EMC2DXV5T5 UC 22 22 22 22 SOT−553* EMC3DXV5T1 SOT−553* EMC3DXV5T1G SOT−553* U3 10 10 10 10 SOT−553* EMC4DXV5T1 SOT−553* EMC4DXV5T5 SOT−553* UE 10 47 47 47 SOT−553* EMC5DXV5T1 SOT−553* EMC5DXV5T1G SOT−553* U5 4.7 10 47 47 EMC5DXV5T5G 4000 / Tape & Reel 8000 / Tape & Reel 4000 / Tape & Reel SOT−553* EMC4DXV5T5G EMC5DXV5T5 8000 / Tape & Reel SOT−553* EMC3DXV5T5G EMC4DXV5T1G 4000 / Tape & Reel SOT−553* EMC2DXV5T5G EMC3DXV5T5 Shipping † 8000 / Tape & Reel 4000 / Tape & Reel SOT−553* SOT−553* 8000 / Tape & Reel PD , POWER DISSIPATION (MILLIWATTS) †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. *This package is inherently Pb−Free. 250 200 150 100 50 0 −50 RqJA = 833°C/W 0 50 100 TA, AMBIENT TEMPERATURE (°C) Figure 1. Derating Curve http://onsemi.com 2 150 EMC2DXV5T1, EMC3DXV5T1, EMC4DXV5T1, EMC5DXV5T1 ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted) Symbol Min Typ Max Unit Collector-Base Cutoff Current (VCB = 50 V, IE = 0) ICBO − − 100 nAdc Collector-Emitter Cutoff Current (VCB = 50 V, IB = 0) ICEO − − 500 nAdc IEBO − − − − − − − − 0.2 0.5 0.2 1.0 mAdc Collector-Base Breakdown Voltage (IC = 10 mA, IE = 0) V(BR)CBO 50 − − Vdc Collector-Emitter Breakdown Voltage (IC = 2.0 mA, IB = 0) V(BR)CEO 50 − − Vdc hFE 60 35 80 20 100 60 140 35 − − − − VCE(SAT) − − 0.25 Vdc Characteristic Q1 TRANSISTOR: PNP OFF CHARACTERISTICS Emitter-Base Cutoff Current (VEB = 6.0, IC = 5.0 mA) EMC2DXV5T1 EMC3DXV5T1 EMC4DXV5T1 EMC5DXV5T1 ON CHARACTERISTICS DC Current Gain (VCE = 10 V, IC = 5.0 mA) EMC2DXV5T1 EMC3DXV5T1 EMC4DXV5T1 EMC5DXV5T1 Collector−Emitter Saturation Voltage (IC = 10 mA, IB = 0.3 mA) Output Voltage (on) (VCC = 5.0 V, VB = 2.5 V, RL = 1.0 kW) VOL − − 0.2 Vdc Output Voltage (off) (VCC = 5.0 V, VB = 0.5 V, RL = 1.0 kW) VOH 4.9 − − Vdc R1 15.4 7.0 3.3 22 10 4.7 28.6 13 6.1 kW R1/R2 0.8 0.8 0.17 0.38 1.0 1.0 0.21 0.47 1.2 1.2 0.25 0.56 Collector-Base Cutoff Current (VCB = 50 V, IE = 0) ICBO − − 100 Collector-Emitter Cutoff Current (VCB = 50 V, IB = 0) ICEO − − 500 nAdc Emitter-Base Cutoff Current (VEB = 6.0, IC = 5.0 mA) IEBO − − − − − − 0.2 0.5 0.1 mAdc Collector-Base Breakdown Voltage (IC = 10 mA, IE = 0) V(BR)CBO 50 − − Vdc Collector-Emitter Breakdown Voltage (IC = 2.0 mA, IB = 0) V(BR)CEO 50 − − Vdc hFE 60 35 80 100 60 140 − − − VCE(SAT) − − 0.25 Vdc Output Voltage (on) (VCC = 5.0 V, VB = 2.5 V, RL = 1.0 kW) VOL − − 0.2 Vdc Output Voltage (off) (VCC = 5.0 V, VB = 0.5 V, RL = 1.0 kW) VOH 4.9 − − Vdc kW Input Resistor EMC2DXV5T1 EMC3DXV5T1, EMC4DXV5T1 EMC5DXV5T1 Resistor Ratio EMC2DXV5T1 EMC3DXV5T1 EMC4DXV5T1 EMC5DXV5T1 Q2 TRANSISTOR: NPN OFF CHARACTERISTICS EMC2DXV5T1 EMC3DXV5T1 EMC4DXV5T1, EMC5DXV5T1 nAdc ON CHARACTERISTICS DC Current Gain (VCE = 10 V, IC = 5.0 mA) EMC2DXV5T1 EMC3DXV5T1 EMC4DXV5T1, EMC5DXV5T1 Collector−Emitter Saturation Voltage (IC = 10 mA, IB = 0.3 mA) Input Resistor EMC2DXV5T1 EMC3DXV5T1 EMC4DXV5T1, EMC5DXV5T1 R1 15.4 7.0 33 22 10 47 28.6 13 61 Resistor Ratio EMC2DXV5T1 EMC3DXV5T1 EMC4DXV5T1, EMC5DXV5T1 R1/R2 0.8 0.8 0.8 1.0 1.0 1.0 1.2 1.2 1.2 http://onsemi.com 3 EMC2DXV5T1, EMC3DXV5T1, EMC4DXV5T1, EMC5DXV5T1 1000 10 VCE = 10 V IC/IB = 10 1 hFE , DC CURRENT GAIN VCE(sat) , MAXIMUM COLLECTOR VOLTAGE (VOLTS TYPICAL ELECTRICAL CHARACTERISTICS − EMC2DXV5T1 PNP TRANSISTOR 25°C TA=−25°C 75°C 0.1 0.01 0 20 IC, COLLECTOR CURRENT (mA) 1 10 Figure 3. DC Current Gain 100 IC, COLLECTOR CURRENT (mA) 3 2 1 10 20 30 40 VR, REVERSE BIAS VOLTAGE (V) TA=−25°C 10 1 0.1 0.01 0.001 50 Figure 4. Output Capacitance 100 25°C 75°C f = 1 MHz lE = 0 mA TA = 25°C V in , INPUT VOLTAGE (VOLTS) C ob , CAPACITANCE (pF) 4 0 VO = 5 V 0 1 2 3 4 5 6 7 Vin, INPUT VOLTAGE (V) VO = 0.2 V 10 25°C 75°C 1 0 10 8 9 Figure 5. Output Current versus Input Voltage TA=−25°C 0.1 100 IC, COLLECTOR CURRENT (mA) Figure 2. VCE(sat) versus IC 0 25°C −25°C 100 10 50 40 TA=75°C 20 30 IC, COLLECTOR CURRENT (mA) 40 Figure 6. Input Voltage versus Output Current http://onsemi.com 4 50 10 EMC2DXV5T1, EMC3DXV5T1, EMC4DXV5T1, EMC5DXV5T1 1 1000 IC/IB = 10 VCE = 10 V TA=−25°C 25°C hFE , DC CURRENT GAIN VCE(sat) , MAXIMUM COLLECTOR VOLTAGE (VOLTS) TYPICAL ELECTRICAL CHARACTERISTICS − EMC2DXV5T1 NPN TRANSISTOR 0.1 75°C 0.01 0.001 0 20 40 IC, COLLECTOR CURRENT (mA) TA=75°C 25°C −25°C 100 10 50 1 10 IC, COLLECTOR CURRENT (mA) Figure 7. VCE(sat) versus IC Figure 8. DC Current Gain 100 IC, COLLECTOR CURRENT (mA) 2 1 0 0 10 20 30 40 VR, REVERSE BIAS VOLTAGE (V) 25°C 75°C f = 1 MHz IE = 0 mA TA = 25°C 1 0.1 0.01 0.001 50 TA=−25°C 10 VO = 5 V 0 1 2 3 5 6 7 4 Vin, INPUT VOLTAGE (V) 10 VO = 0.2 V TA=−25°C 25°C 75°C 1 0.1 0 10 8 9 10 Figure 10. Output Current versus Input Voltage Figure 9. Output Capacitance V in , INPUT VOLTAGE (VOLTS) C ob, CAPACITANCE (pF) 4 3 100 20 30 IC, COLLECTOR CURRENT (mA) 40 Figure 11. Input Voltage versus Output Current http://onsemi.com 5 50 EMC2DXV5T1, EMC3DXV5T1, EMC4DXV5T1, EMC5DXV5T1 1000 1 VCE = 10 V IC/IB = 10 hFE , DC CURRENT GAIN VCE(sat) , MAXIMUM COLLECTOR VOLTAGE (VOLTS) TYPICAL ELECTRICAL CHARACTERISTICS − EMC3DXV5T1 PNP TRANSISTOR TA=−25°C 0.1 25°C 75°C 0.01 20 40 IC, COLLECTOR CURRENT (mA) 0 TA=75°C 10 50 25°C 100 −25°C 1 10 IC, COLLECTOR CURRENT (mA) Figure 12. VCE(sat) versus IC Figure 13. DC Current Gain 100 IC, COLLECTOR CURRENT (mA) f = 1 MHz lE = 0 mA TA = 25°C 2 1 0 0 10 TA=−25°C 1 0.1 0.01 VO = 5 V 0 Figure 14. Output Capacitance 100 25°C 75°C 10 0.001 50 20 30 40 VR, REVERSE BIAS VOLTAGE (V) V in , INPUT VOLTAGE (VOLTS) C ob , CAPACITANCE (pF) 4 3 1 2 3 4 5 6 7 Vin, INPUT VOLTAGE (V) VO = 0.2 V TA=−25°C 25°C 75°C 1 0 10 8 9 Figure 15. Output Current versus Input Voltage 10 0.1 100 20 30 IC, COLLECTOR CURRENT (mA) 40 Figure 16. Input Voltage versus Output Current http://onsemi.com 6 50 10 EMC2DXV5T1, EMC3DXV5T1, EMC4DXV5T1, EMC5DXV5T1 1000 1 VCE = 10 V IC/IB = 10 25°C TA=−25°C 0.1 hFE , DC CURRENT GAIN VCE(sat) , MAXIMUM COLLECTOR VOLTAGE (VOLTS) TYPICAL ELECTRICAL CHARACTERISTICS − EMC3DXV5T1 NPN TRANSISTOR 75°C 0.01 0.001 0 20 40 IC, COLLECTOR CURRENT (mA) TA=75°C 25°C −25°C 100 10 50 10 1 IC, COLLECTOR CURRENT (mA) Figure 17. VCE(sat) versus IC Figure 18. DC Current Gain 100 IC, COLLECTOR CURRENT (mA) f = 1 MHz IE = 0 mA TA = 25°C 2 1 75°C 25°C TA=−25°C 10 1 0.1 0.01 VO = 5 V 0 0 0.001 50 10 20 30 40 VR, REVERSE BIAS VOLTAGE (V) Figure 19. Output Capacitance 2 0 4 6 Vin, INPUT VOLTAGE (V) VO = 0.2 V TA=−25°C 10 25°C 75°C 1 0.1 0 10 8 10 Figure 20. Output Current versus Input Voltage 100 V in , INPUT VOLTAGE (VOLTS) C ob , CAPACITANCE (pF) 4 3 100 20 30 40 IC, COLLECTOR CURRENT (mA) Figure 21. Input Voltage versus Output Current http://onsemi.com 7 50 EMC2DXV5T1, EMC3DXV5T1, EMC4DXV5T1, EMC5DXV5T1 1 180 IC/IB = 10 hFE , DC CURRENT GAIN (NORMALIZED) VCE(sat) , MAXIMUM COLLECTOR VOLTAGE (VOLTS) TYPICAL ELECTRICAL CHARACTERISTICS −EMC4DXV5T1 PNP TRANSISTOR TA=−25°C 25°C 0.1 75°C 0.01 0.001 0 20 40 60 IC, COLLECTOR CURRENT (mA) 25°C 140 −25°C 120 100 80 60 40 20 0 80 TA=75°C VCE = 10 V 160 1 2 4 6 Figure 22. VCE(sat) versus IC 100 IC, COLLECTOR CURRENT (mA) 3.5 Cob , CAPACITANCE (pF) TA=75°C f = 1 MHz lE = 0 V TA = 25°C 4 3 2.5 2 1.5 1 0.5 0 2 4 6 8 10 15 20 25 30 35 VR, REVERSE BIAS VOLTAGE (V) 40 45 25°C −25°C 10 VO = 5 V 1 50 Figure 24. Output Capacitance 0 2 4 6 Vin, INPUT VOLTAGE (V) 10 +12 V VO = 0.2 V V in , INPUT VOLTAGE (VOLTS) 8 Figure 25. Output Current versus Input Voltage 10 25°C 75°C TA=−25°C Typical Application for PNP BRTs 1 0.1 80 90 100 Figure 23. DC Current Gain 4.5 0 8 10 15 20 40 50 60 70 IC, COLLECTOR CURRENT (mA) LOAD 0 10 20 30 IC, COLLECTOR CURRENT (mA) 40 50 Figure 26. Input Voltage versus Output Current Figure 27. Inexpensive, Unregulated Current Source http://onsemi.com 8 EMC2DXV5T1, EMC3DXV5T1, EMC4DXV5T1, EMC5DXV5T1 1000 1 VCE = 10 V IC/IB = 10 TA=75°C 0.1 0.01 hFE , DC CURRENT GAIN VCE(sat) , MAXIMUM COLLECTOR VOLTAGE (VOLTS) TYPICAL ELECTRICAL CHARACTERISTICS − EMC5DXV5T1 PNP TRANSISTOR 25°C −25°C 0 10 20 30 40 IC, COLLECTOR CURRENT (mA) 50 100 10 1 60 1 10 1000 100 IC, COLLECTOR CURRENT (mA) Figure 29. DC Current Gain 12 100 IC, COLLECTOR CURRENT (mA) f = 1 MHz IE = 0 mA TA = 25°C 10 C ob , CAPACITANCE (pF) 25°C −25°C Figure 28. VCE(sat) versus IC 8 6 4 SERIES 1 2 0 TA=75°C 0 5 10 20 30 15 25 35 VR, REVERSE BIAS VOLTAGE (V) 40 1 VO = 5 V 0.1 0.01 45 Figure 30. Output Capacitance 75°C 10 TA=−25°C 25°C 0 2 4 6 8 Vin, INPUT VOLTAGE (V) 10 12 Figure 31. Output Current versus Input Voltage http://onsemi.com 9 EMC2DXV5T1, EMC3DXV5T1, EMC4DXV5T1, EMC5DXV5T1 10 1000 VCE = 10 V IC/IB = 10 hFE , DC CURRENT GAIN VCE(sat) , MAXIMUM COLLECTOR VOLTAGE (VOLTS) TYPICAL ELECTRICAL CHARACTERISTICS − EMC4DXV5T1, EMC5DXV5T1 NPN TRANSISTOR 1 25°C TA=−25°C 75°C 0.1 0.01 0 25°C −25°C 100 10 50 20 40 IC, COLLECTOR CURRENT (mA) TA=75°C 10 IC, COLLECTOR CURRENT (mA) 1 Figure 32. VCE(sat) versus IC 1 100 IC, COLLECTOR CURRENT (mA) 0.4 TA=−25°C 10 1 0.1 0.01 0.2 0 25°C 75°C 0.6 0 10 20 30 40 VR, REVERSE BIAS VOLTAGE (V) 0.001 50 Figure 34. Output Capacitance VO = 5 V 0 2 4 6 Vin, INPUT VOLTAGE (V) VO = 0.2 V TA=−25°C 10 25°C 75°C 1 0.1 0 10 8 10 Figure 35. Output Current versus Input Voltage 100 V in , INPUT VOLTAGE (VOLTS) C ob , CAPACITANCE (pF) Figure 33. DC Current Gain f = 1 MHz IE = 0 mA TA = 25°C 0.8 100 20 30 40 IC, COLLECTOR CURRENT (mA) 50 Figure 36. Input Voltage versus Output Current http://onsemi.com 10 EMC2DXV5T1, EMC3DXV5T1, EMC4DXV5T1, EMC5DXV5T1 PACKAGE DIMENSIONS SOT−553 XV5 SUFFIX CASE 463B−01 ISSUE B D −X− 5 NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETERS 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL. A L 4 1 e 2 3 E −Y− HE b 5 PL 0.08 (0.003) c M MILLIMETERS NOM MAX 0.55 0.60 0.22 0.27 0.13 0.18 1.60 1.70 1.20 1.30 0.50 BSC 0.10 0.20 0.30 1.50 1.60 1.70 DIM A b c D E e L HE X Y MIN 0.50 0.17 0.08 1.50 1.10 INCHES NOM 0.022 0.009 0.005 0.063 0.047 0.020 BSC 0.004 0.008 0.059 0.063 MIN 0.020 0.007 0.003 0.059 0.043 MAX 0.024 0.011 0.007 0.067 0.051 0.012 0.067 SOLDERING FOOTPRINT* 0.3 0.0118 0.45 0.0177 1.35 0.0531 1.0 0.0394 0.5 0.5 0.0197 0.0197 SCALE 20:1 mm Ǔ ǒinches *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: N. American Technical Support: 800−282−9855 Toll Free Literature Distribution Center for ON Semiconductor USA/Canada P.O. Box 61312, Phoenix, Arizona 85082−1312 USA Phone: 480−829−7710 or 800−344−3860 Toll Free USA/Canada Japan: ON Semiconductor, Japan Customer Focus Center 2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051 Fax: 480−829−7709 or 800−344−3867 Toll Free USA/Canada Phone: 81−3−5773−3850 Email: [email protected] http://onsemi.com 11 ON Semiconductor Website: http://onsemi.com Order Literature: http://www.onsemi.com/litorder For additional information, please contact your local Sales Representative. EMC2DXV5T1/D