TDK B65803+0063A048 Ferrites and accessory Datasheet

Ferrites and accessories
RM 4, RM 4 LP
Core and accessories
Series/Type:
B65803, B65804, B65806, B65539
Date:
February 2016
a~í~=pÜÉÉí
¤EPCOS AG 2016. Reproduction, publication and dissemination of this publication, enclosures hereto and the
information contained therein without EPCOS’ prior express consent is prohibited.
EPCOS AG is a TDK Group Company.
RM 4
Core and accessories
Individual parts
Part no.
Page
Adjusting screw
B65539
B65806
7
Core
B65803
3
Clamp
B65806
6
Coil former
B65804
5
Core
B65803
3
B65804
6
Core
B65803
8
Coil former
B65804
9
SMD coil former with J terminals
B65804
10
Clamp
B65804
11
Insulatimg washer
B65804
11
Threaded sleeve (glued-in)
Insulating washer
Example of an assembly set
Also available:
Please read Cautions and warnings and
Important notes at the end of this document.
RM 4 low profile:
2
02/16
RM 4
Core
B65803
■ To IEC 62317-4
■ Core without center hole
for transformer applications
■ Delivery mode: sets
Magnetic characteristics (per set)
6 l/A
le
Ae
Amin
Ve
with
center hole
without
center hole
1.9
21
11

231
1.7
22
13
11.3
286
mm–1
mm
mm2
mm2
mm3
1.65
g
Approx. weight (per set)
m
1.45
Gapped
Material
AL value
nH
Pe
s
approx.
mm
Ordering code 1)
-A with center hole
-N with threaded sleeve
K1
16 r3%
25 r3%
1.0
0.40
24.2
37.8
B65803+0016A001
B65803+0025A001
M33
40r3%
63 r3%
0.36
0.18
60.4
96
B65803+0040A033
B65803+0063A033
N48
63 r3%
100 r3%
160 r3%
0.16
0.10
0.06
96
152
243
1) Replace the + by the code letter “A” or “N” for the required version.
Please read Cautions and warnings and
Important notes at the end of this document.
3
02/16
B65803+0063A048
B65803+0100A048
B65803+0160A048
RM 4
Core
B65803
Ungapped
Material
AL value
nH
Pe
N45
1700 +30/–20%
2290
B65803J0000R045
N30
1900 +30/–20%
2560
B65803J0000R030
T35
2800 +40/–30%
3770
B65803J0000Y035
T38
3700 +40/–30%
4980
B65803J0000Y038
N49
750 +30/–20%
1010
< 0.04 ( 50 mT, 500 kHz, 100 qC)
B65803J0000R049
N87
1100 +30/–20%
1480
< 0.20 (200 mT, 100 kHz, 100 qC)
B65803J0000R087
N97
1100 +30/–20%
1480
< 0.15 (200 mT, 100 kHz, 100 qC)
B65803J0000R097
Please read Cautions and warnings and
Important notes at the end of this document.
Ordering code
-J without center hole
PV
W/set
4
02/16
RM 4
Accessories
B65804
Coil former
Material:
GFR thermosetting plastic (UL 94 V-0, insulation class to IEC 60085:
H max. operating temperature 155 qC), color code black
Sumikon PM 9630® >E41429 (M)@, SUMIMOTO BAKELITE CO LTD
Solderability: to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 qC, 2 s
Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 qC, 3.5 s
Winding:
see Data Book 2013, chapter “Processing notes, 2.1”
For matching clamp and insulating washers see page 6.
Sections
AN
mm2
lN
mm
AR value
P:
Pins
Ordering code
1
7.7
20
89
5
6
B65804N1105D001
B65804N1106D001
Please read Cautions and warnings and
Important notes at the end of this document.
5
02/16
RM 4
Accessories
B65804, B65806
Clamp
■ With ground terminal, made of stainless spring steel (tinned), 0.3 mm thick
■ Solderability to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 qC, 2 s
■ Also available as strip clamp on reels on request
Insulating washer for double-clad PCBs
120 qC), 0.25 mm thick
@
>
Makrofol FR7-2, E118859 (M) , natural color, BAYER MATERIALSCIENCE AG
■ Made of polycarbonate (UL 94 V-0, insulation class to IEC 60085: E
Ordering code
Clamp (ordering code per piece, 2 are required)
B65806B2203X000
Insulating washer (bulk)
B65804C2005X000
Clamp
Insulating washer
Clamping forces for RM 4
Fmin: Extension of clamp from a to a2 = Xmin
Fmax: Extension of clamp from a to a1 = Xmax
Clamp opening a (mm)
8.3 +0.15
Core nose Zmax (mm)
0.15
Height of core pair X (mm) Xmin Xmax
8.75
9.25
Clamping force F (N)
Please read Cautions and warnings and
Important notes at the end of this document.
6
02/16
5
Fmin Fmax 40
RM 4
Accessories
B65539, B65806
Adjusting screw
■ Tube core with thread and core brake made of GFR polyterephthalate
Pocan B3235 ® >E245249 (M)@, LANXESS AG
Figure
Tube core
‡ u length (mm) Material
Color code
a
1.81 u 2.0
K1
yellow
B65539C1003X001
a
1.81 u 2.7
N22
red
B65539C1002X022
b
1.81 u 3.4
N22
green
B65806C3001X022
a
Please read Cautions and warnings and
Important notes at the end of this document.
Ordering code
b
7
02/16
RM 4 »Low Profile«
Core
■
■
■
■
B65803
To IEC 62317-4
For compact transformers with high inductance
Without center hole
Delivery mode: sets
Magnetic characteristics (per set)
6l/A
le
Ae
Amin
Ve
= 1.2 mm–1
= 17.3 mm
= 14.5 mm2
= 11.3 mm2
= 251 mm3
Approx. weight 1.2 g/set
Ungapped
AL value
nH
Pe
T38
5000 +40/–30%
4750
N49
950 +30/–20%
900
< 0.04 ( 50 mT, 500 kHz, 100 qC)
B65803P0000R049
N92
1000 +30/–20%
950
< 0.14 (200 mT, 100 kHz, 100 qC)
B65803P0000R092
N87
1300 +30/–20%
1230
< 0.12 (200 mT, 100 kHz, 100 qC)
B65803P0000R087
Material
Ordering code
PV
W/set
Please read Cautions and warnings and
Important notes at the end of this document.
B65803P0000Y038
8
02/16
RM 4 »Low Profile«
B65804
Accessories
Coil former
Material:
GFR thermosetting plastic (UL 94 V-0, insulation class to IEC 60085:
F max. operating temperature 155 qC), color code black
Sumikon PM 9630® >E41429 (M)@, SUMIMOTO BAKELITE CO LTD
Solderability: to IEC 60068-2-58, test Ta, method 1 (aging 3): 235 qC, 2 s
Resistance to soldering heat: to IEC 60068-2-20, test Tb, method 1B: 350 qC, 2 s
permissible soldering temperature for wire-wrap connection on coil former: 400 qC,1 s
Winding:
see Data Book 2013, chapter “Processing notes, 2.1”
For matching clamp and insulating washers, see page 11.
Sections
AN
mm2
lN
mm
AR value
P:
Terminals
Ordering code
1
4.7
20.1
147
6
B65804N1206D001
Coil former
Please read Cautions and warnings and
Important notes at the end of this document.
9
02/16
RM 4 »Low Profile«
Accessories
B65804
SMD coil former with J terminals
Material:
GFR liquid crystal polymer (UL 94 V-0, insulation class to IEC 60085:
F max. operating temperature 155 qC), color code black
Vectra C 130 >E83005 (M)@, TICONA
Solderability: to IEC 60068-2-58, test Td, method 6 (Group 3): 245 qC, 3 s
Resistance to soldering heat: to IEC 60068-2-58, test Td, method 6 (Group 3): 255 qC, 10 s
permissible soldering temperature for wire-wrap connection on coil former: 400 qC,1 s
Winding:
see Data Book 2013, chapter “Processing notes, 2.1”
For matching clamp, see page 11.
Sections
AN
mm2
lN
mm
AR value
P:
Terminals 1)
Ordering code
1
5.0
20.1
138
10
B65804B6010T001
2
4.4
20.1
157
10
B65804B6010T002
Coil former
1) 6 and 8 terminals on request
Please read Cautions and warnings and
Important notes at the end of this document.
10
02/16
RM 4 »Low Profile«
Accessories for PTH applications
B65804
Clamp
■ With ground terminal, made of stainless spring steel (tinned), 0.3 mm thick,
Without ground terminal, made of stainless spring steel, 0.3 mm thick
■ Solderability to IEC 60068-2-20, test Ta, method 1 (aging 3): 235 qC, 2 s
■ Also available as strip clamp on reels on request
Insulating washer for double-clad PCBs
120 qC), 0.25 mm thick
Makrofol FR7-2, >E118859 (M)@, natural color, BAYER MATERIALSCIENCE AG
■ Made of polycarbonate (UL 94 V-0, insulation class to IEC 60085: E
Ordering code
Clamp with ground terminal (ordering code per piece, 2 are required)
B65804P2203X000
Clamp without ground terminal (ordering code per piece, 2 are required) B65804P2204X000
Insulating washer (bulk)
B65804C2005X000
Clamp with ground terminal
Clamp without ground terminal
Insulating washer
Please read Cautions and warnings and
Important notes at the end of this document.
11
02/16
Ferrites and accessories
Cautions and warnings
Cautions and warnings
Mechanical stress and mounting
Ferrite cores have to meet mechanical requirements during assembling and for a growing number
of applications. Since ferrites are ceramic materials one has to be aware of the special behavior
under mechanical load.
As valid for any ceramic material, ferrite cores are brittle and sensitive to any shock, fast changing
or tensile load. Especially high cooling rates under ultrasonic cleaning and high static or cyclic loads
can cause cracks or failure of the ferrite cores.
For detailed information see chapter “Definitions”, section 8.1.
Effects of core combination on AL value
Stresses in the core affect not only the mechanical but also the magnetic properties. It is apparent
that the initial permeability is dependent on the stress state of the core. The higher the stresses are
in the core, the lower is the value for the initial permeability. Thus the embedding medium should
have the greatest possible elasticity.
For detailed information see chapter “Definitions”, section 8.2.
Heating up
Ferrites can run hot during operation at higher flux densities and higher frequencies.
NiZn-materials
The magnetic properties of NiZn-materials can change irreversible in high magnetic fields.
Processing notes
– The start of the winding process should be soft. Else the flanges may be destroyed.
– Too strong winding forces may blast the flanges or squeeze the tube that the cores can not be
mounted any more.
– Too long soldering time at high temperature (>300 °C) may effect coplanarity or pin arrangement.
– Not following the processing notes for soldering of the J-leg terminals may cause solderability
problems at the transformer because of pollution with Sn oxyd of the tin bath or burned insulation
of the wire. For detailed information see chapter “Processing notes”, section 8.2.
– The dimensions of the hole arrangement have fixed values and should be understood as
a recommendation for drilling the printed circuit board. For dimensioning the pins, the group
of holes can only be seen under certain conditions, as they fit into the given hole arrangement.
To avoid problems when mounting the transformer, the manufacturing tolerances for positioning
the customers’ drilling process must be considered by increasing the hole diameter.
Display of ordering codes for EPCOS products
The ordering code for one and the same product can be represented differently in data sheets, data books, other publications and the website of EPCOS, or in order-related documents such as
shipping notes, order confirmations and product labels. The varying representations of the ordering codes are due to different processes employed and do not affect the specifications of the respective products. Detailed information can be found on the Internet under www.epcos.com/orderingcodes.
Please read Cautions and warnings and
Important notes at the end of this document.
12
02/16
Ferrites and accessories
Symbols and terms
Symbols and terms
Symbol
Meaning
Unit
A
Ae
AL
AL1
Amin
AN
AR
B
'B
B̂ 'B̂ BDC
BR
BS
C0
CDF
DF
d
Ea
f
fcutoff
fmax
fmin
fr
fCu
g
H
Ĥ HDC
Hc
h
h/Pi 2
I
IDC
Î Cross section of coil
Effective magnetic cross section
Inductance factor; AL = L/N2
Minimum inductance at defined high saturation ( Pa)
Minimum core cross section
Winding cross section
Resistance factor; AR = RCu /N2
RMS value of magnetic flux density
Flux density deviation
Peak value of magnetic flux density
Peak value of flux density deviation
DC magnetic flux density
Remanent flux density
Saturation magnetization
Winding capacitance
Core distortion factor
Relative disaccommodation coefficient DF = d/Pi
Disaccommodation coefficient
Activation energy
Frequency
Cut-off frequency
Upper frequency limit
Lower frequency limit
Resonance frequency
Copper filling factor
Air gap
RMS value of magnetic field strength
Peak value of magnetic field strength
DC field strength
Coercive field strength
Hysteresis coefficient of material
Relative hysteresis coefficient
RMS value of current
Direct current
Peak value of current
Polarization
Boltzmann constant
Third harmonic distortion
Circuit third harmonic distortion
Inductance
mm2
mm2
nH
nH
mm2
mm2
P: = 10–6:
Vs/m2, mT
Vs/m2, mT
Vs/m2, mT
Vs/m2, mT
Vs/m2, mT
Vs/m2, mT
Vs/m2, mT
F = As/V
mm–4.5
J
s–1, Hz
s–1, Hz
s–1, Hz
s–1, Hz
s–1, Hz
mm
A/m
A/m
A/m
A/m
10–6 cm/A
10–6 cm/A
A
A
A
Vs/m2
J/K
H = Vs/A
J
k
k3
k3c
L
Please read Cautions and warnings and
Important notes at the end of this document.
13
02/16
Ferrites and accessories
Symbols and terms
Symbol
Meaning
Unit
'L/L
L0
LH
Lp
Lrev
Ls
le
lN
N
PCu
Ptrans
PV
PF
Q
R
RCu
Rh
'Rh
Ri
Rp
Rs
Rth
RV
s
T
'T
TC
t
tv
tanG
tanGL
tanGr
tanGe
tanGh
tanG/Pi
U
Û
Ve
Z
Zn
Relative inductance change
Inductance of coil without core
Main inductance
Parallel inductance
Reversible inductance
Series inductance
Effective magnetic path length
Average length of turn
Number of turns
Copper (winding) losses
Transferrable power
Relative core losses
Performance factor
Quality factor (Q = ZL/Rs = 1/tanGL)
Resistance
Copper (winding) resistance (f = 0)
Hysteresis loss resistance of a core
Rh change
Internal resistance
Parallel loss resistance of a core
Series loss resistance of a core
Thermal resistance
Effective loss resistance of a core
Total air gap
Temperature
Temperature difference
Curie temperature
Time
Pulse duty factor
Loss factor
Loss factor of coil
(Residual) loss factor at H o 0
Relative loss factor
Hysteresis loss factor
Relative loss factor of material at H o 0
RMS value of voltage
Peak value of voltage
Effective magnetic volume
Complex impedance
Normalized impedance |Z|n = |Z| /N 2 u H (le /Ae)
H
H
H
H
H
H
mm
mm
W
W
mW/g
Please read Cautions and warnings and
Important notes at the end of this document.
14
02/16
:
:
:
:
:
:
:
K/W
:
mm
°C
K
°C
s
V
V
mm3
:
:/mm
Ferrites and accessories
Symbols and terms
Symbol
Meaning
Unit
D
DF
De
Hr
)
K
KB
Ki
Os
P
P0
Pa
Papp
Pe
Pi
Pp'
Pp"
Pr
Prev
Ps'
Ps"
Ptot
Temperature coefficient (TK)
Relative temperature coefficient of material
Temperature coefficient of effective permeability
Relative permittivity
Magnetic flux
Efficiency of a transformer
Hysteresis material constant
Hysteresis core constant
Magnetostriction at saturation magnetization
Relative complex permeability
Magnetic field constant
Relative amplitude permeability
Relative apparent permeability
Relative effective permeability
Relative initial permeability
Relative real (inductive) component of P (for parallel components)
Relative imaginary (loss) component of P (for parallel components)
Relative permeability
Relative reversible permeability
Relative real (inductive) component of P (for series components)
Relative imaginary (loss) component of P (for series components)
Relative total permeability
derived from the static magnetization curve
Resistivity
Magnetic form factor
DC time constant WCu = L/RCu = AL/AR
Angular frequency; Z= 2 3f
1/K
1/K
1/K
Vs
mT-1
A–1H–1/2
Vs/Am
:m–1
mm–1
s
s–1
U
6l/A
WCu
Z
All dimensions are given in mm.
Surface-mount device
Please read Cautions and warnings and
Important notes at the end of this document.
15
02/16
Important notes
The following applies to all products named in this publication:
1. Some parts of this publication contain statements about the suitability of our products for
certain areas of application. These statements are based on our knowledge of typical
requirements that are often placed on our products in the areas of application concerned. We
nevertheless expressly point out that such statements cannot be regarded as binding
statements about the suitability of our products for a particular customer application. As
a rule, EPCOS is either unfamiliar with individual customer applications or less familiar with them
than the customers themselves. For these reasons, it is always ultimately incumbent on the
customer to check and decide whether an EPCOS product with the properties described in the
product specification is suitable for use in a particular customer application.
2. We also point out that in individual cases, a malfunction of electronic components or
failure before the end of their usual service life cannot be completely ruled out in the
current state of the art, even if they are operated as specified. In customer applications
requiring a very high level of operational safety and especially in customer applications in which
the malfunction or failure of an electronic component could endanger human life or health (e.g.
in accident prevention or life-saving systems), it must therefore be ensured by means of suitable
design of the customer application or other action taken by the customer (e.g. installation of
protective circuitry or redundancy) that no injury or damage is sustained by third parties in the
event of malfunction or failure of an electronic component.
3. The warnings, cautions and product-specific notes must be observed.
4. In order to satisfy certain technical requirements, some of the products described in this
publication may contain substances subject to restrictions in certain jurisdictions (e.g.
because they are classed as hazardous). Useful information on this will be found in our
Material Data Sheets on the Internet (www.epcos.com/material). Should you have any more
detailed questions, please contact our sales offices.
5. We constantly strive to improve our products. Consequently, the products described in this
publication may change from time to time. The same is true of the corresponding product
specifications. Please check therefore to what extent product descriptions and specifications
contained in this publication are still applicable before or when you place an order.
We also reserve the right to discontinue production and delivery of products.
Consequently, we cannot guarantee that all products named in this publication will always be
available. The aforementioned does not apply in the case of individual agreements deviating
from the foregoing for customer-specific products.
6. Unless otherwise agreed in individual contracts, all orders are subject to the current version
of the “General Terms of Delivery for Products and Services in the Electrical Industry”
published by the German Electrical and Electronics Industry Association (ZVEI).
7. The trade names EPCOS, Alu-X, CeraDiode, CeraLink, CeraPad, CeraPlas, CSMP, CSSP,
CTVS, DeltaCap, DigiSiMic, DSSP, ExoCore, FilterCap, FormFit, LeaXield, MiniBlue, MiniCell,
MKD, MKK, MotorCap, PCC, PhaseCap, PhaseCube, PhaseMod, PhiCap, PQSine, SIFERRIT,
SIFI, SIKOREL, SilverCap, SIMDAD, SiMic, SIMID, SineFormer, SIOV, SIP5D, SIP5K, TFAP,
ThermoFuse, WindCap are trademarks registered or pending in Europe and in other
countries. Further information will be found on the Internet at www.epcos.com/trademarks.
16
02/16
Similar pages