IRFBC20, SiHFBC20 Power MOSFET FEATURES PRODUCT SUMMARY VDS (V) • Dynamic dV/dt Rating 600 RDS(on) (Ω) VGS = 10 V Qg (Max.) (nC) 18 • Fast Switching Qgs (nC) 3.0 • Ease of Paralleling 8.9 • Simple Drive Requirements Qgd (nC) Configuration Single RoHS* COMPLIANT • Lead (Pb)-free Available D DESCRIPTION TO-220 Third generation Power MOSFETs from Vishay provide the designer with the best combination of fast switching, ruggedized device design, low on-resistance and cost-effectiveness. The TO-220 package is universally preferred for all commercial-industrial applications at power dissipation levels to approximately 50 W. The low thermal resistance and low package cost of the TO-220 contribute to its wide acceptance throughout the industry. G S G Available • Repetitive Avalanche Rated 4.4 D S N-Channel MOSFET ORDERING INFORMATION Package TO-220 IRFBC20PbF SiHFBC20-E3 IRFBC20 SiHFBC20 Lead (Pb)-free SnPb ABSOLUTE MAXIMUM RATINGS TC = 25 °C, unless otherwise noted PARAMETER SYMBOL LIMIT Drain-Source Voltage VDS 600 Gate-Source Voltage VGS ± 20 Continuous Drain Current VGS at 10 V TC = 25 °C TC = 100 °C Pulsed Drain Currenta ID IDM Linear Derating Factor UNIT V 2.2 1.4 A 8.0 0.40 W/°C EAS 84 mJ Currenta IAR 2.2 A Repetitive Avalanche Energya EAR 5.0 mJ Single Pulse Avalanche Energyb Repetitive Avalanche Maximum Power Dissipation TC = 25 °C Peak Diode Recovery dV/dtc Operating Junction and Storage Temperature Range Soldering Recommendations (Peak Temperature) Mounting Torque PD 50 W dV/dt 3.0 V/ns TJ, Tstg - 55 to + 150 for 10 s 6-32 or M3 screw 300d °C 10 lbf · in 1.1 N·m Notes a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. VDD = 50 V, starting TJ = 25 °C, L = 31 mH, RG = 25 Ω, IAS = 2.2 A (see fig. 12). c. ISD ≤ 2.2 A, dI/dt ≤ 40 A/µs, VDD ≤ VDS, TJ ≤ 150 °C. d. 1.6 mm from case. www.kersemi.com 1 IRFBC20, SiHFBC20 THERMAL RESISTANCE PARAMETER SYMBOL TYP. MAX. Maximum Junction-to-Ambient RthJA - 62 Case-to-Sink, Flat, Greased Surface RthCS 0.50 - Maximum Junction-to-Case (Drain) RthJC - 2.5 UNIT °C/W SPECIFICATIONS TJ = 25 °C, unless otherwise noted PARAMETER SYMBOL TEST CONDITIONS MIN. VDS TYP. MAX. UNIT Static Drain-Source Breakdown Voltage VGS = 0 V, ID = 250 µA 600 - - V ΔVDS/TJ Reference to 25 °C, ID = 1 mA - 0.88 - V/°C VGS(th) VDS = VGS, ID = 250 µA 2.0 - 4.0 V Gate-Source Leakage IGSS VGS = ± 20 V - - ± 100 nA Zero Gate Voltage Drain Current IDSS VDS = 600 V, VGS = 0 V - - 100 VDS = 480V, VGS = 0 V, TJ = 125 °C - - 500 VDS Temperature Coefficient Gate-Source Threshold Voltage Drain-Source On-State Resistance Forward Transconductance RDS(on) gfs µA - - 4.4 Ω VDS = 50 V, ID = 1.3 Ab 1.4 - - S VGS = 0 V, VDS = 25 V, f = 1.0 MHz, see fig. 5 - 350 - - 48 - - 8.6 - - - 18 ID = 1.3 Ab VGS = 10 V Dynamic Input Capacitance Ciss Output Capacitance Coss Reverse Transfer Capacitance Crss Total Gate Charge Qg Gate-Source Charge Qgs - - 3.0 Gate-Drain Charge Qgd - - 8.9 Turn-On Delay Time td(on) - 10 - - 23 - - 30 - - 25 - - 4.5 - - 7.5 - - - 2.2 S - - 8.0 - 2.0 Rise Time Turn-Off Delay Time Fall Time tr td(off) VGS = 10 V ID = 2.0 A, VDS = 360 V see fig. 6 and 13b VDD = 300 V, ID = 2.0 A RG = 18 Ω, RD= 150 Ω see fig. 10b tf Internal Drain Inductance LD Internal Source Inductance LS Between lead, 6 mm (0.25") from package and center of die contact D pF nC ns nH G S Drain-Source Body Diode Characteristics Continuous Source-Drain Diode Current IS MOSFET symbol showing the integral reverse p - n junction diode D ISM Body Diode Voltage VSD TJ = 25 °C, IS = 2.2 A, VGS = 0 Vb - Body Diode Reverse Recovery Time trr 290 580 ns Qrr TJ = 25 °C, IF = 2.0 A, dI/dt = 100 A/µsb - Body Diode Reverse Recovery Charge - 0.67 1.3 µC Forward Turn-On Time ton V Intrinsic turn-on time is negligible (turn-on is dominated by LS and LD) Notes a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. Pulse width ≤ 300 µs; duty cycle ≤ 2 %. 2 A G Pulsed Diode Forward Currenta www.kersemi.com IRFBC20, SiHFBC20 TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted Fig. 1 - Typical Output Characteristics, TC = 25 °C Fig. 3 - Typical Transfer Characteristics Fig. 2 - Typical Output Characteristics, TC = 150 °C Fig. 4 - Normalized On-Resistance vs. Temperature www.kersemi.com 3 IRFBC20, SiHFBC20 Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage 4 Fig. 7 - Typical Source-Drain Diode Forward Voltage Fig. 8 - Maximum Safe Operating Area www.kersemi.com IRFBC20, SiHFBC20 RD VDS VGS D.U.T. RG + - VDD 10 V Pulse width ≤ 1 µs Duty factor ≤ 0.1 % Fig. 10a - Switching Time Test Circuit VDS 90 % 10 % VGS td(on) Fig. 9 - Maximum Drain Current vs. Case Temperature tr td(off) tf Fig. 10b - Switching Time Waveforms Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case 5 IRFBC20, SiHFBC20 L Vary tp to obtain required IAS VDS VDS tp VDD D.U.T. RG + - IAS V DD VDS 10 V 0.01 Ω tp Fig. 12a - Unclamped Inductive Test Circuit IAS Fig. 12b - Unclamped Inductive Waveforms Fig. 12c - Maximum Avalanche Energy vs. Drain Current Current regulator Same type as D.U.T. 50 kΩ QG 10 V 12 V 0.2 µF 0.3 µF QGS QGD + D.U.T. VG - VDS VGS 3 mA Charge IG ID Current sampling resistors Fig. 13a - Basic Gate Charge Waveform 6 Fig. 13b - Gate Charge Test Circuit IRFBC20, SiHFBC20 Peak Diode Recovery dV/dt Test Circuit + D.U.T. Circuit layout considerations • Low stray inductance • Ground plane • Low leakage inductance current transformer + - - • • • • RG dV/dt controlled by RG Driver same type as D.U.T. ISD controlled by duty factor "D" D.U.T. - device under test Driver gate drive Period P.W. + D= + - VDD P.W. Period VGS = 10 V* D.U.T. ISD waveform Reverse recovery current Body diode forward current dI/dt D.U.T. VDS waveform Diode recovery dV/dt Re-applied voltage Body diode VDD forward drop Inductor current Ripple ≤ 5 % ISD * VGS = 5 V for logic level devices Fig. 14 - For N-Channel www.kersemi.com 7