LRC BCW29LT1 General purpose transistors(pnp silicon) Datasheet

LESHAN RADIO COMPANY, LTD.
General Purpose Transistors
PNP Silicon
3
COLLECTOR
BCW29LT1
BCW30LT1
2
BASE
1
EMITTER
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
Collector–Emitter Voltage
V CEO
–32
Vdc
Collector–Base Voltage
V CBO
–32
Vdc
Emitter–Base Voltage
V
–5.0
Vdc
–100
mAdc
3
1
Collector Current — Continuous
EBO
IC
2
CASE 318–08, STYLE 6
SOT–23 (TO–236AB)
THERMAL CHARACTERISTICS
Characteristic
Total Device Dissipation FR– 5 Board, (1)
TA = 25°C
Derate above 25°C
Thermal Resistance, Junction to Ambient
Total Device Dissipation
Alumina Substrate, (2) TA = 25°C
Derate above 25°C
Thermal Resistance, Junction to Ambient
Junction and Storage Temperature
Symbol
Max
Unit
PD
225
mW
1.8
mW/°C
RθJA
556
°C/W
PD
300
mW
2.4
mW/°C
417
–55 to +150
°C/W
°C
RθJA
TJ , Tstg
DEVICE MARKING
BCW29LT1 = C1; BCW30LT1 = C2
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted.)
Characteristic
Symbol
Min
Max
Unit
V (BR)CEO
–32
—
Vdc
V (BR)CES
–32
—
Vdc
V (BR)CBO
–32
—
Vdc
V
–5.0
—
Vdc
(VCB = –32 Vdc, IE = 0 )
—
–100
nAdc
(VCB = –32 Vdc, IE = 0, TA = 100°C)
—
–10
µAdc
OFF CHARACTERISTICS
Collector–Emitter Breakdown Voltage
(IC = –2.0mAdc, IE = 0 )
Collector–Emitter Breakdown Voltage
(I C = –100 µAdc, V EB = 0)
Collector–Emitter Breakdown Voltage
(I C = –10 µAdc, I C = 0)
Emitter–Base Breakdown Voltage
(I E = –10 µAdc, I C = 0)
Collector Cutoff Current
(BR)EBO
I CBO
1. FR–5 = 1.0 x 0.75 x 0.062 in.
2. Alumina = 0.4 x 0.3 x 0.024 in. 99.5% alumina.
M7–1/6
LESHAN RADIO COMPANY, LTD.
BCW29LT1 BCW30LT1
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted) (Continued)
Characteristic
Symbol
Min
Max
Unit
120
215
260
500
—
—
V CE(sat)
—
– 0.3
Vdc
V BE(on)
– 0.6
–0.75
Vdc
C obo
—
7.0
pF
—
10
dB
ON CHARACTERISTICS
DC Current Gain
( IC= – 2.0 mAdc, VCE = – 5.0 Vdc )
Collector–Emitter Saturation Voltage
( IC = – 10 mAdc, IB = – 0.5 mAdc )
Base–Emitter On Voltage
hFE
BCW29
BCW30
( IC = – 2.0 mAdc, VCE = – 5.0 Vdc )
SMALL–SIGNAL CHARACTERISTICS
Output Capacitance
( VCB = – 10 Vdc,IE= 0, f = 1.0 MHz)
Noise Figure
NF
( I C = – 0.2 mAdc, V CE = –5.0 Vdc, R S = 2.0 kΩ, f = 1.0 kHz, BW = 200 Hz )
M7–2/6
LESHAN RADIO COMPANY, LTD.
BCW29LT1 BCW30LT1
TYPICAL NOISE CHARACTERISTICS
(V CE = – 5.0 Vdc, T A = 25°C)
10
10.0
BANDWIDTH = 1.0 Hz
R ~
~0
IC=10 µA
5.0
30µA
3.0
100µA
300µA
1.0mA
2.0
BANDWIDTH = 1.0 Hz
R S~
~
8
7.0
S
I n , NOISE CURRENT (pA)
e n , NOISE VOLTAGE (nV)
7.0
5.0
IC=1.0mA
3.0
2.0
300µA
1.0
0.7
100µA
0.5
0.3
30µA
0.2
10µA
1.0
0.1
10
20
50
100
200
500 1.0k
2.0k
5.0k
10
10k
20
50
100
200
500
1.0k
2.0k
f, FREQUENCY (Hz)
f, FREQUENCY (Hz)
Figure 1. Noise Voltage
Figure 2. Noise Current
5.0k
10k
NOISE FIGURE CONTOURS
(V CE = – 5.0 Vdc, T A = 25°C)
1.0M
1.0M
BANDWIDTH = 1.0 Hz
200k
100k
50k
20k
10k
0.5 dB
5.0k
1.0 dB
2.0k
1.0k
2.0dB
500
3.0 dB
200
100
10
5.0 dB
20
30
50
70
100
200
300
500 700 1.0K
500k
R S , SOURCE RESISTANCE ( Ω )
R S , SOURCE RESISTANCE ( Ω )
500k
BANDWIDTH = 1.0 Hz
200k
100k
50k
20k
10k
0.5 dB
5.0k
2.0k
1.0dB
1.0k
2.0 dB
3.0 dB
500
200
5.0 dB
100
10
20
30
50
70 100
200
300
500 700 1.0K
I C , COLLECTOR CURRENT (µA)
I C , COLLECTOR CURRENT (µA)
Figure 3. Narrow Band, 100 Hz
Figure 4. Narrow Band, 1.0 kHz
1.0M
R S , SOURCE RESISTANCE ( Ω )
500k
10 Hz to 15.7KHz
200k
100k
Noise Figure is Defined as:
50k
20k
NF = 20 log 10
10k
0.5dB
5.0k
1/ 2
S
e n = Noise Voltage of the Transistor referred to the input. (Figure 3)
2.0k
1.0dB
1.0k
2.0dB
3.0 dB
5.0 dB
500
200
100
10
e n 2 + 4KTRS + I n2 R S2
( –––––––––––––––)
4KTR
20
30
50
70 100
200
300
I n = Noise Current of the Transistor referred to the input. (Figure 4)
K = Boltzman’s Constant (1.38 x 10 –23 j/°K)
T = Temperature of the Source Resistance (°K)
R s = Source Resistance ( Ω )
500 700 1.0K
I C , COLLECTOR CURRENT (µA)
Figure 5. Wideband
M7–3/6
LESHAN RADIO COMPANY, LTD.
BCW29LT1 BCW30LT1
TYPICAL STATIC CHARACTERISTICS
400
hFE , DC CURRENT GAIN
T J = 125°C
25°C
200
– 55°C
100
80
BCW29LT1
V CE= 1.0 V
V CE= 10 V
60
40
0.003 0.005
0.01 0.020.03
0.05 0.07
0.1
0.2
0.3
0.5 0.7
1.0
2.0
3.0
5.0 7.0
10
20
30
50 70
100
I C , COLLECTOR CURRENT (mA)
I C , COLLECTOR CURRENT (mA)
1.0
T A= 25°C
BCW29LT1
0.8
50 mA
10 mA
I C= 1.0 mA
0.6
100 mA
0.4
0.2
T A = 25°C
PULSE WIDTH =300 ms
DUTY CYCLE<2.0%
80
I B= 400 mA
350µA
250 µA
300µA
200 µA
60
150 µA
40
100 µA
50µA
20
0
0
0.002 0.0050.010.02
0.05 0.1 0.2
0.5 1.0 2.0
5.0
10
5.0
15
20
25
30
35
40
I B , BASE CURRENT (mA)
V CE , COLLECTOR–EMITTER VOLTAGE (VOLTS)
Figure 8. Collector Characteristics
1.2
1.0
V BE(sat) @ I C /I B = 10
0.6
1.6
*APPLIES for I C / I B < h FE / 2
0.8
∗ θ VC for V CE(sat)
25°C to 125°C
0
–55°C to 25°C
–0.8
V BE(on)@ V CE= 1.0 V
0.4
25°C to 125°C
–1.6
0.2
10
Figure 7. Collector Saturation Region
T J=25°C
0.8
0
20
1.4
V, VOLTAGE (VOLTS)
100
θ V , TEMPERATURE COEFFICIENTS (mV/°C)
V CE , COLLECTOR– EMITTER VOLTAGE (VOLTS)
Figure 6. DC Current Gain
V CE(sat) @ I C /I B = 10
θ VB for V BE
–55°C to 25°C
–2.4
0
0.1
0.2
0.5
1.0
2.0
5.0
10
20
50
100
0.1
0.2
0.5
1.0
2.0
5.0
10
20
50
100
I C , COLLECTOR CURRENT (mA)
I C , COLLECTOR CURRENT (mA)
Figure 9. “On” Voltages
Figure 10. Temperature Coefficients
M7–4/6
LESHAN RADIO COMPANY, LTD.
BCW29LT1 BCW30LT1
TYPICAL DYNAMIC CHARACTERISTICS
500
1000
V CC= 3.0 V
IC /I B= 10
T J= 25°C
300
200
500
200
t, TIME (ns)
t, TIME (ns)
70
50
tr
20
ts
300
100
30
VCC= –3.0 V
IC /I B= 10
IB1=IB2
T J= 25°C
700
100
70
50
td @ V BE(off)= 0.5 V
tf
30
10
20
7.0
10
2.0
3.0
5.0
7.0
10
20
30
50
70
–1.0
100
–5.0 –7.0 –10
–20
–30
–50
I C , COLLECTOR CURRENT (mA)
Figure 11. Turn–On Time
Figure 12. Turn–Off Time
–70 –100
10.0
500
T J= 25°C
T J = 25°C
7.0
V CE=20 V
300
5.0 V
200
100
C ib
5.0
3.0
C ob
2.0
70
50
0.5
0.7
1.0
2.0
3.0
5.0 7.0
10
20
30
1.0
0.05
50
0.2
0.5
1.0
2.0
5.0
10
I C , COLLECTOR CURRENT (mA)
V R , REVERSE VOLTAGE (VOLTS)
Figure 14. Capacitance
BCW29LT1
h fe ~
~ 200
@ I C= -1.0 mA
5.0
3.0
VCE= 10 Vdc
f = 1.0 kHz
T A = 25°C
2.0
1.0
0.7
0.5
0.3
0.2
0.2
0.5
1.0
2.0
5.0
10
20
50
100
hoe , OUTPUT ADMITTANCE ( µmhos )
10
7.0
0.1
0.1
Figure 13. Current–Gain — Bandwidth Product
20
h ie , INPUT IMPEDANCE ( kΩ )
–2.0 –3.0
I C , COLLECTOR CURRENT (mA)
C, CAPACITANCE (pF)
f T, CURRENT– GAIN — BANDWIDTH PRODUCT (MHz)
5.0
1.0
20
50
200
VCE= 10 Vdc
f = 1.0 kHz
T A= 25°C
100
70
50
BCW29LT1
h fe ~
~ 200
@ I C= 1.0 mA
30
20
10
7.0
5.0
3.0
2.0
0.1
0.2
0.5
1.0
2.0
5.0
10
20
I C , COLLECTOR CURRENT (mA)
I C , COLLECTOR CURRENT (mA)
Figure 17. Input Impedance
Figure 18. Output Admittance
50
100
M7–5/6
LESHAN RADIO COMPANY, LTD.
BCW29LT1 BCW30LT1
r( t) TRANSIENT THERMAL RESISTANCE(NORMALIZED)
1.0
0.7
0.5
D = 0.5
0.3
0.2
0.2
0.1
0.1
FIGURE 19
DUTY CYCLE, D = t 1 / t 2
0.05
0.07
0.05
D CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
P(pk)
0.02
0.03
t
0.01
0.02
0.01
0.01
0.02
0.05
0.1
0.2
0.5
1.0
t
2.0
5.0
10
20
50
100
200
READ TIME AT t 1 (SEE AN–569)
Z θJA(t) = r(t) • RθJA
1
SINGLE PULSE
T J(pk) – T A = P (pk) Z θJA(t)
2
500
1.0k
2.0k
5.0k
10k
20k
50k
100k
t, TIME (ms)
Figure 17. Thermal Response
104
DESIGN NOTE: USE OF THERMAL RESPONSE DATA
V CC = 30 V
I C , COLLECTOR CURRENT (nA)
10
3
I CEO
102
101
I CBO
AND
100
I CEX @ V BE(off) = 3.0 V
10–1
10–2
–4
–2
0
+20
+40
+60
+80
+100
+120
+140
T J , JUNCTION TEMPERATURE (°C)
Figure 18. Typical Collector Leakage Current
+160
A train of periodical power pulses can be represented by the
model as shown in Figure 19. Using the model and the device
thermal response the normalized effective transient thermal resistance of Figure 17 was calculated for various duty cycles.
To find Z θJA(t) , multiply the value obtained from Figure 17 by
the steady state value R θJA .
Example:
The BCW29LT1 is dissipating 2.0 watts peak under the following conditions:
t 1 = 1.0 ms, t 2 = 5.0 ms. (D = 0.2)
Using Figure 17at a pulse width of 1.0 ms and D = 0.2, the reading of r(t) is 0.22.
The peak rise in junction temperature is therefore
∆T = r(t) x P (pk) x R θJA = 0.22 x 2.0 x 200 = 88°C.
For more information, see AN–569.
M7–6/6
Similar pages