LESHAN RADIO COMPANY, LTD. General Purpose Transistors PNP Silicon 3 COLLECTOR BCW29LT1 BCW30LT1 2 BASE 1 EMITTER MAXIMUM RATINGS Rating Symbol Value Unit Collector–Emitter Voltage V CEO –32 Vdc Collector–Base Voltage V CBO –32 Vdc Emitter–Base Voltage V –5.0 Vdc –100 mAdc 3 1 Collector Current — Continuous EBO IC 2 CASE 318–08, STYLE 6 SOT–23 (TO–236AB) THERMAL CHARACTERISTICS Characteristic Total Device Dissipation FR– 5 Board, (1) TA = 25°C Derate above 25°C Thermal Resistance, Junction to Ambient Total Device Dissipation Alumina Substrate, (2) TA = 25°C Derate above 25°C Thermal Resistance, Junction to Ambient Junction and Storage Temperature Symbol Max Unit PD 225 mW 1.8 mW/°C RθJA 556 °C/W PD 300 mW 2.4 mW/°C 417 –55 to +150 °C/W °C RθJA TJ , Tstg DEVICE MARKING BCW29LT1 = C1; BCW30LT1 = C2 ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted.) Characteristic Symbol Min Max Unit V (BR)CEO –32 — Vdc V (BR)CES –32 — Vdc V (BR)CBO –32 — Vdc V –5.0 — Vdc (VCB = –32 Vdc, IE = 0 ) — –100 nAdc (VCB = –32 Vdc, IE = 0, TA = 100°C) — –10 µAdc OFF CHARACTERISTICS Collector–Emitter Breakdown Voltage (IC = –2.0mAdc, IE = 0 ) Collector–Emitter Breakdown Voltage (I C = –100 µAdc, V EB = 0) Collector–Emitter Breakdown Voltage (I C = –10 µAdc, I C = 0) Emitter–Base Breakdown Voltage (I E = –10 µAdc, I C = 0) Collector Cutoff Current (BR)EBO I CBO 1. FR–5 = 1.0 x 0.75 x 0.062 in. 2. Alumina = 0.4 x 0.3 x 0.024 in. 99.5% alumina. M7–1/6 LESHAN RADIO COMPANY, LTD. BCW29LT1 BCW30LT1 ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted) (Continued) Characteristic Symbol Min Max Unit 120 215 260 500 — — V CE(sat) — – 0.3 Vdc V BE(on) – 0.6 –0.75 Vdc C obo — 7.0 pF — 10 dB ON CHARACTERISTICS DC Current Gain ( IC= – 2.0 mAdc, VCE = – 5.0 Vdc ) Collector–Emitter Saturation Voltage ( IC = – 10 mAdc, IB = – 0.5 mAdc ) Base–Emitter On Voltage hFE BCW29 BCW30 ( IC = – 2.0 mAdc, VCE = – 5.0 Vdc ) SMALL–SIGNAL CHARACTERISTICS Output Capacitance ( VCB = – 10 Vdc,IE= 0, f = 1.0 MHz) Noise Figure NF ( I C = – 0.2 mAdc, V CE = –5.0 Vdc, R S = 2.0 kΩ, f = 1.0 kHz, BW = 200 Hz ) M7–2/6 LESHAN RADIO COMPANY, LTD. BCW29LT1 BCW30LT1 TYPICAL NOISE CHARACTERISTICS (V CE = – 5.0 Vdc, T A = 25°C) 10 10.0 BANDWIDTH = 1.0 Hz R ~ ~0 IC=10 µA 5.0 30µA 3.0 100µA 300µA 1.0mA 2.0 BANDWIDTH = 1.0 Hz R S~ ~ 8 7.0 S I n , NOISE CURRENT (pA) e n , NOISE VOLTAGE (nV) 7.0 5.0 IC=1.0mA 3.0 2.0 300µA 1.0 0.7 100µA 0.5 0.3 30µA 0.2 10µA 1.0 0.1 10 20 50 100 200 500 1.0k 2.0k 5.0k 10 10k 20 50 100 200 500 1.0k 2.0k f, FREQUENCY (Hz) f, FREQUENCY (Hz) Figure 1. Noise Voltage Figure 2. Noise Current 5.0k 10k NOISE FIGURE CONTOURS (V CE = – 5.0 Vdc, T A = 25°C) 1.0M 1.0M BANDWIDTH = 1.0 Hz 200k 100k 50k 20k 10k 0.5 dB 5.0k 1.0 dB 2.0k 1.0k 2.0dB 500 3.0 dB 200 100 10 5.0 dB 20 30 50 70 100 200 300 500 700 1.0K 500k R S , SOURCE RESISTANCE ( Ω ) R S , SOURCE RESISTANCE ( Ω ) 500k BANDWIDTH = 1.0 Hz 200k 100k 50k 20k 10k 0.5 dB 5.0k 2.0k 1.0dB 1.0k 2.0 dB 3.0 dB 500 200 5.0 dB 100 10 20 30 50 70 100 200 300 500 700 1.0K I C , COLLECTOR CURRENT (µA) I C , COLLECTOR CURRENT (µA) Figure 3. Narrow Band, 100 Hz Figure 4. Narrow Band, 1.0 kHz 1.0M R S , SOURCE RESISTANCE ( Ω ) 500k 10 Hz to 15.7KHz 200k 100k Noise Figure is Defined as: 50k 20k NF = 20 log 10 10k 0.5dB 5.0k 1/ 2 S e n = Noise Voltage of the Transistor referred to the input. (Figure 3) 2.0k 1.0dB 1.0k 2.0dB 3.0 dB 5.0 dB 500 200 100 10 e n 2 + 4KTRS + I n2 R S2 ( –––––––––––––––) 4KTR 20 30 50 70 100 200 300 I n = Noise Current of the Transistor referred to the input. (Figure 4) K = Boltzman’s Constant (1.38 x 10 –23 j/°K) T = Temperature of the Source Resistance (°K) R s = Source Resistance ( Ω ) 500 700 1.0K I C , COLLECTOR CURRENT (µA) Figure 5. Wideband M7–3/6 LESHAN RADIO COMPANY, LTD. BCW29LT1 BCW30LT1 TYPICAL STATIC CHARACTERISTICS 400 hFE , DC CURRENT GAIN T J = 125°C 25°C 200 – 55°C 100 80 BCW29LT1 V CE= 1.0 V V CE= 10 V 60 40 0.003 0.005 0.01 0.020.03 0.05 0.07 0.1 0.2 0.3 0.5 0.7 1.0 2.0 3.0 5.0 7.0 10 20 30 50 70 100 I C , COLLECTOR CURRENT (mA) I C , COLLECTOR CURRENT (mA) 1.0 T A= 25°C BCW29LT1 0.8 50 mA 10 mA I C= 1.0 mA 0.6 100 mA 0.4 0.2 T A = 25°C PULSE WIDTH =300 ms DUTY CYCLE<2.0% 80 I B= 400 mA 350µA 250 µA 300µA 200 µA 60 150 µA 40 100 µA 50µA 20 0 0 0.002 0.0050.010.02 0.05 0.1 0.2 0.5 1.0 2.0 5.0 10 5.0 15 20 25 30 35 40 I B , BASE CURRENT (mA) V CE , COLLECTOR–EMITTER VOLTAGE (VOLTS) Figure 8. Collector Characteristics 1.2 1.0 V BE(sat) @ I C /I B = 10 0.6 1.6 *APPLIES for I C / I B < h FE / 2 0.8 ∗ θ VC for V CE(sat) 25°C to 125°C 0 –55°C to 25°C –0.8 V BE(on)@ V CE= 1.0 V 0.4 25°C to 125°C –1.6 0.2 10 Figure 7. Collector Saturation Region T J=25°C 0.8 0 20 1.4 V, VOLTAGE (VOLTS) 100 θ V , TEMPERATURE COEFFICIENTS (mV/°C) V CE , COLLECTOR– EMITTER VOLTAGE (VOLTS) Figure 6. DC Current Gain V CE(sat) @ I C /I B = 10 θ VB for V BE –55°C to 25°C –2.4 0 0.1 0.2 0.5 1.0 2.0 5.0 10 20 50 100 0.1 0.2 0.5 1.0 2.0 5.0 10 20 50 100 I C , COLLECTOR CURRENT (mA) I C , COLLECTOR CURRENT (mA) Figure 9. “On” Voltages Figure 10. Temperature Coefficients M7–4/6 LESHAN RADIO COMPANY, LTD. BCW29LT1 BCW30LT1 TYPICAL DYNAMIC CHARACTERISTICS 500 1000 V CC= 3.0 V IC /I B= 10 T J= 25°C 300 200 500 200 t, TIME (ns) t, TIME (ns) 70 50 tr 20 ts 300 100 30 VCC= –3.0 V IC /I B= 10 IB1=IB2 T J= 25°C 700 100 70 50 td @ V BE(off)= 0.5 V tf 30 10 20 7.0 10 2.0 3.0 5.0 7.0 10 20 30 50 70 –1.0 100 –5.0 –7.0 –10 –20 –30 –50 I C , COLLECTOR CURRENT (mA) Figure 11. Turn–On Time Figure 12. Turn–Off Time –70 –100 10.0 500 T J= 25°C T J = 25°C 7.0 V CE=20 V 300 5.0 V 200 100 C ib 5.0 3.0 C ob 2.0 70 50 0.5 0.7 1.0 2.0 3.0 5.0 7.0 10 20 30 1.0 0.05 50 0.2 0.5 1.0 2.0 5.0 10 I C , COLLECTOR CURRENT (mA) V R , REVERSE VOLTAGE (VOLTS) Figure 14. Capacitance BCW29LT1 h fe ~ ~ 200 @ I C= -1.0 mA 5.0 3.0 VCE= 10 Vdc f = 1.0 kHz T A = 25°C 2.0 1.0 0.7 0.5 0.3 0.2 0.2 0.5 1.0 2.0 5.0 10 20 50 100 hoe , OUTPUT ADMITTANCE ( µmhos ) 10 7.0 0.1 0.1 Figure 13. Current–Gain — Bandwidth Product 20 h ie , INPUT IMPEDANCE ( kΩ ) –2.0 –3.0 I C , COLLECTOR CURRENT (mA) C, CAPACITANCE (pF) f T, CURRENT– GAIN — BANDWIDTH PRODUCT (MHz) 5.0 1.0 20 50 200 VCE= 10 Vdc f = 1.0 kHz T A= 25°C 100 70 50 BCW29LT1 h fe ~ ~ 200 @ I C= 1.0 mA 30 20 10 7.0 5.0 3.0 2.0 0.1 0.2 0.5 1.0 2.0 5.0 10 20 I C , COLLECTOR CURRENT (mA) I C , COLLECTOR CURRENT (mA) Figure 17. Input Impedance Figure 18. Output Admittance 50 100 M7–5/6 LESHAN RADIO COMPANY, LTD. BCW29LT1 BCW30LT1 r( t) TRANSIENT THERMAL RESISTANCE(NORMALIZED) 1.0 0.7 0.5 D = 0.5 0.3 0.2 0.2 0.1 0.1 FIGURE 19 DUTY CYCLE, D = t 1 / t 2 0.05 0.07 0.05 D CURVES APPLY FOR POWER PULSE TRAIN SHOWN P(pk) 0.02 0.03 t 0.01 0.02 0.01 0.01 0.02 0.05 0.1 0.2 0.5 1.0 t 2.0 5.0 10 20 50 100 200 READ TIME AT t 1 (SEE AN–569) Z θJA(t) = r(t) • RθJA 1 SINGLE PULSE T J(pk) – T A = P (pk) Z θJA(t) 2 500 1.0k 2.0k 5.0k 10k 20k 50k 100k t, TIME (ms) Figure 17. Thermal Response 104 DESIGN NOTE: USE OF THERMAL RESPONSE DATA V CC = 30 V I C , COLLECTOR CURRENT (nA) 10 3 I CEO 102 101 I CBO AND 100 I CEX @ V BE(off) = 3.0 V 10–1 10–2 –4 –2 0 +20 +40 +60 +80 +100 +120 +140 T J , JUNCTION TEMPERATURE (°C) Figure 18. Typical Collector Leakage Current +160 A train of periodical power pulses can be represented by the model as shown in Figure 19. Using the model and the device thermal response the normalized effective transient thermal resistance of Figure 17 was calculated for various duty cycles. To find Z θJA(t) , multiply the value obtained from Figure 17 by the steady state value R θJA . Example: The BCW29LT1 is dissipating 2.0 watts peak under the following conditions: t 1 = 1.0 ms, t 2 = 5.0 ms. (D = 0.2) Using Figure 17at a pulse width of 1.0 ms and D = 0.2, the reading of r(t) is 0.22. The peak rise in junction temperature is therefore ∆T = r(t) x P (pk) x R θJA = 0.22 x 2.0 x 200 = 88°C. For more information, see AN–569. M7–6/6