LT1001 Precision Operational Amplifier DESCRIPTION U FEATURES ■ ■ ■ ■ ■ ■ ■ The LT ®1001 significantly advances the state-of-theart of precision operational amplifiers. In the design, processing, and testing of the device, particular attention has been paid to the optimization of the entire distribution of several key parameters. Consequently, the specifications of the lowest cost, commercial temperature device, the LT1001C, have been dramatically improved when compared to equivalent grades of competing precision amplifiers. Guaranteed Low Offset Voltage LT1001AM 15µV max LT1001C 60µV max Guaranteed Low Drift LT1001AM 0.6µV/°C max LT1001C 1.0µV/°C max Guaranteed Low Bias Current LT1001AM 2nA max LT1001C 4nA max Guaranteed CMRR LT1001AM 114dB min LT1001C 110dB min Guaranteed PSRR LT1001AM 110dB min LT1001C 106dB min Low Power Dissipation LT1001AM 75mW max LT1001C 80mW max Low Noise 0.3µVP-P Essentially, the input offset voltage of all units is less than 50µV (see distribution plot below). This allows the LT1001AM/883 to be specified at 15µV. Input bias and offset currents, common-mode and power supply rejection of the LT1001C offer guaranteed performance which were previously attainable only with expensive, selected grades of other devices. Power dissipation is nearly halved compared to the most popular precision op amps, without adversely affecting noise or speed performance. A beneficial by-product of lower dissipation is decreased warm-up drift. Output drive capability of the LT1001 is also enhanced with voltage gain guaranteed at 10 mA of load current. For similar performance in a dual precision op amp, with guaranteed matching specifications, see the LT1002. Shown below is a platinum resistance thermometer application. U APPLICATIONS ■ ■ ■ ■ Thermocouple amplifiers Strain gauge amplifiers Low level signal processing High accuracy data acquisition , LTC and LT are registered trademarks of Linear Technology Corporation. Linearized Platinum Resistance Thermometer with ±0.025°C Accuracy Over 0 to 100°C Typical Distribution of Offset Voltage VS = ±15V, TA = 25°C 1MEG.** +15 R plat. † 20k 330k* GAIN TRIM 10k* 2 1 µf – 2 6 LT1001 3 200 – 10k* + LT1001 3 + 6 OUTPUT 200Ω LINEARITY TRIM 0 TO 10V = 0 TO 100°C NUMBER OF UNITS 1kΩ = 0°C 1.2k** 954 UNITS FROM THREE RUNS 150 100 50 LM129 90k* * ULTRONIX 105A WIREWOUND ** 1% FILM † PLATINUM RTD 118MF (ROSEMOUNT, INC.) 20k OFFSET TRIM 10k* ‡ Trim sequence: trim offset (0 °C = 1000.0Ω), trim linearity (35 °C = 1138.7Ω), trim gain (100 °C = 1392.6Ω). Repeat until all three points are fixed with ±0.025°C. 0 –60 –40 0 20 40 60 –20 INPUT OFFSET VOLTAGE (MICROVOLTS) 1001 TA02 1001 TA01 1 LT1001 U PACKAGE/ORDER INFORMATION TOP VIEW OFFSET ADJUST ORDER PART NUMBER 8 7 1 – –IN 2 LT1001AMH/883 LT1001MH LT1001ACH LT1001CH V+ 6 OUT + 5 3 NC 4 +IN V– (CASE) H PACKAGE METAL CAN LT1001AMJ8/883 LT1001MJ8 LT1001ACJ8 LT1001CJ8 LT1001ACN8 LT1001CN8 LT1001CS8 W W U W TOP VIEW VOS TRIM 1 VOS 8 TRIM –IN 2 – 7 V+ +IN 3 + 6 OUT V– 4 5 NC J8 PACKAGE N8 PACKAGE 8 PIN HERMETIC DIP 8 PIN PLASTIC DIP S8 PACKAGE 8 PIN PLASTIC SO ELECTRICAL CHARACTERISTICS SYMBOL PARAMETER W Supply Voltage ...................................................... ±22V Differential Input Voltage ...................................... ±30V Input Voltage ........................................................ ±22V Output Short Circuit Duration ......................... Indefinite Operating Temperature Range LT1001AM/LT1001M ....................... – 55°C to 150°C LT1001AC/LT1001C .............................. 0°C to 125°C Storage: All Devices.......................... – 65°C to 150°C Lead Temperature (Soldering, 10 sec.)................. 300°C U ABSOLUTE MAXIMUM RATINGS S8 PART MARKING 1001 VS = ±15V, TA = 25°C, unless otherwise noted LT1001AM/883 LT1001AC MIN TYP MAX 7 15 LT1001M/LT1001C MIN TYP MAX VOS Input Offset Voltage CONDITIONS LT1001AM/883 Note 1 ∆VOS ∆Time IOS Long Term Input Offset Voltage Stability Notes 2 and 3 Ib Input Bias Current en Input Noise Voltage 0.1Hz to 10Hz (Note 2) en Input Noise Voltage Density fO = 10Hz (Note 5) fO = 1000Hz (Note 2) AVOL Large Signal Voltage Gain RL ≥ 2kΩ, VO = ±12V RL ≥ 1kΩ VO = ±10V 450 300 800 500 400 250 800 500 V/mV CMRR Common Mode Rejection Ratio VCM = ±13V 114 126 110 126 dB PSRR Power Supply Rejection Ratio VS = ±3V to ±18V 110 123 106 123 dB Rin Input Resistance Differential Mode LT1001AC Input Offset Current 30 Input Voltage Range 18 60 µV 1.0 0.3 1.5 µV/month 2.0 0.4 3.8 nA ±0.5 ±2.0 ±0.7 ±4.0 nA 0.3 0.6 0.3 0.6 µVp-p 10.3 9.6 18.0 11.0 10.5 9.8 18.0 11.0 nV√Hz 10 25 0.2 0.3 15 80 MΩ ±13 ±14 100 ±13 ±14 V ±13 ±12 ±14 ±13.5 ±13 ±12 ±14 ±13.5 V V 0.25 V/µs VOUT Maximum Output Voltage Swing RL ≥ 2kΩ RL ≥ 1kΩ SR Slew Rate RL ≥ 2kΩ (Note 4) 0.1 0.25 GBW Gain-Bandwidth Product (Note 4) 0.4 0.8 Pd Power Dissipation No load No load, VS = ±3V See Notes on page 3. 2 UNITS 46 4 0.1 0.4 75 6 0.8 48 4 MHz 80 8 mW LT1001 ELECTRICAL CHARACTERISTICS SYMBOL PARAMETER VOS Input Offset Voltage VS = ±15V, – 55°C ≤ TA ≤ 125°C, unless otherwise noted ● LT1001AM/883 MIN TYP MAX 30 60 CONDITIONS MIN LT1001M TYP MAX 45 160 UNITS µV ∆VOS ∆Temp IOS Average Offset Voltage Drift ● 0.2 0.6 0.3 1.0 µV/°C Input Offset Current ● 0.8 4.0 1.2 7.6 nA IB Input Bias Current ±1.0 ±4.0 ±1.5 ±8.0 AVOL Large Signal Voltage Gain RL ≥ 2kΩ, VO = ±10V ● 300 700 200 700 V/mV CMRR Common Mode Rejection Ratio VCM = ±13V ● 110 122 106 120 dB Power Supply Rejection Ratio VS = ±3 to ±18V ● 117 dB PSRR ● Input Voltage Range 104 117 ● ±13 ±12.5 ±13.5 VOUT Output Voltage Swing RL ≥ 2kΩ ● Pd Power Dissipation No load ● 100 ±14 55 ±13 ±14 ±12.0 ±13.5 90 60 nA V V 100 mW LT1001C TYP MAX 30 110 UNITS µV VS = ±15V, 0°C ≤ TA ≤ 70°C, unless otherwise noted SYMBOL PARAMETER VOS Input Offset Voltage CONDITIONS MIN ● LT1001AC TYP MAX 20 60 MIN ∆VOS ∆Temp IOS Average Offset Voltage Drift ● 0.2 0.6 0.3 1.0 µV/°C Input Offset Current ● 0.5 3.5 0.6 5.3 nA IB Input Bias Current ±0.7 ±3.5 ±1.0 ±5.5 AVOL Large Signal Voltage Gain CMRR PSRR ● nA RL ≥ 2kΩ, VO = ±10V ● 350 750 250 750 V/mV Common Mode Rejection Ratio VCM = ±13V ● 110 124 106 123 dB Power Supply Rejection Ratio VS = ±3V to ±18V ● 106 120 103 120 dB ● ±13 VOUT Output Voltage Swing RL ≥ 2kΩ ● ±12.5 ±13.8 Pd Power Dissipation No load ● Input Voltage Range The ● denotes the specifications which apply over the full operating temperature range. Note 1: Offset voltage for the LT1001AM/883 and LT1001AC are measured after power is applied and the device is fully warmed up. All other grades are measured with high speed test equipment, approximately 1 second after power is applied. The LT1001AM/883 receives 168 hr. burn-in at 125°C. or equivalent. ±14 50 85 ±13 ±14 V ±12.5 ±13.8 V 55 90 mW Note 2: This parameter is tested on a sample basis only. Note 3: Long Term Input Offset Voltage Stability refers to the averaged trend line of VOS versus Time over extended periods after the first 30 days of operation. Excluding the initial hour of operation, changes in VOS during the first 30 days are typically 2.5µV. Note 4: Parameter is guaranteed by design. Note 5: 10Hz noise voltage density is sample tested on every lot. Devices 100% tested at 10Hz are available on request. 3 LT1001 U W TYPICAL PERFORMANCE CHARACTERISTICS Typical Distribution of Offset Voltage Drift with Temperature Offset Voltage Drift withTemperature of Representative Units 100 60 40 LT1001 VS = ±15V 30 OFFSET VOLTAGE (µV) 80 20 LT1001A 10 0 LT1001A –10 –20 20 LT1001 –30 –40 –1.0 –50 –50 –0.6 –0.2 0 +0.2 +0.6 +1.0 OFFSET VOLTAGE DRIFT (µV/°C) –25 50 25 0 75 TEMPERATURE (°C) 1001 G01 3 METAL CAN (H) PACKAGE 2 DUAL-IN-LINE PACKAGE PLASTIC (N) OR CERDIP (J) 1 0 1 3 4 2 TIME AFTER POWER ON (MINUTES) 1001 G02 0.1Hz to 10Hz Noise Long Term Stability of Four Representative Units 100 10 10 VOLTAGE NOISE nV/√Hz 3 1/f CORNER 4Hz VOLTAGE 10 1.0 1/f CORNER 70Hz 3 0.3 CURRENT NOISE pA/√Hz TA = 25°C VS = ±3 TO ±18V 30 5 1001 G03 Noise Spectrum NOISE VOLTAGE 100nV/DIV VS = ±15V TA = 25°C 4 125 100 OFFSET VOLTAGE CHANGE (µV) NUMBER OF UNITS 40 265 UNITS TESTED Warm-Up Drift CHANGE IN OFFSET VOLTAGE (MICROVOLTS) 50 5 0 –5 CURRENT 1 2 6 4 TIME (SECONDS) 8 1 10 Input Bias and Offset Current vs Temperature 0.6 BIAS CURRENT 0.4 –50 –25 125 1001 G07 4 0.5 0 DEVICE WITH POSITIVE INPUT CURRENT VS = ±15V TA = 25°C –.5 DEVICE WITH NEGATIVE INPUT CURRENT –1.0 100 Ib – + VCM OFFSET CURRENT 50 25 75 0 TEMPERATURE (°C) 4 –1.5 –15 5 30 1.0 INPUT BIAS CURRENT (nA) INPUT BIAS AND OFFSET CURRENTS (nA) 1.2 0.8 3 2 TIME (MONTHS) Input Bias Current vs Differential Input Voltage 1.5 1.4 VS = ±15V 1 1001 G06 Input Bias Current Over the Common Mode Range 1.0 0 1001 G05 1001 G04 0.2 –10 0.1 1000 10 100 FREQUENCY (Hz) INVERTING OR NON-INVERTING INPUT BIAS CURRENT (mA) 0 20 10 IB ≈ 1 nA to VDIFF = 0.7V COMMON-MODE INPUT RESISTANCE = 28V = 280G Ω 0.1nA 10 –5 0 5 –10 COMMON-MODE INPUT VOLTAGE VS = ±15V TA = 25°C 15 1001 G08 0 0.1 0.3 1.0 3.0 10 ± DIFFERENTIAL INPUT (VOLTS) 30 1001 G09 LT1001 U W TYPICAL PERFORMANCE CHARACTERISTICS Open Loop Voltage Gain Frequency Response Gain, Phase Shift vs Frequency VS = ±15V, VO = ±12V 800k VS = ±3V, VO = ±1V 600k 400k 200k 120 100 80 VS = ±15V 60 40 VS = ±3V 20 50 25 75 0 TEMPERATURE (°C) 100 –20 0.1 125 1 10 100 1k 10k 100k 1M 10M FREQUENCY (Hz) 1001 G10 4 0 V – = –12 to –18V V – = –1.2 to –4V 50 25 75 TEMPERATURE °C 100 100 80 VS = ±15V TA = 25°C 60 40 1 10 100k 100 1k 10k FREQUENCY (Hz) 12 8 POSITIVE SWING 4 VS = ±15V TA = 25°C 1001 G16 POSITIVE SUPPLY 60 40 20 1 10 100 1k FREQUENCY (Hz) 10k 100k Output Short-Circuit Current vs Time 50 0.5 ± 6 ± 9 ± 12 ± 15 ± 18 ± 21 SUPPLY VOLTAGE (V) NEGATIVE SUPPLY 80 1001 G15 SHORT CIRCUIT CURRENT (mA) SINKING SOURCING 1.0 100 Output Swing vs Load Resistance OUTPUT SWING (VOLTS) SUPPLY CURRENT (mA) 125°C VS = ±15V ±1V p-p TA = 25°C 120 0 0.1 1M NEGATIVE SWING 1.5 220 2 1 0.5 FREQUENCY (MHz) 1001 G12 16 ±3 0.2 1001 G14 Supply Current vs Supply Voltage 25°C 200 PHASE MARGIN –55°C = 63° 125°C = 57° 140 1001 G13 –55°C 180 Power Supply Rejection Ratio vs Frequency 120 20 125 2.0 160 VS = ±15V –8 0.1 POWER SUPPLY REJECTION (dB) COMMON MODE REJECTION (dB) V + = 12 to 18V 0 GAIN 125°C 140 GAIN 25°C & –55°C Common Mode Rejection Ratio vs Frequency V + = 1.2 to 4V 25°C PHASE MARGIN = 60° 8 140 +1.0 +0.8 +0.6 +0.4 +0.2 V– –50 –25 120 1001 G11 Common Mode Limit vs Temperature V+ –0.2 –0.4 –0.6 –0.8 –1.0 100 PHASE 25°C 12 –4 0 0 –50 –25 COMMON MODE LIMIT (VOLTS) REFERRED TO POWER SUPPLY 16 TA = 25°C VOLTAGE GAIN (dB) 1000k OPEN LOOP VOLTAGE GAIN (dB) OPEN LOOP VOLTAGE GAIN (V/V) 1200k 80 20 140 PHASE SHIFT (DEGREES) Open Loop Voltage Gain vs Temperature 0 100 1000 3k 300 LOAD RESISTANCE (Ω) 10k 1001 G17 40 –55°C 30 20 25°C 125°C 10 VS = ±15V –10 125°C –20 25°C –30 –55°C –40 –50 0 1 3 4 2 TIME FROM OPUTPUT SHORT (MINUTES) 1001 G18 5 LT1001 U W TYPICAL PERFORMANCE CHARACTERISTICS Voltage Follower Overshoot vs Capacitive Load Small Signal Transient Response Small Signal Transient Response 100 VS = ±15V TA = 25°C VIN = 100mV RL > 50k PERCENT OVERSHOOT 80 60 40 20 0 100 AV = +1, CL = 50pF 10,000 1000 CAPACITIVE LOAD (PICOFARADS) 1001 G19 100,000 AV = +1, CL = 1000pF 1001 G21 1001 G20 Maximum Undistorted Output vs. Frequency Closed Loop Output Impedance 28 100 VS = ±15V TA = 25°C 24 OUTPUT IMPEDANCE (Ω) OUTPUT VOLTAGE, PEAK-TO-PEAK (VOLTS) Large Signal Transient Response 20 16 12 8 10 AV = 1000 1 AV = +1 0.1 IO = ±1mA VS = ±15V TA = 25°C 0.01 4 0 0.001 10 100 FREQUENCY (kHz) 1 1000 1001 G22 1 10 1k 100 FREQUENCY (Hz) 1001 G23 U W U U APPLICATIONS INFORMATION Application Notes and Test Circuits The LT1001 series units may be inserted directly into OP-07, OP-05, 725, 108A or 101A sockets with or without removal of external frequency compensation or nulling components. The LT1001 can also be used in 741, LF156 or OP-15 applications provided that the nulling circuitry is removed. The LT1001 is specified over a wide range of power supply voltages from ±3V to ±18V. Operation with lower supplies is possible down to ±1.2V (two Ni-Cad batteries). However, with ±1.2V supplies, the device is stable only in closed loop gains of +2 or higher (or inverting gain of one or higher). 10k 100k 1001 G24 Unless proper care is exercised, thermocouple effects caused by temperature gradients across dissimilar metals at the contacts to the input terminals, can exceed the inherent drift of the amplifier. Air currents over device leads should be minimized, package leads should be short, and the two input leads should be as close together as possible and maintained at the same temperature. Test Circuit for Offset Voltage and its Drift with Temperature *50k +15V 2 100Ω * 50k * – + 3 7 LT1001 6 VO 4 –15V VO = 1000VOS * RESISTORS MUST HAVE LOW THERMOELECTRIC POTENTIAL. ** THIS CIRCUIT IS ALSO USED AS THE BURN-IN CONFIGURATION FOR THE LT1001, WITH SUPPLY VOLTAGES INCREASED TO ±20V. 1001 F01 6 LT1001 Offset Voltage Adjustment The input offset voltage of the LT1001, and its drift with temperature, are permanently trimmed at wafer test to a low level. However, if further adjustment of Vos is necessary, nulling with a 10k or 20k potentiometer will not degrade drift with temperature. Trimming to a value other than zero creates a drift of (Vos/ 300)µV/°C, e.g., if Vos is adjusted to 300 µV, the change in drift will be 1 µV/°C. The adjustment range with a 10k or 20k pot is approximately ±2.5mV. If less adjustment range is needed, the sensitivity and resolution of the nulling can be improved by using a smaller pot in conjunction with fixed resistors. The example below has an approximate null range of ±100 µV. 0.1Hz to 10Hz Noise Test Circuit 0.1µF VOLTAGE GAIN = 50,000 100kΩ – 10Ω 2kΩ + + LT1001 4.3k 22µF LT1001 DEVICE UNDER TEST 4.7 µF SCOPE ×1 RIN = 1MΩ – 2.2µF 100k Improved Sensitivity Adjustment 110k 0.1 µF 24.3k 1001 F03 7.5k (Peak-to-Peak noise measured in 10 sec interval) +15V 1k 1 2 The device under test should be warmed up for three minutes and shielded from air currents. 7.5k – 8 7 INPUT 3 + 6 LT1001 OUTPUT 4 –15V 1001 F02 DC Stabilized 1000v/µsec Op Amp 2.2µF TANTALUM +15V + 300 3.9k 1N914 2N5486 .1µF 200Ω* 200pf 2N5160 0.01 µF 22µF TANTALUM + 2N3866 33 1k RIN 1k 10k INPUT 3 + LT1001 15pF 2 2N4440 1.8k 30k –15V 6 .001 µF 390Ω 2N3904 – 30k 2N3904 .5Ω OUTPUT 470 .5Ω 22 2N5160 2N3906 0.01µF 2N3866 2N4440 22µF TANTALUM 200pF 15-60pF TUSONIX # 519-3188 – 1.2k 3.9k + 200Ω* 1N914 300 0.1µF –15V 1001 F04 1k Rf FULL POWER BANDWIDTH 8MHz *ADJUST FOR BEST SQUARE WAVE AT OUTPUT 7 LT1001 U TYPICAL APPLICATIONS Photodiode Amplifier Microvolt Comparator with TTL Output +5V 100pF 39.2 Ω 1% 1.21M 1% 7 NON INVERTING INPUT 2 INVERTING INPUT 3 5k 5% – 500k 1% 4.99k 1% 8 OUTPUT 2 20k LT1001 + 5% IN914 4 λ 2N3904 3 1001 TA04 Precision Current Sink V + = 2 to 35V 5k R 5V VIN 5k 7 2 – 0 to (V – + 1V) VIN 3 0 to (V + – 1V) 6 2N3685 7 + LT1001 2 2N2219 4 – 6 2N3685 2N2219 4 10K –5V 10k 1000pF V IOUT = IN R C RC ≈ 10 –4 LT1001 + 1001 TA03 Precision Current Source + OUTPUT 1V/µA 500k 1% 100pF 3 6 LT1001 –5V Positive feedback to one of the nulling terminals creates 5 µ to 20 µV of hysteresis. Input offset voltage is typically changed by less than 5 µV due to the feedback. – V – = –2 to –35V V IOUT = IN R R 1001 TA05 1001 TA06 Strain Gauge Signal Conditioner with Bridge Excitation +15V +15V 8.2k 2.0k* LM329 3 4.99k* 100Ω + LT1001 2 6 – REFERENCE OUT TO MONITORING A/D CONVERTER 2k 2N2219 IN4148 350Ω BRIDGE 3 * 301k 10k ZERO + LT1001 2 6 – 1µF 2 – IN4148 LT1001 3 + 6 0 TO 10V OUT 340k* 1.1k* 2N2907 2k 100Ω 5W GAIN TRIM *RN60C FILM RESISTORS 1001 TA07 –15V 8 LT1001 Large Signal Voltage Follower With 0.001% Worst-Case Accuracy rejections. Worst-case summation of guaranteed specifications is tabulated below. OUTPUT ACCURACY +12 to +18V 2 INPUT –10 to +10V – 3 LT1001C LT1001AM /883 LT1001C Error 25°C Max. 25°C Max. –55 to 125 °C Max. 0 to 70°C Max. + 0 to 10kΩ Offset Voltage Bias Current Common-Mode Rejection Power Supply Rejection Voltage Gain 15µV 20µV 20µV 18µV 22µV 60µV 40µV 30µV 30µV 25µV 60µV 40µV 30µV 36µV 33µV 110µV 55µV 50µV 42µV 40µV Worst-case Sum Percent of Full Scale (=20V) 95µV 185µV 199µV 297µV 0.0005% 0.0009% 0.0010% 0.0015% OUTPUT 6 LT1001 RS LT1001AM /883 7 –10 to +10V 4 –12 to –18V 1001 TA08 The voltage follower is an ideal example illustrating the overall excellence of the LT1001. The contributing error terms are due to offset voltage, input bias current, voltage gain, common-mode and power-supply Thermally Controlled NiCad Charger 10V, 1.2 AMP HR NICAD STACK +15V + – * – + BATTERY 3 AMBIENT 7 + LT1001 620k 2 –15V IN4001 6 2k – 2N6387 IN4148 4 –15V CIRCUIT USES TEMPERATURE DIFFERENCE BETWEEN BATTERY PACK MOUNTED THERMOCOUPLE AND AMBIENT THERMOCOUPLE TO SET BATTERY CHARGE CURRENT. PEAK CHARGING CURRENT IS 1 AMP. 0.1µF 43k 0.6Ω 5W 10Ω 1µF * * SINGLE POINT GROUND THERMOCOUPLES ARE 40 µV/°C CHROMEL-ALUMEL (TYPE K) * 1001 TA09 Precision Absolute Value Circuit 10k 0.1% INPUT –10 to 10V 10k 2 0.1% LT1001 3 0.1% 0.1% IN4148 – 10k 10k 2 6 LT1001 3 + – + 6 OUTPUT 0 to 10V IN4148 10k 1001 TA10 0.1% 9 LT1001 Precision Power Supply with Two Outputs (1) 0V to 10V in 100µV STEPS (2) 0V to 100V in 1mV STEPS 22k* 43k* (select) 100Ω 2 +15V 100Ω 5W – 2k LT1001 +15V 3 2N2219 6 + OUTPUT 1 0-10V 25mA IN 914 8.2k TRIAD TY-90 VN-46 LM399 DIODES = SEMTECH # FF-15 KVD 00000 – 99999 + 1 + KELVIN-VARLEY DIVIDER ESI#DP311 –15V 4 VN-46 0.1 *JULIE RSCH. LABS #R-44 25k 90k* 2.2 10k* (select) + TRIM–100V 100Ω 680pF 2 – D CLK 6 LT301A 3 OUTPUT 2 0-100V, 25mA Q 2N6533 33k 6 + 74C74 IN914 22µF 1.8k LT1001 + 3 +15 +15V +15V 2 15Ω 33k 33k – 2k Q + 2N2907 CLAMP SET 5k IN914 1001 TA11 Dead Zone Generator BIPOLAR SYMMETRY IS EXCELLENT BECAUSE ONE DEVICE, Q2, SETS BOTH LIMITS INPUT Q4 ** 100k ** 100k 2 10k* 6 LM301A 3 8 + 100k Q3 Q2 – VSET DEAD ZONE CONTROL INPUT 0 to 5V 2k 1 2 30pF 2N4393 Q1 47pF 10k* 4.7k 10k** – LT1001 3 6 + IN914 10k** 2 10k 3 +15V 100k 15pF 2 – LM301A 3 + 6 4.7k VOUT + IN914 VSET VOUT 1k VIN –15V 10 6 2N4393 Q6 3.3k Q5 LT1001 10k 4.7k 15pF – * 1% FILM ** RATIO MATCH 0.05% Q2, 3, 4, 5 CA 3096 TRANSISTOR ARRAY VSET 1001 TA12 LT1001 Instrumentation Amplifier with ±300V Common Mode Range and CMRR > 150dB +15V 820Ω 820Ω 3 + 10k 6 LT1001 2 – OUTPUT + 330k* 0.1µF S1 S3 ** 1µF INPUT 0.2µF ** 909Ω* S2 200Ω GAIN TRIM S4 (ACQUIRE) (READ) 01 02 OUT OUT A 74C906 IN IN 74C04 2k* 74C86 2k* 1 C 4022 EN 2 6 CLK R 10k 1k + 3 – 2 LM301A 5.6k* R1 0.1µF 1k LM329 1) ALL DIODES IN4148 2) S1–S4 OPTO MOS SWITCH OFM-1A, THETA-J CORP. 3) *FILM RESISTOR 4) **POLYPROPYLENE CAPACITORS 5) ADJUST R1 for 93 Hz AT TEST POINT A A FLYING CAPACITOR CHARGED BY CLOCKED PHOTO DRIVEN FET SWITCHES CONVERTS A DIFFERENTIAL SIGNAL AT A HIGH COMMON MODE VOLTAGE TO A SINGLE ENDED SIGNAL AT THE LT1001 OUTPUT. Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights. 1001 TA13 11 LT1001 W W SCHE ATIC DIAGRA V+ 7 6k 6k 1 8 Q29 Q27 40k Q24 Q25 Q28 40k 1.5k Q13 Q11 Q5 Q14 25k Q12 Q6 3k Q8 Q7 Q31 Q4 Q3 55pF 20pF Q33 20Ω + Q1A 500 Q2B Q1B 30pF Q2A 3k OUT Q26 3 6 20Ω Q21 – Q34 Q16 Q10 500 Q15 2 2k 180Ω Q20 2k Q17 Q23 Q18 Q30 Q9 120Ω 8k Q19 V– Q32 Q22 T1 240Ω 1001 SS 4 U PACKAGE DESCRIPTION H Package 8-Lead TO-5 Metal Can (0.200 PCD) Dimensions in inches (millimeters) unless otherwise noted. J8 Package 8-Lead CERDIP (Narrow 0.300, Hermetic) N8 Package 8-Lead PDIP (Narrow 0.300) (LTC DWG # 05-08-1110) (LTC DWG # 05-08-1510) (LTC DWG # 05-08-1320) CORNER LEADS OPTION (4 PLCS) 0.335 – 0.370 (8.509 – 9.398) DIA 0.305 – 0.335 (7.747 – 8.509) 0.040 (1.016) MAX 0.050 (1.270) MAX SEATING PLANE 0.023 – 0.045 (0.584 – 1.143) HALF LEAD OPTION 0.165 – 0.185 (4.191 – 4.699) GAUGE PLANE 0.010 – 0.045* (0.254 – 1.143) 0.005 (0.127) MIN 0.045 – 0.068 (1.143 – 1.727) FULL LEAD OPTION REFERENCE PLANE 0.500 – 0.750 (12.700 – 19.050) 0.405 (10.287) MAX 8 7 0.400* (10.160) MAX 6 5 0.025 (0.635) RAD TYP 2 3 0.016 – 0.021** (0.406 – 0.533) 0.008 – 0.018 (0.203 – 0.457) 0.027 – 0.034 (0.686 – 0.864) 0.385 ± 0.025 (9.779 ± 0.635) 0.200 (5.080) TYP 0.110 – 0.160 (2.794 – 4.064) INSULATING STANDOFF 0.300 – 0.325 (7.620 – 8.255) 0.009 – 0.015 (0.229 – 0.381) 0° – 15° 0.045 – 0.068 (1.143 – 1.727) 0.125 3.175 0.100 ± 0.010 MIN (2.540 ± 0.254) 0.014 – 0.026 (0.360 – 0.660) NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP/PLATE OR TIN PLATE LEADS. 5 1 2 3 4 0.045 – 0.065 (1.143 – 1.651) 0.130 ± 0.005 (3.302 ± 0.127) ( +0.025 0.325 –0.015 8.255 +0.635 –0.381 ) 0.065 (1.651) TYP 0.005 (0.127) MIN 0.100 ± 0.010 (2.540 ± 0.254) *THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm) J8 0694 0.125 (3.175) MIN 0.015 (0.380) MIN 0.018 ± 0.003 (0.457 ± 0.076) N8 0695 H8(TO-5) 0.200 PCD 0595 Tjmax θja 150°C 100°C/W *LEAD DIAMETER IS UNCONTROLLED BETWEEN THE REFERENCE PLANE AND 0.045" BELOW THE REFERENCE PLANE 0.016 – 0.024 (0.406 – 0.610) **FOR SOLDER DIP LEAD FINISH, LEAD DIAMETER IS Tjmax θja θjc 150°C 150°C/W 45°C/W Tjmax θja 150°C 130°C/W S8 Package 8-Lead Plastic Small Outline (Narrow 0.150) (LTC DWG # 05-08-1610) 0.010 – 0.020 × 45° (0.254 – 0.508) 0.008 – 0.010 (0.203 – 0.254) 0.053 – 0.069 (1.346 – 1.752) 0°– 8° TYP 0.016 – 0.050 0.406 – 1.270 0.014 – 0.019 (0.355 – 0.483) Linear Technology Corporation 0.189 – 0.197* (4.801 – 5.004) 8 7 6 5 0.004 – 0.010 (0.101 – 0.254) 0.050 (1.270) BSC * DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE ** DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE 12 6 0.015 – 0.060 (0.381 – 1.524) 0.027 – 0.045 (0.686 – 1.143) 45°TYP 0.200 (5.080) MAX 4 7 0.255 ± 0.015* (6.477 ± 0.381) 0.220 – 0.310 (5.588 – 7.874) 1 0.300 BSC (0.762 BSC) 8 0.150 – 0.157** (3.810 – 3.988) 0.228 – 0.244 (5.791 – 6.197) 1 2 3 4 Tjmax θja 150°C 150°C/W SO8 0695 LT/GP 0396 2K REV A • PRINTED IN USA 1630 McCarthy Blvd., Milpitas, CA 95035-7417 (408) 432-1900 ● FAX: (408) 434-0507 ● TELEX: 499-3977 LINEAR TECHNOLOGY CORPORATION 1983