SILABS CY28442ZXC-2 Clock generator for intelâ®alviso chipset Datasheet

CY28442-2
Clock Generator for Intel®Alviso Chipset
Features
• 96 /100 MHz Spreadable differential clock.
• 33 MHz PCI clock
• Compliant to Intel CK410M
• Low-voltage frequency select input
• Supports Intel Pentium-M CPU
• I2C support with readback capabilities
• Selectable CPU frequencies
• Differential CPU clock pairs
• Ideal Lexmark Spread Spectrum profile for maximum
electromagnetic interference (EMI) reduction
• 100 MHz differential SRC clocks
• 3.3V power supply
• 96 MHz differential dot clock
• 56-pin TSSOP package
• 48 MHz USB clocks
• SRC clocks independently stoppable through
CLKREQ#[A:B]
CPU
SRC
PCI
REF
DOT96
USB_48
x2 / x3
x5/6
x6
x2
x2
x1
Block Diagram
XIN
XOUT
Pin Configuration
14.318MHz
Crystal
PCI_STP#
PLL1
CPU
CPU_STP#
CLKREQ[A:B]#
PLL Reference
Divider
VDD_REF
REF
IREF
VDD_CPU
CPUT
CPUC
VDD_CPU
CPUT_ITP/SRCT7
CPUC_ITP/SRCC7
FS_[C:A]
PCI
VDD_PCI
PCIF
PLL2
96MSS
Divider
PLL3
FIXED
Divider
VDD_48MHz
96_100_SSCT
96_100_SSCC
VDD_48MHz
DOT96T
DOT96C
VDD_48
USB
VTTPWR_GD#/PD
SDATA
SCLK
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
PCI2/SEL_CLKREQ**
PCI_STP#
CPU_STP#
FS_C(TEST_SEL)/REF0
REF1
VSSA2
XIN
XOUT
VDDA2
SDATA
SCLK
VSS_CPU
CPUT0
CPUC0
VDD_CPU
CPUT1
CPUC1
IREF
VSSA
VDDA
CPU2T_ITP/SRCT7
CPU2C_ITP/SRCC7
VDD_SRC_ITP
CLKREQA#/SRCT6
CLKREQB#/SRCC6
SRCT5
SRCC5
VSS_SRC
56 pin TSSOP/SSOP
I2C
Logic
....................... Document #: 38-07691 Rev. *B Page 1 of 19
400 West Cesar Chavez, Austin, TX 78701
1+(512) 416-8500
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
CY28442-2
VDD_SRC
SRCT[1:5]
CPUC[1:5]
VDD_PCI
VDD_REF
VSS_REF
PCI3
PCI4
PCI5
VSS_PCI
VDD_PCI
ITP_EN/PCIF0
**96_100_SEL/PCIF1
VTTPWRGD#/PD
VDD_48
FS_A/48M_0
VSS_48
DOT96T
DOT96C
FS_B/TESTMODE
96_100_SSCT
96_100_SSCC
SRCT1
SRCC1
VDD_SRC
SRCT2
SRCC2
SRCT3
SRCC3
SRCT4_SATA
SRCC4_SATA
VDD_SRC
1+(512) 416-9669
www.silabs.com
CY28442-2
Pin Definitions
Pin No.
Name
Type
Description
1
VDD_REF
PWR
3.3V power supply for output
2
VSS_REF
GND
Ground for outputs.
33,32
CLKREQA#/SRCT6, I/O, PU 3.3V LVTTL input for enabling assigned SRC clock (active LOW) or 100-MHz
CLKREQB#,SRCC6
Serial Reference Clock.
Selectable through CLKREQA# defaults to enable/disable SRCT/C4, CLKREQB#
defaults to enable/disable SRCT/C5. Assignment can be changed via SMBUS
register Byte 8.
7
VDD_PCI
PWR
3.3V power supply for outputs.
Ground for outputs.
6
VSS_PCI
GND
3,4,5
PCI
O, SE 33 MHz clock
8
ITP_EN/PCIF0
I/O, SE 3.3V LVTTL input to enable SRC7 or CPU2_ITP/33-MHz clock output.
(sampled on the VTT_PWRGD# assertion).
1 = CPU2_ITP, 0 = SRC7
9
PCIF1/96_100_SEL
I/O, 33 MHz clock/3.3V-tolerant input for 96_100M frequency selection
PD,SE (sampled on the VTT_PWRGD# assertion).
1 = 100 MHz, 0 = 96 MHz
10
VTT_PWRGD#/PD
I, PU
PWR
11
VDD_48
12
FS_A/48_M0
13
VSS_48
14,15
DOT96T, DOT96C
16
FS_B/TEST_MODE
17,18
96_100_SSC
19,20,22,23, SRCT/C
24,25,30,31
I/O
GND
3.3V LVTTL input. This pin is a level sensitive strobe used to latch the FS_A,
FS_B, FS_C and ITP_EN, 96MSS_SRC_SEL inputs, SEL_CLKREQ. After
VTT_PWRGD# (active LOW) assertion, this pin becomes a real-time input for
asserting power-down (active HIGH).
3.3V power supply for outputs.
3.3V-tolerant input for CPU frequency selection/fixed 48-MHz clock output.
Refer to DC Electrical Specifications table for Vil_FS and Vih_FS specifications.
Ground for outputs.
O, DIF Fixed 96 MHz clock output.
I
3.3V-tolerant input for CPU frequency selection. Selects Ref/N or Tri-state
when in test mode
0 = Tri-state, 1 = Ref/N
Refer to DC Electrical Specifications table for Vil_FS and Vih_FS specifications.
O,DIF Differential 96 /100 MHz SS clock for flat-panel display
O, DIF 100 MHz Differential serial reference clocks.
21,28
VDD_SRC
PWR
3.3V power supply for outputs.
34
VDD_SRC_ITP
PWR
3.3V power supply for outputs.
26,27
SRC4_SATAT,
SRC4_SATAC
29
VSS_SRC
36,35
CPUT2_ITP/SRCT7, O, DIF Selectable differential CPU or SRC clock output.
CPUC2_ITP/SRCC7
ITP_EN = 0 @ VTT_PWRGD# assertion = SRC7
ITP_EN = 1 @ VTT_PWRGD# assertion = CPU2
O, DIF Differential serial reference clock. Recommended output for SATA.
GND
Ground for outputs.
37
VDDA
PWR
3.3V power supply for PLL.
38
VSSA
GND
Ground for PLL.
39
IREF
I
42
VDD_CPU
44,43,41,40
CPUT/C
PWR
A precision resistor is attached to this pin, which is connected to the internal
current reference.
3.3V power supply for outputs.
O, DIF Differential CPU clock outputs.
45
VSS_CPU
46
SCLK
GND
I
47
SDATA
I/O
Ground for outputs.
SMBus-compatible SCLOCK.
SMBus-compatible SDATA.
.......................Document #: 38-07691 Rev. *B Page 2 of 19
CY28442-2
Pin Definitions (continued)
Pin No.
48
Name
Type
Description
VDDA2
PWR
49
XOUT
O, SE 14.318 MHz crystal output.
50
XIN
I
GND
3.3V power supply for PLL2
14.318 MHz crystal input.
51
VSSA2
52
REF1
O
Ground for PLL2.
Fixed 14.318 MHz clock output.
53
FS_C_TEST_SEL/
REF0
I/O
3.3V-tolerant input for CPU frequency selection/fixed 14.318 clock output.
Selects test mode if pulled to greater than 1.8V when VTT_PWRGD# is asserted
LOW.
Refer to DC Electrical Specifications table for VIL_FS,VIH_FS specifications.
54
CPU_STP#
I, PU
3.3V LVTTL input for CPU_STP# active LOW.
55
PCI_STP#
I, PU
3.3V LVTTL input for PCI_STP# active LOW.
56
PCI2/SEL_CLKREQ I/O, PD 3.3V-tolerant input for CLKREQ pin selection/fixed 33-MHz clock output.
(sampled on the VTT_PWRGD# assertion).
1= pins 32,33 function as clk request pins, 0= pins 32,33 function as SRC outputs.
Table 1. Frequency Select Table FS_A, FS_B, and FS_C
FS_C
FS_B
FS_A
CPU
SRC
PCIF/PCI
REF0
DOT96
USB
1
0
1
100 MHz
100 MHz
33 MHz
14.318 MHz
96 MHz
48 MHz
0
0
1
133 MHz
100 MHz
33 MHz
14.318 MHz
96 MHz
48 MHz
0
1
1
166 MHz
100 MHz
33 MHz
14.318 MHz
96 MHz
48 MHz
0
1
0
200 MHz
100 MHz
33 MHz
14.318 MHz
96 MHz
48 MHz
Frequency Select Pins (FS_A, FS_B, and FS_C)
Host clock frequency selection is achieved by applying the
appropriate logic levels to FS_A, FS_B, FS_C inputs prior to
VTT_PWRGD# assertion (as seen by the clock synthesizer).
Upon VTT_PWRGD# being sampled LOW by the clock chip
(indicating processor VTT voltage is stable), the clock chip
samples the FS_A, FS_B, and FS_C input values. For all logic
levels of FS_A, FS_B, and FS_C, VTT_PWRGD# employs a
one-shot functionality in that once a valid LOW on
VTT_PWRGD# has been sampled, all further VTT_PWRGD#,
FS_A, FS_B, and FS_C transitions will be ignored, except in
test mode.
Serial Data Interface
To enhance the flexibility and function of the clock synthesizer,
a two-signal serial interface is provided. Through the Serial
Data Interface, various device functions, such as individual
clock output buffers, can be individually enabled or disabled.
The registers associated with the Serial Data Interface
initialize to their default setting upon power-up, and therefore
use of this interface is optional. Clock device register changes
are normally made upon system initialization, if any are
required. The interface cannot be used during system
operation for power management functions.
Data Protocol
The clock driver serial protocol accepts byte write, byte read,
block write, and block read operations from the controller. For
block write/read operation, the bytes must be accessed in
sequential order from lowest to highest byte (most significant
bit first) with the ability to stop after any complete byte has
been transferred. For byte write and byte read operations, the
system controller can access individually indexed bytes. The
offset of the indexed byte is encoded in the command code,
as described in Table 2.
The block write and block read protocol is outlined in Table 3
while Table 4 outlines the corresponding byte write and byte
read protocol. The slave receiver address is 11010010 (D2h).
Table 2. Command Code Definition
Bit
7
(6:0)
Description
0 = Block read or block write operation, 1 = Byte read or byte write operation
Byte offset for byte read or byte write operation. For block read or block write operations, these bits should be
'0000000'
.......................Document #: 38-07691 Rev. *B Page 3 of 19
CY28442-2
Table 3. Block Read and Block Write Protocol
Block Write Protocol
Bit
1
8:2
Description
Start
Block Read Protocol
Bit
1
Slave address – 7 bits
8:2
Description
Start
Slave address – 7 bits
9
Write
9
Write
10
Acknowledge from slave
10
Acknowledge from slave
18:11
Command Code – 8 bits
18:11
Command Code – 8 bits
19
Acknowledge from slave
19
Acknowledge from slave
27:20
28
36:29
37
45:38
46
Byte Count – 8 bits
20
Acknowledge from slave
27:21
Repeat start
Slave address – 7 bits
Data byte 1 – 8 bits
28
Read = 1
Acknowledge from slave
29
Acknowledge from slave
Data byte 2 – 8 bits
Acknowledge from slave
....
Data Byte /Slave Acknowledges
....
Data Byte N – 8 bits
....
Acknowledge from slave
....
Stop
37:30
38
46:39
47
55:48
Byte Count from slave – 8 bits
Acknowledge
Data byte 1 from slave – 8 bits
Acknowledge
Data byte 2 from slave – 8 bits
56
Acknowledge
....
Data bytes from slave / Acknowledge
....
Data Byte N from slave – 8 bits
....
NOT Acknowledge
....
Stop
Table 4. Byte Read and Byte Write Protocol
Byte Write Protocol
Bit
1
8:2
9
Description
Start
Slave address – 7 bits
Write
Byte Read Protocol
Bit
1
8:2
9
Description
Start
Slave address – 7 bits
Write
10
Acknowledge from slave
10
Acknowledge from slave
18:11
Command Code – 8 bits
18:11
Command Code – 8 bits
19
Acknowledge from slave
19
Acknowledge from slave
Data byte – 8 bits
20
Repeated start
27:20
28
Acknowledge from slave
29
Stop
.......................Document #: 38-07691 Rev. *B Page 4 of 19
27:21
28
Slave address – 7 bits
Read
29
Acknowledge from slave
37:30
Data from slave – 8 bits
38
NOT Acknowledge
39
Stop
CY28442-2
Control Registers
Byte 0: Control Register 0
Bit
7
@Pup
1
6
1
Name
CPUT2_ITP/SRCT7
CPUC2_ITP/SRCC7
SRC[T/C]6
5
1
SRC[T/C]5
4
1
SRC[T/C]4
3
1
SRC[T/C]3
2
1
SRC[T/C]2
1
1
SRC[T/C]1
0
1
RESERVED
Description
CPU[T/C]2_ITP/SRC[T/C]7 Output Enable
0 = Disable (Tri-state), 1 = Enable
SRC[T/C]6 Output Enable
0 = Disable (Tri-state), 1 = Enable
SRC[T/C]5 Output Enable
0 = Disable (Tri-state), 1 = Enable
SRC[T/C]4 Output Enable
0 = Disable (Tri-state), 1 = Enable
SRC[T/C]3 Output Enable
0 = Disable (Tri-state), 1 = Enable
SRC[T/C]2 Output Enable
0 = Disable (Tri-state), 1 = Enable
SRC[T/C]1 Output Enable
0 = Disable (Tri-state), 1 = Enable
RESERVED
Byte 1: Control Register 1
Bit
7
@Pup
1
Name
PCIF0
6
1
DOT_96T/C
5
1
USB_48
4
1
REF0
3
1
REF1
2
1
CPU[T/C]1
1
1
CPU[T/C]0
0
0
CPU
Description
PCIF0 Output Enable
0 = Disabled, 1 = Enabled
DOT_96 MHz Output Enable
0 = Disable (Tri-state), 1 = Enabled
USB_48 MHz Output Enable
0 = Disabled, 1 = Enabled
REF0 Output Enable
0 = Disabled, 1 = Enabled
REF1 Output Enable
0 = Disabled, 1 = Enabled
CPU[T/C]1 Output Enable
0 = Disable (Tri-state), 1 = Enabled
CPU[T/C]0 Output Enable
0 = Disable (Tri-state), 1 = Enabled
PLL1 (CPU PLL) Spread Spectrum Enable
0 = Spread off, 1 = Spread on
Byte 2: Control Register 2
Bit
7
@Pup
1
Name
PCI5
6
1
PCI4
5
1
PCI3
4
1
PCI2
3
2
1
0
1
1
1
1
Reserved
Reserved
Reserved
PCIF1
Description
PCI5 Output Enable
0 = Disabled, 1 = Enabled
PCI4 Output Enable
0 = Disabled, 1 = Enabled
PCI3 Output Enable
0 = Disabled, 1 = Enabled
PCI2 Output Enable
0 = Disabled, 1 = Enabled
Reserved, Set = 1
Reserved, Set = 1
Reserved, Set = 1
PCIF1 Output Enable
0 = Disabled, 1 = Enabled
.......................Document #: 38-07691 Rev. *B Page 5 of 19
CY28442-2
Byte 3: Control Register 3
Bit
7
@Pup
0
Name
SRC7
6
0
SRC6
5
0
SRC5
4
0
SRC4
3
0
SRC3
2
0
SRC2
1
0
SRC1
0
0
RESERVED
Description
Allow control of SRC[T/C]7 with assertion of PCI_STP# or SW PCI_STP#
0 = Free running, 1 = Stopped with PCI_STP#
Allow control of SRC[T/C]6 with assertion of PCI_STP# or SW PCI_STP#
0 = Free running, 1 = Stopped with PCI_STP#
Allow control of SRC[T/C]5 with assertion of PCI_STP# or SW PCI_STP#
0 = Free running, 1 = Stopped with PCI_STP#
Allow control of SRC[T/C]4 with assertion of PCI_STP# or SW PCI_STP#
0 = Free running, 1 = Stopped with PCI_STP#
Allow control of SRC[T/C]3 with assertion of PCI_STP# or SW PCI_STP#
0 = Free running, 1 = Stopped with PCI_STP#
Allow control of SRC[T/C]2 with assertion of PCI_STP# or SW PCI_STP#
0 = Free running, 1 = Stopped with PCI_STP#
Allow control of SRC[T/C]1 with assertion of PCI_STP# or SW PCI_STP#
0 = Free running, 1 = Stopped with PCI_STP#
RESERVED
Byte 4: Control Register 4
Bit
7
@Pup
0
Name
96_100_SSC
6
0
DOT96T/C
5
4
0
0
RESERVED
PCIF1
3
0
PCIF0
2
1
CPU[T/C]2
1
1
CPU[T/C]1
0
1
CPU[T/C]0
Description
96_100_SSC Drive Mode
0 = Driven in PWRDWN, 1 = Tri-state
DOT_PWRDWN Drive Mode
0 = Driven in PWRDWN, 1 = Tri-state
RESERVED
Allow control of PCIF1 with assertion of SW and HW PCI_STP#
0 = Free running, 1 = Stopped with PCI_STP#
Allow control of PCIF0 with assertion of SW and HW PCI_STP#
0 = Free running, 1 = Stopped with PCI_STP#
Allow control of CPU[T/C]2 with assertion of CPU_STP#
0 = Free running, 1 = Stopped with CPU_STP#
Allow control of CPU[T/C]1 with assertion of CPU_STP#
0 = Free running, 1 = Stopped with CPU_STP#
Allow control of CPU[T/C]0 with assertion of CPU_STP#
0 = Free running, 1 = Stopped with CPU_STP#
Byte 5: Control Register 5
Bit
7
@Pup
0
Name
SRC[T/C]
6
0
CPU[T/C]2
5
0
CPU[T/C]1
4
0
CPU[T/C]0
3
0
SRC[T/C][7:1]
2
0
CPU[T/C]2
1
0
CPU[T/C]1
Description
SRC[T/C] Stop Drive Mode
0 = Driven when PCI_STP# asserted,1 = Tri-state when PCI_STP#
asserted
CPU[T/C]2 Stop Drive Mode
0 = Driven when CPU_STP# asserted,1 = Tri-state when CPU_STP#
asserted
CPU[T/C]1 Stop Drive Mode
0 = Driven when CPU_STP# asserted,1 = Tri-state when CPU_STP#
asserted
CPU[T/C]0 Stop Drive Mode
0 = Driven when CPU_STP# asserted,1 = Tri-state when CPU_STP#
asserted
SRC[T/C] PWRDWN Drive Mode
0 = Driven when PD asserted,1 = Tri-state when PD asserted
CPU[T/C]2 PWRDWN Drive Mode
0 = Driven when PD asserted,1 = Tri-state when PD asserted
CPU[T/C]1 PWRDWN Drive Mode
0 = Driven when PD asserted,1 = Tri-state when PD asserted
.......................Document #: 38-07691 Rev. *B Page 6 of 19
CY28442-2
Byte 5: Control Register 5 (continued)
Bit
0
@Pup
0
Name
CPU[T/C]0
Description
CPU[T/C]0 PWRDWN Drive Mode
0 = Driven when PD asserted,1 = Tri-state when PD asserted
Byte 6: Control Register 6
Bit
7
@Pup
0
6
0
5
4
0
1
3
1
2
HW
1
HW
0
HW
Name
TEST_SEL
Description
REF/N or Tri-state Select
0 = Tri-state, 1 = REF/N Clock
TEST_MODE
Test Clock Mode Entry Control
0 = Normal operation, 1 = REF/N or Tri-state mode,
RESERVED
RESERVED
REF
REF Output Drive Strength
0 = Low, 1 = High
PCI, PCIF and SRC clock SW PCI_STP Function
outputs except those set 0=SW PCI_STP assert, 1= SW PCI_STP deassert
When this bit is set to 0, all STOPPABLE PCI, PCIF and SRC outputs will
to free running
be stopped in a synchronous manner with no short pulses.
When this bit is set to 1, all STOPPED PCI, PCIF and SRC outputs will
resume in a synchronous manner with no short pulses.
FS_C
FS_C Reflects the value of the FS_C pin sampled on power-up
0 = FS_C was low during VTT_PWRGD# assertion
FS_B
FS_B Reflects the value of the FS_B pin sampled on power-up
0 = FS_B was low during VTT_PWRGD# assertion
FS_A
FS_A Reflects the value of the FS_A pin sampled on power-up
0 = FS_A was low during VTT_PWRGD# assertion
Byte 7: Vendor ID
Bit
7
6
5
4
3
2
1
0
@Pup
0
0
0
0
1
0
0
0
Name
Revision Code Bit 3
Revision Code Bit 2
Revision Code Bit 1
Revision Code Bit 0
Vendor ID Bit 3
Vendor ID Bit 2
Vendor ID Bit 1
Vendor ID Bit 0
Description
Revision Code Bit 3
Revision Code Bit 2
Revision Code Bit 1
Revision Code Bit 0
Vendor ID Bit 3
Vendor ID Bit 2
Vendor ID Bit 1
Vendor ID Bit 0
Byte 8: Control Register 8
7
Bit
@Pup
0
Name
CLKREQ#B
6
1
CLKREQ#B
5
0
CLKREQ#B
4
0
CLKREQ#B
3
2
0
1
RESERVED
CLKREQ#A
Description
SRC[T/C]7CLKREQ#B control
1 = SRC[T/C]7 stoppable by CLKREQ#B pin
0 = SRC[T/C]7 not controlled by CLKREQ#B pin
SRC[T/C]5 CLKREQ#B control
1 = SRC[T/C]5 stoppable by CLKREQ#B pin
0 = SRC[T/C]5 not controlled by CLKREQ#B pin
SRC[T/C]3 CLKREQ#B control
1 = SRC[T/C]3 stoppable by CLKREQ#B pin
0 = SRC[T/C]3 not controlled by CLKREQ#B pin
SRC[T/C]1 CLKREQ#B control
1 = SRC[T/C]1 stoppable by CLKREQ#B pin
0 = SRC[T/C]1 not controlled by CLKREQ#B pin
RESERVED
SRC[T/C]4 CLKREQ#A control
1 = SRC[T/C]4 stoppable by CLKREQ#A pin
0 = SRC[T/C]4 not controlled by CLKREQ#A pin
.......................Document #: 38-07691 Rev. *B Page 7 of 19
CY28442-2
Byte 8: Control Register 8 (continued)
1
Bit
@Pup
0
Name
CLKREQ#A
0
0
RESERVED
Description
SRC[T/C]2 CLKREQ#A control
1 = SRC[T/C]2 stoppable by CLKREQ#A pin
0 = SRC[T/C]2 not controlled by CLKREQ#A pin
RESERVED
Byte 9: Control Register 9
7
6
5
4
Bit
@Pup
0
0
0
0
Name
S3
S2
S1
S0
3
2
1
1
96_100 SEL
96_100 Enable
1
1
96_100 SS Enable
0
0
96_100 SW HW
Description
96_100_SSC Spread Spectrum Selection table:
S[3:0] SS%
‘0000’ = –0.8%(Default value)
‘0001’ = –1.0%
‘0010’ = –1.25%
‘0011’ = –1.5%
‘0100’ = –1.75%
‘0101’ = –2.0%
‘0110’ = –2.5%
‘0111’ = –0.5%
‘1000’ = ±0.25%
‘1001’ = ±0.4%
‘1010’ = ±0.5%
‘1011’ = ±0.6%
‘1100’ = ±0.8%
‘1101’ = ±1.0%
‘1110’ = ±1.25%
‘1111’ = ±1.5%
Software select 96_100_SSC output frequency, 0 = 96 MHz, 1 = 100 MHz.
96_100_SSC Enable, 0 = Disable, 1 = Enable.
96_100_SSC Spread spectrum enable. 0 = Disable, 1 = Enable.
Select output frequency of 96_100_SSC via software or hardware
0 = Hardware, 1 = Software.
Byte 10: Control Register 10
7
6
Bit
@Pup
0
0
Name
RESERVED
CLKREQ#B
5
0
CLKREQ#B
4
3
0
0
RESERVED
CLKREQ#A
2
0
CLKREQ#A
1
0
CLKREQ#A
0
0
CLKREQ#A
Description
RESERVED
SRC[T/C]4 CLKREQ#B control
1 = SRC[T/C]4 stoppable by CLKREQ#B pin
0 = SRC[T/C]4not controlled by CLKREQ#B pin
SRC[T/C]2 CLKREQ#B control
1 = SRC[T/C]2 stoppable by CLKREQ#B pin
0 = SRC[T/C]2 not controlled by CLKREQ#B pin
RESERVED
SRC[T/C]7CLKREQ#A control
1 = SRC[T/C]7 stoppable by CLKREQ#A pin
0 = SRC[T/C]7 not controlled by CLKREQ#A pin
SRC[T/C]5 CLKREQ#A control
1 = SRC[T/C]5 stoppable by CLKREQ#A pin
0 = SRC[T/C]5 not controlled by CLKREQ#A pin
SRC[T/C]3 CLKREQ#A control
1 = SRC[T/C]3 stoppable by CLKREQ#A pin
0 = SRC[T/C]3 not controlled by CLKREQ#A pin
SRC[T/C]1 CLKREQ#A control
1 = SRC[T/C]1 stoppable by CLKREQ#A pin
0 = SRC[T/C]1 not controlled by CLKREQ#A pin
.......................Document #: 38-07691 Rev. *B Page 8 of 19
CY28442-2
Table 5. Crystal Recommendations
Frequency
(Fund)
Cut
Loading Load Cap
Drive
(max.)
Shunt Cap
(max.)
Motional
(max.)
Tolerance
(max.)
Stability
(max.)
Aging
(max.)
14.31818 MHz
AT
Parallel
0.1 mW
5 pF
0.016 pF
35 ppm
30 ppm
5 ppm
20 pF
The CY28442-2 requires a Parallel Resonance Crystal.
Substituting a series resonance crystal will cause the
CY28442-2 to operate at the wrong frequency and violate the
ppm specification. For most applications there is a 300-ppm
frequency shift between series and parallel crystals due to
incorrect loading.
.
Clock Chip
Ci2
Ci1
Pin
3 to 6p
Crystal Loading
Crystal loading plays a critical role in achieving low ppm performance. To realize low ppm performance, the total capacitance
the crystal will see must be considered to calculate the appropriate capacitive loading (CL).
X2
X1
Cs1
Cs2
Trace
2.8pF
Figure 1 shows a typical crystal configuration using the two
trim capacitors. An important clarification for the following
discussion is that the trim capacitors are in series with the
crystal not parallel. It’s a common misconception that load
capacitors are in parallel with the crystal and should be
approximately equal to the load capacitance of the crystal.
This is not true.
XTAL
Ce1
Ce2
Trim
33pF
Figure 2. Crystal Loading Example
As mentioned previously, the capacitance on each side of the
crystal is in series with the crystal. This mean the total capacitance on each side of the crystal must be twice the specified
load capacitance (CL). While the capacitance on each side of
the crystal is in series with the crystal, trim capacitors
(Ce1,Ce2) should be calculated to provide equal capacitance
loading on both sides.
Figure 1. Crystal Capacitive Clarification
Use the following formulas to calculate the trim capacitor
values for Ce1 and Ce2.
Load Capacitance (each side)
Calculating Load Capacitors
In addition to the standard external trim capacitors, trace
capacitance and pin capacitance must also be considered to
correctly calculate crystal loading. As mentioned previously,
the capacitance on each side of the crystal is in series with the
crystal. This means the total capacitance on each side of the
crystal must be twice the specified crystal load capacitance
(CL). While the capacitance on each side of the crystal is in
series with the crystal, trim capacitors (Ce1,Ce2) should be
calculated to provide equal capacitive loading on both sides.
Ce = 2 * CL – (Cs + Ci)
Total Capacitance (as seen by the crystal)
CLe
=
1
1
( Ce1 + Cs1
+ Ci1 +
1
Ce2 + Cs2 + Ci2
)
CL....................................................Crystal load capacitance
CLe......................................... Actual loading seen by crystal
using standard value trim capacitors
Ce..................................................... External trim capacitors
Cs .............................................. Stray capacitance (terraced)
Ci ...........................................................Internal capacitance
(lead frame, bond wires etc.)
CLK_REQ[0:1]# Description
The CLKREQ#[A:B] signals are active LOW inputs used for
clean enabling and disabling selected SRC outputs. The
outputs controlled by CLKREQ#[A:B] are determined by the
settings in register byte 8. The CLKREQ# signal is a
de-bounced signal in that it’s state must remain unchanged
during two consecutive rising edges of SRCC to be recognized
as a valid assertion or deassertion. (The assertion and
deassertion of this signal is absolutely asynchronous).
.......................Document #: 38-07691 Rev. *B Page 9 of 19
CY28442-2
CLKREQ#X
SRCT(free running)
SRCC(free running)
SRCT(stoppable)
SRCT(stoppable)
Figure 3. CLK_REQ#[A:B] Deassertion/Assertion Waveform
CLK_REQ[A:B]# Assertion (CLKREQ# -> LOW)
All differential outputs that were stopped are to resume normal
operation in a glitch-free manner. The maximum latency from
the assertion to active outputs is between 2 and 6 SRC clock
periods (2 clocks are shown) with all SRC outputs resuming
simultaneously. All stopped SRC outputs must be driven high
within 10 ns of CLKREQ#[1:0] deassertion to a voltage greater
than 200 mV.
CLK_REQ[A:B]# Deassertion (CLKREQ# -> HIGH)
The impact of deasserting the CLKREQ#[A:B] pins is that all
SRC outputs that are set in the control registers to stoppable
via deassertion of CLKREQ#[A:B] are to be stopped after their
next transition. The final state of all stopped DIF signals is
LOW, both SRCT clock and SRCC clock outputs will not be
driven.
PD (Power-down) Clarification
The VTT_PWRGD# /PD pin is a dual-function pin. During
initial power-up, the pin functions as VTT_PWRGD#. Once
VTT_PWRGD# has been sampled LOW by the clock chip, the
pin assumes PD functionality. The PD pin is an asynchronous
active HIGH input used to shut off all clocks cleanly prior to
shutting off power to the device. This signal is synchronized
internal to the device prior to powering down the clock synthesizer. PD is also an asynchronous input for powering up the
system. When PD is asserted HIGH, all clocks need to be
driven to a LOW value and held prior to turning off the VCOs
and the crystal oscillator.
PD (Power-down) Assertion
When PD is sampled HIGH by two consecutive rising edges
of CPUC, all single-ended outputs will be held LOW on their
next HIGH-to-LOW transition and differential clocks must held
high or tri-stated (depending on the state of the control register
drive mode bit) on the next diff clock# HIGH-to-LOW transition
within 4 clock periods. When the SMBus PD drive mode bit
corresponding to the differential (CPU, SRC, and DOT) clock
output of interest is programmed to ‘0’, the clock output are
held with “Diff clock” pin driven HIGH at 2 x Iref, and “Diff
clock#” tri-state. If the control register PD drive mode bit corresponding to the output of interest is programmed to “1”, then
both the “Diff clock” and the “Diff clock#” are tri-state. Note the
example below shows CPUT = 133 MHz and PD drive mode
= ‘1’ for all differential outputs. This diagram and description is
applicable to valid CPU frequencies 100, 133, 166, 200, 266,
333, and 400 MHz. In the event that PD mode is desired as
the initial power-on state, PD must be asserted HIGH in less
than 10 s after asserting Vtt_PwrGd#.
PD
CPUT, 133MHz
CPUC, 133MHz
SRCT 100MHz
SRCC 100MHz
USB, 48MHz
DOT96T
DOT96C
PCI, 33 MHz
REF
Figure 4. Power-down Assertion Timing Waveform
..................... Document #: 38-07691 Rev. *B Page 10 of 19
CY28442-2
PD Deassertion
CPU_STP# Assertion
The power-up latency is less than 1.8 ms. This is the time from
the deassertion of the PD pin or the ramping of the power
supply until the time that stable clocks are output from the
clock chip. All differential outputs stopped in a three-state
condition resulting from power down will be driven high in less
than 300 s of PD deassertion to a voltage greater than
200 mV. After the clock chip’s internal PLL is powered up and
locked, all outputs will be enabled within a few clock cycles of
each other. Below is an example showing the relationship of
clocks coming up.
The CPU_STP# signal is an active LOW input used for
synchronous stopping and starting the CPU output clocks
while the rest of the clock generator continues to function.
When the CPU_STP# pin is asserted, all CPU outputs that are
set with the SMBus configuration to be stoppable via assertion
of CPU_STP# will be stopped within two–six CPU clock
periods after being sampled by two rising edges of the internal
CPUC clock. The final states of the stopped CPU signals are
CPUT = HIGH and CPUC = LOW. There is no change to the
output drive current values during the stopped state. The
CPUT is driven HIGH with a current value equal to 6 x (Iref),
and the CPUC signal will be tri-stated.
Tstable
<1.8nS
PD
CPUT, 133MHz
CPUC, 133MHz
SRCT 100MHz
SRCC 100MHz
USB, 48MHz
DOT96T
DOT96C
PCI, 33MHz
REF
Tdrive_PWRDN#
<300S, >200mV
Figure 5. Power-down Deassertion Timing Waveform
CPU_STP#
CPUT
CPUC
Figure 6. CPU_STP# Assertion Waveform
..................... Document #: 38-07691 Rev. *B Page 11 of 19
CY28442-2
CPU_STP# Deassertion
The deassertion of the CPU_STP# signal will cause all CPU
outputs that were stopped to resume normal operation in a
synchronous manner. Synchronous manner meaning that no
short or stretched clock pulses will be produce when the clock
resumes. The maximum latency from the deassertion to active
outputs is no more than two CPU clock cycles.
CPU_STP#
CPUT
CPUC
CPUT Internal
CPUC Internal
Tdrive_CPU_STP#,10nS>200mV
Figure 7. CPU_STP# Deassertion Waveform
1.8mS
CPU_STOP#
PD
CPUT(Free Running
CPUC(Free Running
CPUT(Stoppable)
CPUC(Stoppable)
DOT96T
DOT96C
Figure 8. CPU_STP#= Driven, CPU_PD = Driven, DOT_PD = Driven
1.8mS
CPU_STOP#
PD
CPUT(Free Running)
CPUC(Free Running)
CPUT(Stoppable)
CPUC(Stoppable)
DOT96T
DOT96C
Figure 9. CPU_STP# = Tri-state, CPU_PD = Tri-state, DOT_PD = Tri-state
..................... Document #: 38-07691 Rev. *B Page 12 of 19
CY28442-2
PCI_STP# Assertion
PCI_STP# Deassertion
The PCI_STP# signal is an active LOW input used for
synchronous stopping and starting the PCI outputs while the
rest of the clock generator continues to function. The set-up
time for capturing PCI_STP# going LOW is 10 ns (tSU). (See
Figure 10.) The PCIF clocks will not be affected by this pin if
their corresponding control bit in the SMBus register is set to
allow them to be free-running.
The deassertion of the PCI_STP# signal will cause all PCI and
stoppable PCIF clocks to resume running in a synchronous
manner within two PCI clock periods after PCI_STP# transitions to a high level.
Tsu
PCI_STP#
PCI_F
PCI
SRC 100MHz
Figure 10. PCI_STP# Assertion Waveform
Tsu
Tdrive_SRC
PCI_STP#
PCI_F
PCI
SRC 100MHz
Figure 11. PCI_STP# Deassertion Waveform
FS_A, FS_B,FS_C
VTT_PW RGD#
PW RGD_VRM
0.2-0.3mS
Delay
VDD Clock Gen
Clock State
Clock Outputs
Clock VCO
State 0
W ait for
VTT_PW RGD#
State 1
State 2
Off
Off
Device is not affected,
VTT_PW RGD# is ignored
Sample Sels
State 3
On
On
Figure 12. VTT_PWRGD# Timing Diagram
..................... Document #: 38-07691 Rev. *B Page 13 of 19
CY28442-2
S2
S1
VTT_PWRGD# = Low
Delay
>0.25mS
Sample
Inputs straps
VDD_A = 2.0V
Wait for <1.8ms
S0
S3
Normal
Operation
VDD_A = off
Power Off
Enable Outputs
VTT_PWRGD# = toggle
Figure 13. Clock Generator Power-up/Run State Diagram
Absolute Maximum Conditions
Parameter
Description
Condition
Min.
Max.
Unit
–0.5
4.6
V
VDD
Core Supply Voltage
VDD_A
Analog Supply Voltage
–0.5
4.6
V
VIN
Input Voltage
Relative to VSS
–0.5
VDD + 0.5
VDC
TS
Temperature, Storage
Non-functional
–65
150
°C
TA
Temperature, Operating Ambient
Functional
0
85
°C
TJ
Temperature, Junction
Functional
–
150
°C
ØJC
Dissipation, Junction to Case
Mil-STD-883E Method 1012.1
–
20
°C/W
ØJA
Dissipation, Junction to Ambient
JEDEC (JESD 51)
–
60
°C/W
ESDHBM
ESD Protection (Human Body Model)
MIL-STD-883, Method 3015
2000
–
V
UL-94
Flammability Rating
At 1/8 in.
MSL
Moisture Sensitivity Level
V–0
1
Multiple Supplies: The Voltage on any input or I/O pin cannot exceed the power pin during power-up. Power supply sequencing is NOT required.
DC Electrical Specifications
Parameter
Description
Condition
All VDDs
3.3V Operating Voltage
3.3 ± 5%
Min.
Max.
Unit
3.135
3.465
V
VILI2C
Input Low Voltage
SDATA, SCLK
–
1.0
V
VIHI2C
Input High Voltage
SDATA, SCLK
2.2
–
V
VIL_FS
FS_[A,B] Input Low Voltage
VSS – 0.3
0.35
V
VIH_FS
FS_[A,B] Input High Voltage
0.7
VDD + 0.5
V
VILFS_C
FS_C Input Low Voltage
VSS – 0.3
0.35
V
VIMFS_C
FS_C Input Middle Voltage
0.7
1.8
V
VIHFS_C
FS_C Input High Voltage
VIL
3.3V Input Low Voltage
VIH
3.3V Input High Voltage
IIL
Input Low Leakage Current
IIH
VOL
VOH
1.8
VDD + 0.5
V
VSS – 0.3
0.8
V
2.0
VDD + 0.3
V
Except internal pull-up resistors, 0 < VIN < VDD
–5
5
A
Input High Leakage Current
Except internal pull-down resistors, 0 < VIN < VDD
–
5
A
3.3V Output Low Voltage
IOL = 1 mA
–
0.4
V
3.3V Output High Voltage
IOH = –1 mA
2.4
–
V
..................... Document #: 38-07691 Rev. *B Page 14 of 19
CY28442-2
DC Electrical Specifications (continued)
Parameter
Description
Condition
Min.
Max.
Unit
–10
10
A
3
5
pF
IOZ
High-impedance Output
Current
CIN
Input Pin Capacitance
COUT
Output Pin Capacitance
3
5
pF
LIN
Pin Inductance
–
7
nH
VXIH
Xin High Voltage
0.7VDD
VDD
V
VXIL
Xin Low Voltage
0
0.3VDD
V
IDD3.3V
Dynamic Supply Current
At max. load and freq. per Figure 15
–
400
mA
IPD3.3V
Power-down Supply Current
PD asserted, Outputs Driven
–
70
mA
IPD3.3V
Power-down Supply Current
PD asserted, Outputs Tri-state
–
2
mA
ITRI
Tri-state Current
Current in tri-state mode
–
100
mA
Condition
Min.
Max.
Unit
47.5
52.5
%
69.841
71.0
ns
AC Electrical Specifications
Parameter
Description
Crystal
TDC
XIN Duty Cycle
The device will operate reliably with input
duty cycles up to 30/70 but the REF clock
duty cycle will not be within specification
TPERIOD
XIN Period
When XIN is driven from an external
clock source
T R / TF
XIN Rise and Fall Times
Measured between 0.3VDD and 0.7VDD
–
10.0
ns
TCCJ
XIN Cycle to Cycle Jitter
As an average over 1-s duration
–
500
ps
LACC
Long-term Accuracy
Over 150 ms
–
300
ppm
CPU at 0.7V
TDC
CPUT and CPUC Duty Cycle
Measured at crossing point VOX
45
55
%
TPERIOD
100-MHz CPUT and CPUC Period
Measured at crossing point VOX
9.997001
10.00300
ns
TPERIOD
133-MHz CPUT and CPUC Period
Measured at crossing point VOX
7.497751
7.502251
ns
TPERIOD
166-MHz CPUT and CPUC Period
Measured at crossing point VOX
5.998201
6.001801
ns
TPERIOD
200-MHz CPUT and CPUC Period
Measured at crossing point VOX
4.998500
5.001500
ns
TPERIODSS
100-MHz CPUT and CPUC Period, SSC Measured at crossing point VOX
9.997001
10.05327
ns
TPERIODSS
133-MHz CPUT and CPUC Period, SSC Measured at crossing point VOX
7.497751
7.539950
ns
TPERIODSS
166-MHz CPUT and CPUC Period, SSC Measured at crossing point VOX
5.998201
6.031960
ns
TPERIODSS
200-MHz CPUT and CPUC Period, SSC Measured at crossing point VOX
4.998500
5.026634
ns
TPERIODAbs
100-MHz CPUT and CPUC Absolute
period
Measured at crossing point VOX
9.912001
10.08800
ns
TPERIODAbs
133-MHz CPUT and CPUC Absolute
period
Measured at crossing point VOX
7.412751
7.587251
ns
TPERIODAbs
166-MHz CPUT and CPUC Absolute
period
Measured at crossing point VOX
5.913201
6.086801
ns
TPERIODAbs
200-MHz CPUT and CPUC Absolute
period
Measured at crossing point VOX
4.913500
5.086500
ns
TPERIODSSAbs 100-MHz CPUT and CPUC Absolute
period, SSC
Measured at crossing point VOX
9.912001
10.13827
ns
TPERIODSSAbs 133-MHz CPUT and CPUC Absolute
period, SSC
Measured at crossing point VOX
7.412751
7.624950
ns
TPERIODSSAbs 166-MHz CPUT and CPUC Absolute
period, SSC
Measured at crossing point VOX
5.913201
6.116960
ns
..................... Document #: 38-07691 Rev. *B Page 15 of 19
CY28442-2
AC Electrical Specifications (continued)
Parameter
Description
TPERIODSSAbs 200-MHz CPUT and CPUC Absolute
period, SSC
Min.
Max.
Unit
Measured at crossing point VOX
Condition
4.913500
5.111634
ns
TCCJ
CPUT/C Cycle to Cycle Jitter
Measured at crossing point VOX
–
85
ps
TCCJ2
CPU2_ITP Cycle to Cycle Jitter
Measured at crossing point VOX
–
125
ps
TSKEW2
CPU2_ITP to CPU0 Clock Skew
Measured at crossing point VOX
–
150
ps
T R / TF
CPUT and CPUC Rise and Fall Time
Measured from VOL = 0.175 to
VOH = 0.525V
175
700
ps
TRFM
Rise/Fall Matching
Determined as a fraction of
2*(TR – TF)/(TR + TF)
–
20
%
TR
Rise Time Variation
–
125
ps
TF
Fall Time Variation
–
125
ps
VHIGH
Voltage High
Math averages Figure 15
660
850
mV
VLOW
Voltage Low
Math averages Figure 15
–150
–
mV
VOX
Crossing Point Voltage at 0.7V Swing
250
550
mV
VOVS
Maximum Overshoot Voltage
–
VHIGH +
0.3
V
VUDS
Minimum Undershoot Voltage
–0.3
–
V
VRB
Ring Back Voltage
See Figure 15. Measure SE
–
0.2
V
SRC
TDC
SRCT and SRCC Duty Cycle
Measured at crossing point VOX
45
55
%
TPERIOD
100-MHz SRCT and SRCC Period
Measured at crossing point VOX
9.997001
10.00300
ns
TPERIODSS
100-MHz SRCT and SRCC Period, SSC Measured at crossing point VOX
9.997001
10.05327
ns
TPERIODAbs
100-MHz SRCT and SRCC Absolute
Period
Measured at crossing point VOX
9.872001
10.12800
ns
TPERIODSSAbs 100-MHz SRCT and SRCC Absolute
Period, SSC
Measured at crossing point VOX
9.872001
10.17827
ns
TSKEW
Any SRCT/C to SRCT/C Clock Skew
Measured at crossing point VOX
–
100
ps
TCCJ
SRCT/C Cycle to Cycle Jitter
Measured at crossing point VOX
–
125
ps
LACC
SRCT/C Long Term Accuracy
Measured at crossing point VOX
T R / TF
SRCT and SRCC Rise and Fall Time
Measured from VOL = 0.175 to
VOH = 0.525V
TRFM
Rise/Fall Matching
Determined as a fraction of
2*(TR – TF)/(TR + TF)
TR
Rise TimeVariation
TF
Fall Time Variation
VHIGH
Voltage High
Math averages Figure 15
VLOW
Voltage Low
Math averages Figure 15
–150
–
mV
VOX
Crossing Point Voltage at 0.7V Swing
250
550
mV
VOVS
Maximum Overshoot Voltage
–
VHIGH +
0.3
V
VUDS
Minimum Undershoot Voltage
–0.3
–
V
VRB
Ring Back Voltage
–
0.2
V
PCI/PCIF
TDC
PCI Duty Cycle
Measurement at 1.5V
45
55
%
TPERIOD
Spread Disabled PCIF/PCI Period
Measurement at 1.5V
29.99100
30.00900
ns
TPERIODSS
Spread Enabled PCIF/PCI Period, SSC Measurement at 1.5V
29.9910
30.15980
ns
TPERIODAbs
Spread Disabled PCIF/PCI Period
29.49100
30.50900
ns
See Figure 15. Measure SE
Measurement at 1.5V
..................... Document #: 38-07691 Rev. *B Page 16 of 19
–
300
ppm
175
700
ps
–
20
%
–
125
ps
–
125
ps
660
850
mV
CY28442-2
AC Electrical Specifications (continued)
Parameter
Description
Condition
TPERIODSSAbs Spread Enabled PCIF/PCI Period, SSC Measurement at 1.5V
Min.
Max.
Unit
29.49100
30.65980
ns
THIGH
PCIF and PCI high time
Measurement at 2.4V
12.0
–
ns
TLOW
PCIF and PCI low time
Measurement at 0.4V
12.0
–
ns
T R / TF
PCIF/PCI rising and falling Edge Rate
Measured between 0.8V and 2.0V
1.0
4.0
V/ns
TSKEW
Any PCI clock to Any PCI clock Skew
Measurement at 1.5V
–
500
ps
TCCJ
PCIF and PCI Cycle to Cycle Jitter
Measurement at 1.5V
–
500
ps
DOT
TDC
DOT96T and DOT96C Duty Cycle
Measured at crossing point VOX
45
55
%
TPERIOD
DOT96T and DOT96C Period
Measured at crossing point VOX
10.41354
10.41979
ns
TPERIODAbs
DOT96T and DOT96C Absolute Period Measured at crossing point VOX
10.16354
10.66979
ns
TCCJ
DOT96T/C Cycle to Cycle Jitter
Measured at crossing point VOX
–
250
ps
LACC
DOT96T/C Long Term Accuracy
Measured at crossing point VOX
–
100
ppm
T R / TF
DOT96T and DOT96C Rise and Fall
Time
Measured from VOL = 0.175 to
VOH = 0.525V
175
700
ps
TRFM
Rise/Fall Matching
Determined as a fraction of
2*(TR – TF)/(TR + TF)
–
20
%
TR
Rise Time Variation
–
125
ps
TF
Fall Time Variation
–
125
ps
VHIGH
Voltage High
Math averages Figure 15
660
850
mV
VLOW
Voltage Low
Math averages Figure 15
–150
–
mV
VOX
Crossing Point Voltage at 0.7V Swing
250
550
mV
VOVS
Maximum Overshoot Voltage
–
VHIGH +
0.3
V
VUDS
Minimum Undershoot Voltage
–0.3
–
V
VRB
Ring Back Voltage
See Figure 15. Measure SE
–
0.2
V
USB
TDC
Duty Cycle
Measurement at 1.5V
45
55
%
TPERIOD
Period
Measurement at 1.5V
20.83125
20.83542
ns
TPERIODAbs
Absolute Period
Measurement at 1.5V
20.48125
21.18542
ns
THIGH
USB high time
Measurement at 2.4V
8.094
10.036
ns
TLOW
USB low time
Measurement at 0.4V
7.694
9.836
ns
T R / TF
Rising and Falling Edge Rate
Measured between 0.8V and 2.0V
1.0
2.0
V/ns
TCCJ
Cycle to Cycle Jitter
Measurement at 1.5V
–
350
ps
REF
TDC
REF Duty Cycle
Measurement at 1.5V
45
55
%
TPERIOD
REF Period
Measurement at 1.5V
69.8203
69.8622
ns
TPERIODAbs
REF Absolute Period
Measurement at 1.5V
68.82033
70.86224
ns
T R / TF
REF Rising and Falling Edge Rate
Measured between 0.8V and 2.0V
1.0
4.0
V/ns
TCCJ
REF Cycle to Cycle Jitter
Measurement at 1.5V
–
1000
ps
–
1.8
ms
10.0
–
ns
0
–
ns
ENABLE/DISABLE and SET-UP
TSTABLE
Clock Stabilization from Power-up
TSS
Stopclock Set-up Time
TSH
Stopclock Hold Time
..................... Document #: 38-07691 Rev. *B Page 17 of 19
CY28442-2
Test and Measurement Set-up
For PCI Single-ended Signals and Reference
The following diagram shows the single-ended PCI outputs.
Output under Test
tDC
Probe
3.3V
2.4V
1.5V
30
pF
Load
Cap
0.4V
0V
Tr
Tf
Figure 14. Single-ended PCI Lumped Load Configuration
The following diagram shows the test load configuration for the differential CPU and SRC outputs.
M e a s u re m e n t
P o in t

CPUT
SRCT
D O T96T
96_100SSC T
   
2pF
     D if f e r e n t ia l
M e a s u re m e n t
P o in t

CPUC
SRCC
D O T96C
96_100SSC C
   
2pF
IR E F

Figure 15. 0.7V Differential Clock Load Configuration
3 .3 V s ig n a l s
T DC
-
-
3 .3 V
2 .4 V
1 .5 V
0 .4 V
0V
TR
TF
Figure 16. Single-ended Output Signals (for AC Parameters Measurement)
..................... Document #: 38-07691 Rev. *B Page 18 of 19
CY28442-2
Ordering Information
Part Number
Package Type
Product Flow
Lead-free
CY28442ZXC-2
56-pin TSSOP
Commercial, 0 to 85C
CY28442ZXC-2T
56-pin TSSOP – Tape and Reel
Commercial, 0 to 85C
Package Diagrams
56-Lead Thin Shrunk Small Outline Package, Type II (6 mm x 12 mm) Z56
0.249[0.009]
28
1
DIMENSIONS IN MM[INCHES] MIN.
MAX.
REFERENCE JEDEC MO-153
7.950[0.313]
8.255[0.325]
PACKAGE WEIGHT 0.42gms
5.994[0.236]
6.198[0.244]
PART #
Z5624 STANDARD PKG.
ZZ5624 LEAD FREE PKG.
29
56
13.894[0.547]
14.097[0.555]
1.100[0.043]
MAX.
GAUGE PLANE
0.25[0.010]
0.20[0.008]
0.851[0.033]
0.950[0.037]
0.500[0.020]
BSC
0.170[0.006]
0.279[0.011]
0.051[0.002]
0.152[0.006]
0°-8°
0.508[0.020]
0.762[0.030]
0.100[0.003]
0.200[0.008]
SEATING
PLANE
The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice. Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from the
use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features or
parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where personal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized application, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.
..................... Document #: 38-07691 Rev. *B Page 19 of 19
ClockBuilder Pro
One-click access to Timing tools,
documentation, software, source
code libraries & more. Available for
Windows and iOS (CBGo only).
www.silabs.com/CBPro
Timing Portfolio
www.silabs.com/timing
SW/HW
Quality
Support and Community
www.silabs.com/CBPro
www.silabs.com/quality
community.silabs.com
Disclaimer
Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers
using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific
device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories
reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy
or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply
or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific
written consent of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected
to result in significant personal injury or death. Silicon Laboratories products are generally not intended for military applications. Silicon Laboratories products shall under no
circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.
Trademark Information
Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS®, EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations
thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadioPRO®, DSPLL®, ISOmodem ®, Precision32®, ProSLIC®, SiPHY®,
USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of
ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.
Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
USA
http://www.silabs.com
Similar pages