AVAGO MGA-636P8-BLKG High linearity low noise amplifier Datasheet

MGA-636P8
High Linearity Low Noise Amplifier
Data Sheet
Description
Features
Avago Technologies’ MGA-636P8 is an economical, easyto-use GaAs MMIC Low Noise Amplifier (LNA). This LNA
has low noise and high linearity achieved through the
use of Avago Technologies’ proprietary 0.25 mm GaAs
Enhancement-mode pHEMT process. It is housed in the
miniature 2.0 x 2.0 x 0.75 mm3 8-pin Dual-Flat-Non-Lead
(DFN) package. The device is designed for optimum use
from 450 MHz up to 1.5 GHz. The compact footprint
and low profile coupled with low noise, high gain and
high linearity make this an ideal choice as a low noise
amplifier for cellular infrastructure applications such as
LTE, GSM, CDMA, W-CDMA, CDMA2000 & TD-SCDMA. For
optimum performance at lower frequency from 1.5 GHz
up to 2.5 GHz, MGA-637P8 is recommended. For optimum
performance at higher frequency from 2.5 GHz up to 4
GHz, MGA-638P8 is recommended. All these 3 products,
MGA-636P8, MGA-637P8 and MGA-638P8 share the same
package and pinout configuration.
• High linearity performance.
Pin Configuration and Package Marking
[2]
[3]
[8]
36X
[7]
[6]
[5]
[4]
TOP VIEW
Pin 1 – Not Used
Pin 2 – RFinput
Pin 3 – Vbias2
Pin 4 – Not Used
Center paddle – GND
[8]
[7]
[6]
[5]
GND
• GaAs E-pHEMT Technology[1].
• Low cost small package size.
• Integrated with active bias and option to access FET
gate.
• Integrated power down control pin.
Specifications
700 MHz; 4.8 V, 108 mA
• 18.8 dB Gain
• 0.44 dB Noise Figure
• 11 dB Input Return Loss
• +23.7 dBm Input IP3
• +23.8 dBm Output Power at 1 dB gain compression
Applications
2.0 x 2.0 x 0.75 mm3 8-lead DFN
[1]
• Low Noise Figure.
[1]
[2]
[3]
[4]
BOTTOM VIEW
• Cellular infrastructure applications such as LTE, GSM,
CDMA, W-CDMA, CDMA2000 & TD-SCDMA.
• Other low noise applications.
Note:
1. Enhancement mode technology employs positive Vgs, thereby
eliminating the need of negative gate voltage associated with conventional depletion mode devices.
Pin 5 – Vbias1
Pin 6 – PwrDwn
Pin 7 – RFoutput
Pin 8 – Not Used
Note:
Package marking provides orientation and identification
“36” = Product Code
“X” = Month Code
It is recommended to ground Pin1, 4 and 8 which are Not Used.
Attention: Observe precautions for
handling electrostatic sensitive devices.
ESD Machine Model = 70 V
ESD Human Body Model = 300 V
Refer to Avago Application Note A004R:
Electrostatic Discharge, Damage and Control.
Simplified Schematic [1]
Vdd
C6
R2
C4
L3
C1
RFin
L1
C3
[8]
[NU]
[2]
[RFinput]
[7]
[RFoutput]
[3]
[Vbias2]
Bias
[4]
[NU]
R1
L2
[1]
[NU]
C2
RFout
[6]
[PwrDwn]
[5]
[Vbias1]
Rb
C7
C5
C8
PwrDwn
Vbias1
Note:
1. Device is turned ON when PwrDwn pin is applied with 0 V or left
open. Device is turned OFF when PwrDwn pin is applied with 3.3 V.
Absolute Maximum Rating [1] TA=25° C
Thermal Resistance
Symbol
Parameter
Units
Absolute Maximum
Vdd
Device Voltage,
RF output to ground
V
5.5
Idd
Drain Current
mA
130
Vbias1
Bias Voltage
V
5.5
VPwrDwn
Power Down Voltage
V
5.5
Pin,max
CW RF Input Power
dBm
+24
Pdiss
Total Power Dissipation
W
0.72
Tj
Junction Temperature
°C
150
Tstg
Storage Temperature
°C
-65 to 150
2
Thermal Resistance [2]
(Vdd = 4.8 V, Idd = 108 mA)
θjc = 79.6°C/W
Notes:
1. Operation of this device in excess of any of
these limits may cause permanent damage.
2. Thermal resistance measured using Infra-Red
Measurement Technique.
3. Power dissipation with unit turned on. Board
temperature Tc is 25° C. Derate at 12.6 mW/°C
for TC > 93° C.
Electrical Specifications [1, 4]
TA = 25° C, Vdd = Vbias1 = 4.8 V, RF measurement at 700 MHz, measured on demo board in Figure 5 with component
listed in Table1.
Symbol
Parameter and Test Condition
Units
Min.
Typ.
Max.
Idd
Drain Current
mA
89
108
126
IPwrDwn
Current at VPwrDwn pin when VPwrDwn =3.3 V
(Power Down mode)
mA
–
0.15
–
Gain
Gain
dB
17.5
18.8
20.5
NF[2]
Noise Figure
dB
–
0.44
0.8
IIP3[3]
Input Third Order Intercept Point
dBm
22
23.7
–
OP1dB
Output Power at 1dB Gain Compression
dBm
–
23.8
–
IRL
Input Return Loss, 50 Ω source
dB
–
11
–
ORL
Output Return Loss, 50 Ω load
dB
–
21
–
Notes:
1. Measurements at 700 MHz obtained using demo board described in Figure 5.
2. For NF data, board losses of the input have not been de-embedded.
3. IIP3 test condition: FRF1 = 700 MHz, FRF2 = 701 MHz with input power of -10 dBm per tone.
4. Use proper bias, heatsink and derating to ensure maximum channel temperature is not exceeded. See absolute maximum ratings and application
note for more details.
Product Consistency Distribution Charts [1, 2]
LSL
80
90
USL
100
110
120
USL
0.2
130
0.4
0.5
0.6
0.7
0.8
LSL
LSL
23
24
Figure 3. IIP3, LSL = 22 dBm, nominal = 23.7 dBm
0.9
Figure 2. NF, nominal = 0.44 dB, USL = 0.8 dB
Figure 1. Idd, LSL = 89 mA , nominal = 108 mA, USL = 126 mA
22
0.3
25
17
USL
18
19
20
Figure 4. Gain, LSL = 17.5 dB, nominal = 18.8 dB, USL = 20.5 dB
Notes:
1. Distribution data sample size is 500 samples taken from 3 different wafer lots. Future wafers allocated to this product may have nominal values
anywhere between the upper and lower limits.
2. Circuit trace losses have not been de-embedded from measurements above.
3
Demo Board Layout
Demo Board Schematic
Avago
Technologies
BTS LNA
Nov 2010
Vdd
C6
R2
RFin
L3
C1
C2
L1
L2
C4
C6
C3
Rb
C4
RFout
L3
C1
RFin
R1
L1
C5
C8
C7
C3
[8]
[NU]
[2]
[RFinput]
[7]
[RFoutput]
[3]
[Vbias2]
Bias
[4]
[NU]
R1
L2
[1]
[NU]
[5]
[Vbias1]
Rb
C7
Vbias1
C8
PwrDwn
Vdd
PwrDwn
RFout
[6]
[PwrDwn]
C5
Vbias1
C2
Truth Table
Figure 5. Demo Board Layout Diagram
– Recommended PCB material is 10 mils Rogers RO4350.
– Suggested component values may vary according to
layout and PCB material.
VPwrDwn(V)
LNA Mode
0 or open
Power Down Mode
3.3
Figure 6. Demo Board Schematic Diagram
Notes:
• The schematic is shown with the assumption that similar PCB is used
for all MGA-636P8, MGA-637P8 and MGA-638P8.
• Detail of the components needed for this product is shown in Table 1.
Table 1. Component list for 700 MHz matching
Part
Size
Value
Detail Part Number
C1, C2, C4
0402
100 pF (Murata)
GRM1555C1H101JD01D
C3
0402
27 pF (Murata)
GRM1555C1H270JA01D
C5, C6, C7, C8
0402
4.7 mF (Murata)
GRM188R60J475KE19D
L1, L2
0402
33 nH (Toko)
LL1005-FHL33NJ
L3
0402
Not Used
Rb
0402
Not Used
R1
0402
51 ohm (Rohm)
MCR004YZPJ510
R2
0402
0 ohm (Rohm)
MCR01MZPJ000
Notes:
C1, C2 are DC blocking capacitors
L1 input match for NF
L2 output match for IP3
C3, C4, C5, C6, C7, C8 are bypass capacitors
R1 is a stabilizing resistor
Rb is the biasing resistor (not used)
4
Typical Performance
0.5
0.5
0.4
0.4
0.3
0.3
Fmin (dB)
Fmin (dB)
RF performance at TA = 25° C, Vdd = 4.8 V, Idd = 100 mA, measured using 50 ohm input and output board unless stated
otherwise. IIP3 test condition: FRF1-FRF2 = 1 MHz with input power of -10 dBm per tone.
0.2
0.1
0
0.1
70
80
90
Idd (mA)
100
Gain(dB)
Gain(dB)
70
80
90
Idd (mA)
100
110
80
90
Idd (mA)
100
110
IIP3 (dBm)
Figure 11. IIP3 vs Idd at 4.8 V Tuned for Optimum IIP3 and Fmin at 700 MHz
5
80
90
Idd (mA)
100
110
22
20
18
16
14
12
10
8
6
4
2
0
70
80
90
Idd (mA)
100
110
Figure 10. Gain vs Idd at 4.8 V Tuned for Optimum IIP3 and Fmin at 900 MHz
IIP3 (dBm)
70
70
Figure 8. Fmin vs Idd at 4.8 V at 900 MHz
Figure 9. Gain vs Idd at 4.8 V Tuned for Optimum IIP3 and Fmin at 700 MHz
30
29
28
27
26
25
24
23
22
21
20
0
110
Figure 7. Fmin vs Idd at 4.8 V at 700 MHz
22
20
18
16
14
12
10
8
6
4
2
0
0.2
30
29
28
27
26
25
24
23
22
21
20
70
80
90
Idd (mA)
100
110
Figure 12. IIP3 vs Idd at 4.8 V Tuned for Optimum IIP3 and Fmin at 900 MHz
22
0.7
20
0.6
18
0.5
16
Gain (dB)
Fmin (dB)
0.8
0.4
0.3
0.2
100 mA
90 mA
80 mA
0.1
0
500
700
800
900
Frequency (MHz)
1700
1900
Figure 13. Fmin vs Frequency and Idd at 4.8 V
34
IIP3 (dBm)
32
30
28
26
24
500
700
800
900
Frequency (MHz)
1700
1900
Figure 15. IIP3 vs Frequency for Optimum IIP3 and Fmin at 4.8 V 100 mA
6
12
10
8
6
500
700
800
900
Frequency (MHz)
1700
1900
Figure 14. Gain vs Frequency for Optimum IIP3 and Fmin at 4.8 V 100 mA
36
22
14
Below is the table showing the MGA-636P8 Reflection Coefficient Parameters
tuned for Maximum IIP3, Vdd = 4.8 V, Idd = 100 mA.
Frequency
(GHz)
Gamma Load position
Magnitude
Angle
IIP3
(dBm)
0.50
0.36
-57.7
22.6
0.70
0.36
-57.6
28.4
0.80
0.36
-43.2
28.2
0.90
0.27
-39.9
28.9
1.70
0.27
-27.9
34.9
1.90
0.27
0.3
35.7
RFinput
Reference Plane
[1]
[NU]
[8]
[NU]
[2]
[RFinput]
[7]
[RFoutput]
[3]
[Vbias2]
Bias
[4]
[NU]
RFoutput
Reference Plane
[6]
[PwrDwn]
[5]
[Vbias1]
Figure 16. RFinput and RFoutput Reference Plane
Notes:
1. The Maximum IIP3 values are calculated based on Load pull measurements
on approximately 100 different impedances using Focus Load pull test
system.
2. Measurements are conducted on 0.010 inch thick ROGER 4350. The input
reference plane is at the end of the RFin pin and the output reference
plane is at the end of the RFout pin as shown in Figure 16.
7
Typical Performance
0.8
24.0
0.7
22.0
0.6
20.0
0.5
Gain (dB)
NF (dB)
RF performance at TA = 25° C, Vdd = Vbias1 = 4.8 V, Idd = 108 mA, LNA mode, measured on demo board in Figure 5. Signal
= CW unless stated otherwise. Application Test Circuit is shown in Figure 6 and Table 1. IIP3 test condition: FRF1-FRF2 = 1
MHz with input power of -10 dBm per tone.
0.4
0.3
0.2
0.0
0
IIP3 (dBm)
OP1dB(dBm)
800
1000 1200 1400
Frequency (MHz)
600
800
1000 1200 1400 1600 1800 2000
Frequency (MHz)
Figure 18. Gain vs Frequency vs Temperature
85° C
25° C
-40° C
Figure 19. IIP3 vs Frequency vs Temperature
8
10.0
400
200 400 600 800 1000 1200 1400 1600 1800 2000
Frequency (MHz)
600
16.0
12.0
Figure 17. NF vs Frequency vs Temperature
36
34
32
30
28
26
24
22
20
18
16
14
12
10
400
18.0
14.0
85° C
25° C
-40° C
0.1
85° C
25° C
-40° C
1600
1800
2000
28
27
26
25
24
23
22
21
20
19
18
400
85° C
25° C
-40° C
600
800
1000 1200 1400
Frequency (MHz)
Figure 20. OP1dB vs Frequency vs Temperature
1600 1800 2000
3.0
2.0
1.5
1.0
0.5
3
4
5
6
Frequency (GHz)
Figure 21. Input Return Loss, Output Return Loss, Gain, Reverse Isolation vs
Frequency
0
1
2
0.0
8 10 12 14
Frequency (GHz)
Figure 22. k-factor vs Frequency vs Temperature
120
100
100
80
80
Idd (mA)
120
60
0
2
4
40
20
20
0
0
9
16
18
20
85° C
25° C
-40° C
0.0
1.0
Rb (ohm)
Figure 23. Idd vs Rb
6
60
40
0
500
1000
1500
2000
2500
3000
3500
4000
4500
5000
5500
6000
6500
7000
7500
8000
8500
9000
9500
10000
Idd (mA)
100° C
85° C
25° C
-40° C
2.5
k-factor
dB(S(1,2))
dB(S(2,2))
dB(S(1,1))
dB(S(2,1))
25
20
15
10
5
0
-5
-10
-15
-20
-25
-30
-35
Figure 24. Idd vs VPwrDwn
2.0
VPwrDwn (V)
3.0
4.0
Typical Scattering Parameters, Vdd = 4.8 V, Idd = 108 mA
LNA SPAR (100 MHz – 20 GHz)
Freq
(GHz)
S11
(dB)
S11
(ang)
S21
(dB)
S21
(ang)
S12
(dB)
S12
(ang)
S22
(dB)
S22
(ang)
0.1
-3.611
-62.842
30.561
136.999
-34.551
62.629
-15.454
-100.227
0.5
-10.75
-141.835
21.562
98.647
-25.1
65.794
-21.768
173.774
0.7
-11.393
-159.056
19.067
89.008
-22.486
65.115
-23.274
176.757
0.9
-11.693
-171.846
17.088
81.239
-20.477
63.144
-23.435
-175.622
1.0
-12.003
-176.697
16.247
77.798
-19.607
61.903
-24.023
-169.048
1.5
-12.658
161.534
12.916
62.727
-16.314
54.394
-22.335
-157.583
1.7
-12.53
154.197
11.855
57.342
-15.332
51.078
-20.648
-161.025
1.9
-12.404
147.907
10.906
52.163
-14.463
47.752
-19.362
-164.643
2.0
-12.379
145.023
10.472
49.657
-14.065
46.022
-18.873
-166.072
2.5
-12.524
132.944
8.569
37.635
-12.364
37.489
-17.143
-171.539
3
-13.356
123.107
7.083
26.504
-10.943
28.854
-15.991
-174.201
3.5
-14.336
114.678
5.844
15.468
-9.794
19.876
-15.602
-179.46
4
-15.464
103.233
4.756
5.444
-8.846
11.572
-14.891
177.251
4.5
-16.075
89.916
3.908
-5.273
-7.978
2.026
-13.836
161.01
5
-15.98
79.553
3.084
-15.148
-7.323
-6.929
-12.579
146.587
5.5
-15.742
62.755
2.344
-25.098
-6.757
-16.231
-11.308
133.363
6
-15.688
50.395
1.686
-34.558
-6.287
-25.298
-10.288
121.972
7
-17.293
40.867
0.539
-52.328
-5.474
-42.892
-9.2
104.475
8
-23.851
68.823
-0.256
-69.296
-4.831
-60.283
-9.074
95.197
9
-19.948
145.615
-1.09
-85.871
-4.478
-77.706
-9.337
88.367
10
-15.337
144.42
-1.671
-102.123
-4.108
-95.651
-8.526
78.112
11
-14.047
129.044
-2.544
-120.208
-4.249
-115.535
-7.598
48.997
12
-12.433
104.57
-3.529
-135.218
-4.696
-132.217
-6.371
28.359
13
-9.432
93.835
-4.488
-151.951
-5.197
-150.835
-4.998
26.293
14
-6.416
81.489
-5.847
-162.095
-6.312
-163.011
-5.407
16.024
15
-5.585
68.225
-5.445
-168.582
-5.676
-170.476
-8.272
15.731
16
-5.651
57.754
-5.184
172.519
-5.19
168.847
-6.291
6.112
17
-4.91
46.32
-6.704
156.563
-6.646
151.286
-4.337
-20.813
18
-4.432
34.876
-7.895
144.747
-7.778
138.297
-3.486
-31.185
19
-3.638
18.869
-8.76
131.758
-8.607
124.14
-2.747
-26.804
20
-3.147
2.127
-8.894
121.339
-8.745
112.553
-2.767
-18.826
RFinput
Reference Plane
[1]
[NU]
[8]
[NU]
[2]
[RFinput]
[7]
[RFoutput]
[3]
[Vbias2]
Bias
[4]
[NU]
Figure 25. RFinput and RFoutput Reference Plane
10
[6]
[PwrDwn]
[5]
[Vbias1]
RFoutput
Reference Plane
Typical Noise Parameters, Vdd = 4.8 V, Idd = 108 mA
Part Number Ordering Information
Part Number
No. of Devices
Container
Rn/50
MGA-636P8-BLKG
100
Antistatic Bag
-31.8
0.038
MGA-636P8-TR1G
3000
7 inch Reel
11.5
0.037
0.081
33.2
0.037
0.386
0.082
54.8
0.038
0.5
0.092
228
0.043
0.582
0.094
271
0.043
Freq
GHz
Fmin
dB
Γopt
Mag.
Γopt
Ang.
0.5
0.472
0.078
0.7
0.432
0.080
0.8
0.379
0.9
1.7
1.9
Notes:
1. The Fmin values are based on noise figure measurements at 100
different impedances using Focus source pull test system. From
these measurements a true Fmin is calculated.
2. Scattering and noise parameters are measured on coplanar waveguide
made on 0.010 inch thick ROGER 4350. The input reference plane is
at the end of the RFinput pin and the output reference plane is at the
end of the RFoutput pin as shown in Figure 25.
DFN2X2 Package Dimensions
PIN 1 DOT
BY MARKING
2.00±0.10
0.20 Ref.
2.00±0.10
36X
0.0–0.05
TOP VIEW
0.75±0.10
SIDE VIEW
0.60±0.05
Exp. DAP
PIN #1 IDENTIFICATION
R0.10
0.35±0.05
1.20±0.05
Exp. DAP
0.50 Bsc
0.25±0.05
BOTTOM VIEW
11
1.50
Ref.
Notes:
1. All dimensions are in millimeters.
2. Dimensions are inclusive of plating.
3. Dimensions are exclusive of mold ash and metal burr.
Recommended PCB Land Pattern and Stencil Design
2.20
2.16
1.75
0.563x
0.502x
1.75
0.00
0.80
0.506x
0.228x
0.458x
0.05
(all SM gaps)
0.303x
R0.154x
PCB Land Pattern
0.1702x
0.408x
Stencil Design
1.75
0.563x
0.506x
0.50
Metal surface
0.21
1.50
Soldermask Open
R0.154x
0.172x
Combines PCB & Stencil Design
All Dimension are in millimeters
Notes:
1. Stencil thickness is 0.1 mm (4 mils).
2. All dimensions are in mm unless otherwise specified.
12
1.50
0.258x
0.21
1.72
0.482x
1.50
1.20
0.50
0.506x
Device Orientation
REEL
4 mm
8 mm
36X
CARRIER
TAPE
USER FEED
DIRECTION
36X
COVER TAPE
Tape Dimensions
D
P
PO
P2
E
F
W
+
+
D1
t1
Tt
KO
10° MAX
AO
DESCRIPTION
LENGTH
WIDTH
DEPTH
PITCH
BOTTOM HOLE DIAMETER
PERFORATION DIAMETER
PITCH
POSITION
CARRIER TAPE WIDTH
CAVITY
COVER TAPE
DISTANCE
13
10° MAX
BO
THICKNESS
WIDTH
TAPE THICKNESS
CAVITY TO PERFORATION
(WIDTH DIRECTION)
CAVITY TO PERFORATION
(LENGTH DIRECTION)
SYMBOL
A0
B0
K0
P
D1
D
P0
E
W
t1
C
Tt
F
SIZE (mm)
2.30 ± 0.05
2.30 ± 0.05
1.00 ± 0.05
4.00 ± 0.10
1.00 + 0.25
1.50 ± 0.10
4.00 ± 0.10
1.75 ± 0.10
8.00 ± 0.30
8.00 ± 0.10
0.254 ± 0.02
5.4 ± 0.10
0.062 ± 0.001
3.50 ± 0.05
SIZE (INCHES)
0.091 ± 0.004
0.091 ± 0.004
0.039 ± 0.002
0.157 ± 0.004
0.039 + 0.002
0.060 ± 0.004
0.157 ± 0.004
0.069 ± 0.004
0.315 ± 0.012
0.315 ± 0.004
0.010 ± 0.0008
0.205 ± 0.004
0.0025 ± 0.0004
0.138 ± 0.002
P2
2.00 ± 0.05
0.079 ± 0.002
36X
36X
Reel Dimensions – 7 inch
6.25mm EMBOSSED LETTERS
LETTERING THICKNESS: 1.6mm
SLOT HOLE "a"
SEE DETAIL "X"
Ø178.0±0.5
SLOT HOLE "b"
FRONT
BACK
6
PS
SLOT HOLE(2x)
180° APART.
SLOT HOLE "a": 3.0±0.5mm(1x)
SLOT HOLE "b": 2.5±0.5mm(1x)
FRONT VIEW
12.4
45°
1.5 MIN.
+1.5*
-0.0
+0.5
Ø13.0 -0.2
Ø20.2 MIN.
BACK
45°
Ø55.0±0.5
FRONT
EMBOSSED RIBS
RAISED: 0.25mm, WIDTH: 1.25mm
Ø178.0±0.5
Ø51.2±0.3
BACK VIEW
For product information and a complete list of distributors, please go to our web site:
SEE DETAIL "Y"
DETAIL "X"
Ø178.0±0.5
R5.2
°
R10.65
120
65°
18.0*
MAX.
www.avagotech.com
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries.
Data subject to change. Copyright © 2005-2013 Avago Technologies. All rights reserved.
AV02-2991EN - March 7, 2013
3.5
DETAIL "Y"
(Slot Hole)
1.0
6
PS
RECYCLE LOGO
Similar pages