Product Folder Sample & Buy Tools & Software Technical Documents Support & Community AM1707 www.ti.com SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 AM1707 ARM® Microprocessor 1 AM1707 ARM Microprocessor 1.1 Features 1 • 375- and 456-MHz ARM926EJ-S™ RISC Core – 32-Bit and 16-Bit (Thumb®) Instructions – Single-Cycle MAC – ARM Jazelle® Technology – Embedded ICE-RT™ for Real-Time Debug • ARM9™ Memory Architecture – 16KB of Instruction Cache – 16KB of Data Cache – 8KB of RAM (Vector Table) – 64KB of ROM • Enhanced Direct Memory Access Controller 3 (EDMA3): – 2 Transfer Controllers – 32 Independent DMA Channels – 8 Quick DMA Channels – Programmable Transfer Burst Size • 128KB of RAM Memory • 3.3-V LVCMOS I/Os (Except for USB Interfaces) • Two External Memory Interfaces: – EMIFA • NOR (8- or 16-Bit-Wide Data) • NAND (8- or 16-Bit-Wide Data) • 16-Bit SDRAM with 128-MB Address Space – EMIFB • 32-Bit or 16-Bit SDRAM with 256-MB Address Space • Three Configurable 16550-Type UART Modules: – UART0 with Modem Control Signals – 16-Byte FIFO – 16x or 13x Oversampling Option – Autoflow Control Signals (CTS, RTS) on UART0 Only • LCD Controller • Two Serial Peripheral Interfaces (SPIs) Each with One Chip Select • Programmable Real-Time Unit Subsystem (PRUSS) – Two Independent Programmable Real-Time Unit (PRU) Cores • 32-Bit Load-Store RISC Architecture • 4KB of Instruction RAM per Core • 512 Bytes of Data RAM per Core • PRUSS can be Disabled via Software to Save Power – Standard Power-Management Mechanism • • • • • • • • • • • • • • Clock Gating Entire Subsystem Under a Single PSC Clock Gating Domain – Dedicated Interrupt Controller – Dedicated Switched Central Resource Multimedia Card (MMC)/Secure Digital (SD) Card Interface with Secure Data I/O (SDIO) Two Master and Slave Inter-Integrated Circuit (I2C Bus™) One Host-Port Interface (HPI) with 16-Bit-Wide Muxed Address/Data Bus for High Bandwidth USB 1.1 OHCI (Host) with Integrated PHY (USB1) USB 2.0 OTG Port with Integrated PHY (USB0) – USB 2.0 High- and Full-Speed Client – USB 2.0 High-, Full-, and Low-Speed Host – End Point 0 (Control) – End Points 1,2,3,4 (Control, Bulk, Interrupt or ISOC) RX and TX Three Multichannel Audio Serial Ports (McASPs): – Six Clock Zones and 28 Serial Data Pins – Supports TDM, I2S, and Similar Formats – DIT-Capable (McASP2) – FIFO Buffers for Transmit and Receive 10/100 Mbps Ethernet MAC (EMAC): – IEEE 802.3 Compliant (3.3-V I/O Only) – RMII Media-Independent Interface – Management Data I/O (MDIO) Module Real-Time Clock (RTC) with 32-kHz Oscillator and Separate Power Rail One 64-Bit General-Purpose Timer (Configurable as Two 32-Bit Timers) One 64-Bit General-Purpose Watchdog Timer (Configurable as Two 32-Bit General-Purpose Timers) Three Enhanced Pulse Width Modulators (eHRPWMs): – Dedicated 16-Bit Time-Base Counter with Period and Frequency Control – 6 Single Edge, 6 Dual Edge Symmetric, or 3 Dual Edge Asymmetric Outputs – Dead-Band Generation – PWM Chopping by High-Frequency Carrier – Trip Zone Input Three 32-Bit Enhanced Capture (eCAP) Modules: – Configurable as 3 Capture Inputs or 3 Auxiliary Pulse Width Modulator (APWM) Outputs 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA. AM1707 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 www.ti.com – Single-Shot Capture of up to Four Event TimeStamps • Two 32-Bit Enhanced Quadrature Encoder Pulse (eQEP) Modules 1.2 • • Applications Industrial Automation Home Automation 1.3 • 256-Ball Pb-Free Plastic Ball Grid Array (PBGA) [ZKB Suffix], 1.0-mm Ball Pitch • Commercial, Industrial, Automotive, or Extended Temperature • • Test and Measurement Portable Data Terminals Description The device is a low-power ARM microprocessor based on an ARM926EJ-S. The device enables original-equipment manufacturers (OEMs) and original-design manufacturers (ODMs) to quickly bring to market devices featuring robust operating systems support, rich user interfaces, and high processing performance life through the maximum flexibility of a fully integrated mixed processor solution. The ARM926EJ-S is a 32-bit RISC processor core that performs 32-bit or 16-bit instructions and processes 32-bit, 16-bit, or 8-bit data. The core uses pipelining so that all parts of the processor and memory system can operate continuously. The ARM core has a coprocessor 15 (CP15), protection module, and data and program memory management units (MMUs) with table look-aside buffers. The ARM core has separate 16KB of instruction and 16-KB data caches. Both memory blocks are four-way associative with virtual index virtual tag (VIVT). The ARM core also has 8KB of RAM (Vector Table) and 64KB of ROM. The peripheral set includes: a 10/100 Mbps Ethernet MAC (EMAC) with a management data input/output (MDIO) module; two I2C Bus interfaces; 3 multichannel audio serial port (McASP) with 16/12/4 serializers and FIFO buffers; two 64-bit general-purpose timers each configurable (one configurable as watchdog); a configurable 16-bit host-port interface (HPI); up to 8 banks of 16 pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; three UART interfaces (one with both RTS and CTS); three enhanced high-resolution pulse width modulator (eHRPWM) peripherals; three 32-bit enhanced capture (eCAP) module peripherals which can be configured as 3 capture inputs or 3 auxiliary pulse width modulator (APWM) outputs; two 32-bit enhanced quadrature encoded pulse (eQEP) peripherals; and 2 external memory interfaces: an asynchronous and SDRAM external memory interface (EMIFA) for slower memories or peripherals, and a higher speed memory interface (EMIFB) for SDRAM. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the device and the network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbps and 100 Mbps in either halfor full-duplex mode. Additionally, an MDIO interface is available for PHY configuration. The HPI, I2C, SPI, USB1.1, and USB2.0 ports allow the device to easily control peripheral devices and/or communicate with host processors. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The device has a complete set of development tools for the ARM processor. These include C compilers and a Windows® debugger interface for visibility into source code execution. Device Information (1) PART NUMBER AM1707 (1) 2 PACKAGE BODY SIZE BGA (256) 17.00 mm x 17.00 mm For more information on these devices, see Section 8, Mechanical Packaging and Orderable Information. AM1707 ARM Microprocessor Copyright © 2010–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM1707 AM1707 www.ti.com 1.4 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 Functional Block Diagram JTAG Interface ARM Subsystem System Control ARM926EJ-S CPU With MMU PLL/Clock Generator w/OSC Input Clock(s) GeneralPurpose Timer GeneralPurpose Timer (Watchdog) Memory Protection 4KB ETB 16KB 16KB I-Cache D-Cache Power/Sleep Controller RTC/ Pin 32-kHz Multiplexing OSC 8KB RAM (Vector Table) 64KB ROM Switched Central Resource (SCR) Peripherals DMA GPIO McASP w/FIFO (3) EDMA3 I2C (2) eCAP (3) SPI (2) UART (3) eQEP (2) USB2.0 OTG Ctlr PHY USB1.1 OHCI Ctlr PHY (10/100) EMAC (RMII) MDIO Display Internal Memory PRU Subsystem Connectivity Control Timers eHRPWM (3) Customizable Interface Serial Interfaces Audio Ports LCD Ctlr 128 KB RAM External Memory Interfaces HPI MMC/SD (8b) EMIFA(8b/16B) NAND/Flash 16b SDRAM EMIFB SDRAM Only (16b/32b) Figure 1-1. AM1707 Functional Block Diagram AM1707 ARM Microprocessor Copyright © 2010–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM1707 3 AM1707 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 www.ti.com Table of Contents 1 2 3 AM1707 ARM Microprocessor......................... 1 6.10 External Memory Interface A (EMIFA) .............. 64 1.1 Features .............................................. 1 6.11 External Memory Interface B (EMIFB) .............. 75 1.2 Applications ........................................... 2 6.12 Memory Protection Units ............................ 83 1.3 Description ............................................ 2 6.13 MMC / SD / SDIO (MMCSD) ........................ 86 1.4 Functional Block Diagram ............................ 3 6.14 Ethernet Media Access Controller (EMAC) ......... 89 Revision History ......................................... 5 Device Overview ......................................... 6 6.15 6.16 Management Data Input/Output (MDIO) ............ 94 Multichannel Audio Serial Ports (McASP0, McASP1, and McASP2)........................................ 96 3.1 Device Characteristics ................................ 6 3.2 Device Compatibility .................................. 7 6.17 Serial Peripheral Interface Ports (SPI0, SPI1) ..... 109 3.3 ARM Subsystem ...................................... 8 3.4 Memory Map Summary ............................. 11 6.18 6.19 3.5 Pin Assignments 3.6 Terminal Functions .................................. 14 Enhanced Capture (eCAP) Peripheral............. 127 Enhanced Quadrature Encoder (eQEP) Peripheral .......................................... 130 Enhanced High-Resolution Pulse-Width Modulator (eHRPWM) ......................................... 132 .................................... 13 4 Device Configuration .................................. 33 5 ......................................... 4.2 SYSCFG Module .................................... 4.3 Pullup/Pulldown Resistors .......................... Device Operating Conditions ........................ 4.1 Boot Modes 6.20 6.21 LCD Controller ..................................... 136 33 6.22 Timers .............................................. 151 34 6.23 6.24 Inter-Integrated Circuit Serial Ports (I2C0, I2C1) .. 153 Universal Asynchronous Receiver/Transmitter (UART) ............................................. 158 6.25 USB1 Host Controller Registers (USB1.1 OHCI) .. 160 6.26 USB0 OTG (USB2.0 OTG) 6.27 Host-Port Interface (UHPI) ......................... 170 6.28 6.29 Power and Sleep Controller (PSC) ................ 177 Programmable Real-Time Unit Subsystem (PRUSS) ........................................... 180 6.30 Emulation Logic .................................... 183 6.31 IEEE 1149.1 JTAG 6.32 Real Time Clock (RTC) ............................ 191 36 37 5.1 Absolute Maximum Ratings Over Operating Junction Temperature Range (Unless Otherwise Noted) ................................. 37 6 5.2 Handling Ratings .................................... 37 5.3 Recommended Operating Conditions ............... 38 5.4 5.5 Notes on Recommended Power-On Hours (POH) . 39 Electrical Characteristics Over Recommended Ranges of Supply Voltage and Operating Junction Temperature (Unless Otherwise Noted) ............ 40 Peripheral Information and Electrical Specifications ........................................... 41 6.1 6.2 6.3 Power Supplies ...................................... 42 6.4 Reset ................................................ 43 6.5 Crystal Oscillator or External Clock Input ........... 46 6.6 Clock PLLs .......................................... 48 6.7 Interrupts 6.8 6.9 4 7 Parameter Information .............................. 41 Recommended Clock and Control Signal Transition Behavior ............................................. 42 ............................................ General-Purpose Input/Output (GPIO) .............. EDMA ............................................... 8 ........................ ................................ 162 189 Device and Documentation Support .............. 194 7.1 Device Support..................................... 194 7.2 Documentation Support ............................ 195 7.3 Community Resources............................. 195 7.4 Trademarks ........................................ 195 7.5 Electrostatic Discharge Caution 7.6 Glossary............................................ 195 ................... 195 52 Mechanical Packaging and Orderable Information ............................................. 196 56 8.1 Thermal Data for ZKB 59 8.2 Packaging Information ............................. 196 Table of Contents ............................. 196 Copyright © 2010–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM1707 AM1707 www.ti.com SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 2 Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. This data manual revision history highlights the changes made to the SPRS637D device-specific data manual to make it an SPRS637E revision. Scope: Applicable updates to the AM170x ARM microprocessor device family, specifically relating to the AM1707 device, which are all now in the production data (PD) stage of development, have been incorporated. Revision History SEE ADDITIONS/MODIFICATIONS/DELETIONS Global • • • • Section 1.1 Features Deleted Highlights section. Information was duplicated elsewhere in Features. Section 1.2 Applications Added NEW section. Section 1.3 Description Added NEW Device Information Table. Section 3.6 Terminal Functions Section 3.6.16, Universal Serial Bus Modules (USB0, USB1): • Updated/Changed USB0_VDDA12 DESCRIPTION from "...output for bypass cap." to "...output for bypass cap. For proper device operation, this pin is recommended to be connected..." Section 3.6.22 Unused USB0 (USB2.0) and USB1 (USB1.1) Pin Configurations Updated Features, Applications, and Description for consistency and translation. Moved Trademarks information from first page to within Section 7, Device and Documentation Support. Moved ESDS Warning to within Section 7, Device and Documentation Support. Added numbering to section and table titles that were missing. Moved Section to within Section 3.6, Terminal Functions Table 3-24, Unused USB0 and USB1 Pin Configurations: • Updated/Changed USB0_VDDA12 Configuration by combining both Configuration columns and changing text to "Internal USB0 PHY output connected to an external..." Section 5 Device Operating Conditions Section 5.2, Handling Ratings: • Split handling, ratings, and certifications from the Abs Max table and placed in NEW Handling Ratings table. Section 5.3, Recommended Operating Conditions: • Added "Unless specifically indicated" to "These I/O specifications apply to ..." footnote Section 5.4 Notes on Recommended Power-On Hours (POH) Table 5-1, Recommended Power-On Hours: • Added Silicon Revision column. Section 6.10.6 EMIFA Electrical Data/Timing Table 6-22, EMIFA Asynchronous Memory Switching Characteristics: • Updated/Changed the MIN, NOM, and MAX equations for NO. 3, 10, 15, and 24 from "...(EWC*16)..." to "...EWC..." Revision History Copyright © 2010–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM1707 5 AM1707 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 www.ti.com Revision History (continued) SEE ADDITIONS/MODIFICATIONS/DELETIONS Section 6.11.4 EMIFB Electrical Data/Timing Table 6-26, EMIFB SDRAM Interface Timing Requirements: • Updated/Changed Parameter No. 19 from "tsu(DV-CLKH)" to "t(DV-CLKH)" • Added new column: "CVDD = 1.3V" • Added new footnote containing "...range rated devices for 456 MHz max CPU operating..." • Added new footnote containing "...range rated devices for 400/375/300/266/200 MHz max CPU operating ..." Table 6-27, EMIFB SDRAM Interface Switching Characteristics for Commercial (Default) Temperature Range: • Updated/Changed table title from "...Switching Characteristics..." to "...Switching Characteristics for Commercial (Default) Temperature Range" • Added new footnote containing "...range rated devices for 456 MHz max CPU operating ..." • Added new footnote containing "...range rated devices for 400/375/300/266/200 MHz max CPU operating..." • Updated/Changed CVDD = 1.3V MIN column values for Parameter No. 4, 6, 8, 10, 12, 14, 16, and 18 from "0.9" to "1.1" • Updated/Changed CVDD = 1.3V MAX column values for Parameter No. 3, 5, 7, 9, 11, 13, 15, and 17 from "5.1" to "4.25" • Populated CVDD = 1.2V column with values (was empty) • Updated/Changed Parameter No. 18 from "tena(CLKH-DLZ)" to "t(CLKH-DLZ)" Table 6-28, EMIFB SDRAM Interface Switching Characteristics for Industrial, Extended, and Automotive Temperature Ranges: • Added NEW table Section 6.16 Multichannel Audio Serial Ports (McASP0, McASP1, and McASP2) Table 6-45, McASP Registers Accessed Through DMA Port: • Updated/Changed Read Accesses Register Description from "XBUSEL = 0 in XFMT" to "RBUSEL = 0 in RFMT" • Updated/Changed Write Accesses Register Description from "RBUSEL = 0 in RFMT" to "XBUSEL = 0 in XFMT" Section 6.32 Real Time Clock (RTC) Section 6.32.2, Registers: • Deleted "See the device-specific data ..." sentence Section 7.6 Glossary Added NEW section. 3 Device Overview 3.1 Device Characteristics Table 3-1 provides an overview of the device. The table shows significant features of the device, including the capacity of on-chip RAM, peripherals, and the package type with pin count. 6 Device Overview Copyright © 2010–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM1707 AM1707 www.ti.com SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 Table 3-1. Characteristics of the Device HARDWARE FEATURES 16/32-bit, up to 256 MB SDRAM EMIFA Asynchronous (8/16-bit bus width) RAM, Flash, 16-bit up to 128MB SDRAM, NOR, NAND Flash Card Interface Peripherals Not all peripherals pins are available at the same time (for more detail, see the Device Configurations section). AM1707 EMIFB MMC and SD cards supported EDMA3 32 independent channels, 8 QDMA channels, 2 Transfer controllers Timers 2 64-Bit General Purpose (configurable as 2 separate 32-bit timers, 1 configurable as Watch Dog) UART 3 (one with RTS and CTS flow control) SPI 2 (Each with one hardware chip select) I2C 2 (both Master/Slave) Multichannel Audio Serial Port [McASP] 3 (each with transmit/receive, FIFO buffer, 16/12/4 serializers) 10/100 Ethernet MAC with Management Data I/O eHRPWM 1 (RMII Interface) 6 Single Edge, 6 Dual Edge Symmetric, or 3 Dual Edge Asymmetric Outputs eCAP 3 32-bit capture inputs or 3 32-bit auxiliary PWM outputs eQEP 2 32-bit QEP channels with 4 inputs/channel UHPI 1 (16-bit multiplexed address/data) USB 2.0 (USB0) High-Speed OTG Controller with on-chip OTG PHY USB 1.1 (USB1) Full-Speed OHCI (as host) with on-chip PHY General-Purpose Input/Output Port 8 banks of 16-bit PRU Subsystem (PRUSS) 2 Programmable PRU Cores LCD Controller Size (Bytes) On-Chip Memory Organization 1 168KB RAM, 64KB ROM ARM 16KB I-Cache 16KB D-Cache 8KB RAM (Vector Table) 64KB ROM ADDITIONAL MEMORY 128KB RAM JTAG BSDL_ID DEVIDR0 register CPU Frequency MHz Voltage Core (V) 0x8B7D F02F (Silicon Revision 1.1) 0x9B7D F02F (Silicon Revisions 3.0, 2.1, and 2.0) ARM926 375 MHz (1.2V) or 456 MHz (1.3V) 1.2 V nominal for 375 MHz version 1.3 V nominal for 456 MHz version I/O (V) Package Product Status (1) (1) 3.2 3.3 V 17 mm x 17 mm, 256-Ball 1 mm pitch, PBGA (ZKB) Product Preview (PP), Advance Information (AI), or Production Data (PD) 375 MHz Versions - PD 456 MHz Version - PD PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.. Device Compatibility The ARM926EJ-S RISC CPU is compatible with other ARM9 CPUs from ARM Holdings plc. 3.3 ARM Subsystem Device Overview Copyright © 2010–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM1707 7 AM1707 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 www.ti.com The ARM Subsystem includes the following features: • ARM926EJ-S RISC processor • ARMv5TEJ (32/16-bit) instruction set • Little endian • System Control Co-Processor 15 (CP15) • MMU • 16KB Instruction cache • 16KB Data cache • Write Buffer • Embedded Trace Module and Embedded Trace Buffer (ETM/ETB) • ARM Interrupt controller 3.3.1 ARM926EJ-S RISC CPU The ARM Subsystem integrates the ARM926EJ-S processor. The ARM926EJ-S processor is a member of ARM9 family of general-purpose microprocessors. This processor is targeted at multi-tasking applications where full memory management, high performance, low die size, and low power are all important. The ARM926EJ-S processor supports the 32-bit ARM and 16 bit THUMB instruction sets, enabling the user to trade off between high performance and high code density. Specifically, the ARM926EJ-S processor supports the ARMv5TEJ instruction set, which includes features for efficient execution of Java byte codes, providing Java performance similar to Just in Time (JIT) Java interpreter, but without associated code overhead. The ARM926EJ-S processor supports the ARM debug architecture and includes logic to assist in both hardware and software debug. The ARM926EJ-S processor has a Harvard architecture and provides a complete high performance subsystem, including: • ARM926EJ -S integer core • CP15 system control coprocessor • Memory Management Unit (MMU) • Separate instruction and data caches • Write buffer • Separate instruction and data (internal RAM) interfaces • Separate instruction and data AHB bus interfaces • Embedded Trace Module and Embedded Trace Buffer (ETM/ETB) For more complete details on the ARM9, refer to the ARM926EJ-S Technical Reference Manual, available at http://www.arm.com 3.3.2 CP15 The ARM926EJ-S system control coprocessor (CP15) is used to configure and control instruction and data caches, Memory Management Unit (MMU), and other ARM subsystem functions. The CP15 registers are programmed using the MRC and MCR ARM instructions, when the ARM in a privileged mode such as supervisor or system mode. 3.3.3 MMU A single set of two level page tables stored in main memory is used to control the address translation, permission checks and memory region attributes for both data and instruction accesses. The MMU uses a single unified Translation Lookaside Buffer (TLB) to cache the information held in the page tables. The MMU features are: • Standard ARM architecture v4 and v5 MMU mapping sizes, domains and access protection scheme. 8 Device Overview Copyright © 2010–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM1707 AM1707 www.ti.com • • • • • • 3.3.4 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 Mapping sizes are: – 1MB (sections) – 64KB (large pages) – 4KB (small pages) – 1KB (tiny pages) Access permissions for large pages and small pages can be specified separately for each quarter of the page (subpage permissions) Hardware page table walks Invalidate entire TLB, using CP15 register 8 Invalidate TLB entry, selected by MVA, using CP15 register 8 Lockdown of TLB entries, using CP15 register 10 Caches and Write Buffer The size of the Instruction cache is 16KB, Data cache is 16KB. Additionally, the caches have the following features: • Virtual index, virtual tag, and addressed using the Modified Virtual Address (MVA) • Four-way set associative, with a cache line length of eight words per line (32-bytes per line) and with two dirty bits in the Dcache • Dcache supports write-through and write-back (or copy back) cache operation, selected by memory region using the C and B bits in the MMU translation tables • Critical-word first cache refilling • Cache lockdown registers enable control over which cache ways are used for allocation on a line fill, providing a mechanism for both lockdown, and controlling cache corruption • Dcache stores the Physical Address TAG (PA TAG) corresponding to each Dcache entry in the TAG RAM for use during the cache line write-backs, in addition to the Virtual Address TAG stored in the TAG RAM. This means that the MMU is not involved in Dcache write-back operations, removing the possibility of TLB misses related to the write-back address. • Cache maintenance operations provide efficient invalidation of, the entire Dcache or Icache, regions of the Dcache or Icache, and regions of virtual memory. The write buffer is used for all writes to a noncachable bufferable region, write-through region and write misses to a write-back region. A separate buffer is incorporated in the Dcache for holding write-back for cache line evictions or cleaning of dirty cache lines. The main write buffer has 16-word data buffer and a four-address buffer. The Dcache write-back has eight data word entries and a single address entry. 3.3.5 Advanced High-Performance Bus (AHB) The ARM Subsystem uses the AHB port of the ARM926EJ-S to connect the ARM to the Config bus and the external memories. Arbiters are employed to arbitrate access to the separate D-AHB and I-AHB by the Config Bus and the external memories bus. 3.3.6 Embedded Trace Macrocell (ETM) and Embedded Trace Buffer (ETB) To support real-time trace, the ARM926EJ-S processor provides an interface to enable connection of an Embedded Trace Macrocell (ETM). The ARM926EJ-S Subsystem in the device also includes the Embedded Trace Buffer (ETB). The ETM consists of two parts: • Trace Port provides real-time trace capability for the ARM9. • Triggering facilities provide trigger resources, which include address and data comparators, counter, and sequencers. The device trace port is not pinned out and is instead only connected to the Embedded Trace Buffer. The ETB has a 4KB buffer memory. ETB enabled debug tools are required to read/interpret the captured trace data. Device Overview Copyright © 2010–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM1707 9 AM1707 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 www.ti.com This device uses ETM9™ version r2p2 and ETB version r0p1. Documentation on the ETM and ETB is available from ARM Ltd. Reference the ' CoreSight™ ETM9™ Technical Reference Manual, revision r0p1' and the 'ETM9 Technical Reference Manual, revision r2p2'. 3.3.7 ARM Memory Mapping By default the ARM has access to most on and off chip memory areas, EMIFA, EMIFB, and the additional 128K byte on chip SRAM. Likewise almost all of the on chip peripherals are accessible to the ARM by default. To improve security and/or robustness, the device has extensive memory and peripheral protection units which can be configured to limit access rights to the various on/off chip resources to specific hosts; including the ARM as well as other master peripherals. This allows the system tasks to be partitioned between the ARM and DSP as best suites the particular application; while enhancing the overall robustness of the solution. See Table 3-2 for a detailed top level device memory map that includes the ARM memory space. 10 Device Overview Copyright © 2010–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM1707 AM1707 www.ti.com 3.4 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 Memory Map Summary Table 3-2. AM1707 Top Level Memory Map Start Address End Address Size ARM Mem Map EDMA Mem Map 0x0000 0000 0x0000 0FFF 4K 0x0000 1000 0x01BB FFFF 0x01BC 0000 0x01BC 0FFF 4K ARM ETB memory 0x01BC 1000 0x01BC 17FF 2K ARM ETB reg - 0x01BC 1800 0x01BC 18FF 256 ARM Ice Crusher - 0x01BC 1900 0x01BF FFFF 0x01C0 0000 0x01C0 7FFF 32K EDMA3 Channel Controller - 0x01C0 8000 0x01C0 83FF 1024 EDMA3 Transfer Controller 0 - 0x01C0 8400 0x01C0 87FF 1024 EDMA3 Transfer Controller 1 - 0x01C0 8800 0x01C0 FFFF 0x01C1 0000 0x01C1 0FFF 4K PSC 0 - 0x01C1 1000 0x01C1 1FFF 4K PLL Controller - 0x01C1 2000 0x01C1 3FFF 0x01C1 4000 0x01C1 4FFF 4K SYSCFG 0x01C1 5000 0x01C1 FFFF 0x01C2 0000 0x01C2 0FFF 4K Timer64P 0 - 0x01C2 1000 0x01C2 1FFF 4K Timer64P 1 - 0x01C2 2000 0x01C2 2FFF 4K I2C 0 - 0x01C2 3000 0x01C2 3FFF 4K RTC - 0x01C2 4000 0x01C3 FFFF - - 0x01C4 0000 0x01C4 0FFF 4K MMC/SD 0 - 0x01C4 1000 0x01C4 1FFF 4K SPI 0 - 0x01C4 2000 0x01C4 2FFF 4K UART 0 0x01C4 3000 0x01CF FFFF 0x01D0 0000 0x01D0 0FFF 4K McASP 0 Control - 0x01D0 1000 0x01D0 1FFF 4K McASP 0 AFIFO Control - 0x01D0 2000 0x01D0 2FFF 4K McASP 0 Data - 0x01D0 3000 0x01D0 3FFF 0x01D0 4000 0x01D0 4FFF 4K McASP 1 Control - 0x01D0 5000 0x01D0 5FFF 4K McASP 1 AFIFO Control - 0x01D0 6000 0x01D0 6FFF 4K McASP 1 Data - 0x01D0 7000 0x01D0 7FFF 0x01D0 8000 0x01D0 8FFF 4K McASP 2 Control - 0x01D0 9000 0x01D0 9FFF 4K McASP 2 AFIFO Control - 0x01D0 A000 0x01D0 AFFF 4K McASP 2 Data - 0x01D0 B000 0x01D0 BFFF 0x01D0 C000 0x01D0 CFFF 4K UART 1 - 0x01D0 D000 0x01D0 DFFF 4K UART 2 - 0x01D0 E000 0x01DF FFFF - - 0x01E0 0000 0x01E0 FFFF 64K USB0 - 0x01E1 0000 0x01E1 0FFF 4K UHPI 0x01E1 1000 0x01E1 1FFF 0x01E1 2000 0x01E1 2FFF - PRUSS Mem Map Master Peripheral Mem Map LCDC Mem Map PRUSS Local Address Space - - - - - - - - - - 4K SPI 1 Device Overview Copyright © 2010–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM1707 11 AM1707 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 www.ti.com Table 3-2. AM1707 Top Level Memory Map (continued) Start Address End Address Size ARM Mem Map EDMA Mem Map 0x01E1 3000 0x01E1 3FFF 4K LCD Controller - 0x01E1 4000 0x01E1 4FFF 4K Memory Protection Unit 1 (MPU 1) - 0x01E1 5000 0x01E1 5FFF 4K Memory Protection Unit 2 (MPU 2) - 0x01E1 6000 0x01E1 FFFF 0x01E2 0000 0x01E2 1FFF 8K EMAC Control Module RAM - 0x01E2 2000 0x01E2 2FFF 4K EMAC Control Module Registers - 0x01E2 3000 0x01E2 3FFF 4K EMAC Control Registers - 0x01E2 4000 0x01E2 4FFF 4K EMAC MDIO port - 0x01E2 5000 0x01E2 5FFF 4K USB1 - 0x01E2 6000 0x01E2 6FFF 4K GPIO - 0x01E2 7000 0x01E2 7FFF 4K PSC 1 - 0x01E2 8000 0x01E2 8FFF 4K I2C 1 - 0x01E2 9000 0x01EF FFFF 0x01F0 0000 0x01F0 0FFF 4K eHRPWM 0 - 0x01F0 1000 0x01F0 1FFF 4K HRPWM 0 - 0x01F0 2000 0x01F0 2FFF 4K eHRPWM 1 - 0x01F0 3000 0x01F0 3FFF 4K HRPWM 1 - 0x01F0 4000 0x01F0 4FFF 4K eHRPWM 2 - 0x01F0 5000 0x01F0 5FFF 4K HRPWM 2 - 0x01F0 6000 0x01F0 6FFF 4K ECAP 0 - 0x01F0 7000 0x01F0 7FFF 4K ECAP 1 - 0x01F0 8000 0x01F0 8FFF 4K ECAP 2 - Master Peripheral Mem Map LCDC Mem Map - - - 0x01F0 9000 0x01F0 9FFF 4K EQEP 0 0x01F0 A000 0x01F0 AFFF 4K EQEP 1 0x01F0 B000 0x3FFF FFFF 0x4000 0000 0x47FF FFFF 0x4800 0000 0x5FFF FFFF 0x6000 0000 0x6200 0000 - 128M EMIFA SDRAM data (CS0) - 0x61FF FFFF 32M EMIFA async data (CS2) - 0x63FF FFFF 32M EMIFA async data (CS3) - 0x6400 0000 0x65FF FFFF 32M EMIFA async data (CS4) - 0x6600 0000 0x67FF FFFF 32M EMIFA async data (CS5) - 0x6800 0000 0x6800 7FFF 32K EMIFA Control Registers - 0x6800 8000 0x7FFF FFFF 0x8000 0000 0x8001 FFFF 128K On-chip RAM 0x8002 0000 0xAFFF FFFF 0xB000 0000 0xB000 7FFF 0xB000 8000 0xBFFF FFFF 0xC000 0000 0xCFFF FFFF 0xD000 0000 0xFFFC FFFF - 32K EMIFB Control Registers 256M EMIFB SDRAM Data - 0xFFFD 0000 0xFFFD FFFF 0xFFFE 0000 0xFFFE DFFF 0xFFFE E000 0xFFFE FFFF 8K ARM Interrupt Controller 0xFFFF 0000 0xFFFF 1FFF 8K ARM local RAM 0xFFFF 2000 0xFFFF FFFF 12 PRUSS Mem Map 64K ARM local ROM - ARM local RAM (PRU 0 Only) - Device Overview Copyright © 2010–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM1707 AM1707 www.ti.com 3.5 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 Pin Assignments Extensive use of pin multiplexing is used to accommodate the largest number of peripheral functions in the smallest possible package. Pin multiplexing is controlled using a combination of hardware configuration at device reset and software programmable register settings. 3.5.1 Pin Map (Bottom View) Figure 3-1 shows the pin assignments for the ZKB package. 1 2 3 4 5 6 7 8 9 10 AXR1[11]/ GP5[11] SPI0_CLK/ EQEP1I/ GP5[2]/ BOOT[2] SPI1_CLK/ EQEP1S/ GP5[7]/ BOOT[7] EMA_CS[3]/ AMUTE2/ GP2[6] EMA_CS[0]/ UHPI_HAS/ GP2[4] EMA_A[0]/ LCD_D[7]/ GP1[0] EMA_A[4]/ LCD_D[3]/ GP1[4] T VSS VSS AXR1[0]/ GP4[0] R DVDD AXR1[1]/ GP4[1] UART0_RXD/ I2C0_SDA/ TM64P0_IN12/ GP5[8]/ BOOT[8] P AXR1[3]/ EQEP1A/ GP4[3] AXR1[2]/ GP4[2] N AXR1[5]/ EPWM2B/ GP4[5] AXR1[4]/ EQEP1B/ GP4[4] AXR1[10]/ GP5[10] M AXR1[9]/ GP4[9] AXR1[8]/ EPWM1A/ GP4[8] AXR1[7]/ EPWM1B/ GP4[7] AXR1[6]/ EPWM2A/ GP4[6] DVDD VSS VSS L AHCLKR1/ GP4[11] ACLKR1/ ECAP2/ APWM2/ GP4[12] AFSR1/ GP4[13] AMUTE0/ RESETOUT DVDD CVDD AHCLKX1/ EPWM0B/ GP3[14] ACLKX1/ EPWM0A/ GP3[15] AFSX1/ EPWMSYNCI/ EPWMSYNCO/ GP4[10] DVDD K RTCK/GP7[14] SPI0_ENA/ SPI0_SOMI[0]/ EMA_OE/ SPI1_ENA/ UART0_CTS/ UHPI_HDS1/ EQEP0I/ UART2_RXD/ EQEP0A/ AXR0[13]/ GP5[0]/ GP5[3]/ GP5[12] GP2[7] BOOT[0] BOOT[3] 11 12 13 14 EMA_D[0]/ EMA_D[9]/ EMA_A[8]/ EMA_SDCKE/ MMCSD_DAT[0]/ UHPI_HD[9]/ UHPI_HD[0]/ LCD_PCLK/ GP2[0] LCD_D[9]/ GP0[0]/ GP1[8] GP0[9] BOOT[12] EMA_CLK/ OBSCLK/ AHCLKR2/ GP1[15] 15 16 VSS VSS T DVDD R EMA_A[1]/ EMA_BA[0]/ MMCSD_CLK/ LCD_D[4]/ UHPI_HCNTL0/ GP1[14] GP1[1] EMA_A[5]/ LCD_D[2]/ GP1[5] EMA_A[9]/ LCD_HSYNC/ GP1[9] EMA_D[2]/ EMA_D[10]/ EMA_D[1]/ MMCSD_DAT[2]/ UHPI_HD[10]/ MMCSD_DAT[1]/ UHPI_HD[2]/ LCD_D[10]/ UHPI_HD[1]/ GP0[2] GP0[10] GP0[1] UART0_TXD/ EMA_A[2]/ SPI1_SOMI[0]/ SPI0_SIMO[0]/ EMA_CS[2]/ EMA_BA[1]/ SPI1_SCS[0]/ I2C0_SCL/ I2C1_SCL/ EQEP0S/ UHPI_HCS/ LCD_D[5]/ MMCSD_CMD/ TM64P0_OUT12/ UART2_TXD/ UHPI_HHWIL/ UHPI_HCNTL1/ GP5[5]/ GP5[1]/ GP2[5]/ GP5[9]/ GP5[13] GP1[13] GP1[2] BOOT[5] BOOT[1] BOOT[15] BOOT[9] EMA_A[6]/ LCD_D[1]/ GP1[6] EMA_A[11]/ LCD_AC_ ENB_CS/ GP1[11] EMA_WE_ EMA_D[4]/ EMA_D[12]/ EMA_D[3]/ EMA_D[11]/ DQM[1]/ MMCSD_DAT[4]/ UHPI_HD[12]/ MMCSD_DAT[3]/ UHPI_HD[11]/ UHPI_HDS2/ UHPI_HD[4]/ LCD_D[12]/ UHPI_HD[3]/ LCD_D[11] AXR0[14]/ GP0[4] GP0[12] GP0[3] GP0[11] GP2[8] P SPI0_SCS[0]/ SPI1_SIMO[0]/ UART0_RTS/ I2C1_SDA/ EMA_WAIT[0]/ EMA_RAS/ EMA_A[10]/ UHPI_HRDY/ EMA_CS[5]/ LCD_VSYNC/ EQEP0B/ GP5[6]/ GP5[4]/ GP2[10] GP2[2] GP1[10] BOOT[6] BOOT[4] EMA_A[3]/ LCD_D[6]/ GP1[3] EMA_A[7]/ LCD_D[0]/ GP1[7] EMA_A[12]/ LCD_MCLK/ GP1[12] EMA_D[8]/ EMA_D[6]/ EMA_D[14]/ EMA_D[5]/ EMA_D[13]/ UHPI_HD[8]/ MMCSD_DAT[6]/ UHPI_HD[14]/ MMCSD_DAT[5]/ UHPI_HD[13]/ LCD_D[8]/ UHPI_HD[6]/ LCD_D[14]/ UHPI_HD[5]/ LCD_D[13]/ GP0[14] GP0[5] GP0[13] GP0[8] GP0[6] N DVDD DVDD VSS VSS DVDD EMA_WE/ UHPI_HRW/ AXR0[12]/ GP2[3]/ BOOT[14]] EMA_D[7]/ EMA_WE_ EMA_D[15]/ MMCSD_DAT[7]/ DQM[0]/ UHPI_HD[15]/ UHPI_HINT/ UHPI_HD[7]/ LCD_D[15]/ AXR0[15]/ GP0[7]/ GP0[15] GP2[9] BOOT[13] M VSS VSS VSS VSS DVDD DVDD EMB_CAS EMB_D[22] EMB_D[23] EMA_CAS/ EMA_CS[4]/ GP2[1] L CVDD CVDD VSS VSS CVDD CVDD DVDD EMB_D[20] EMB_WE_ DQM[0]/ GP5[15] EMB_WE EMB_D[21] K J TMS TDI TDO TRST EMU0/GP7[15] CVDD CVDD VSS VSS CVDD CVDD CVDD EMB_D[5]/ GP6[5] EMB_D[19] EMB_D[6]/ GP6[6] EMB_D[7]/ GP6[7] J H RTC_XI RTC_XO TCK NC USB0_ VDDA33 RVDD CVDD VSS VSS CVDD CVDD RVDD EMB_D[3]/ GP6[3] EMB_D[17] EMB_D[18] EMB_D[4]/ GP6[4] H G RTC_CVDD RTC_VSS RESET USB0_DM DVDD CVDD CVDD VSS VSS CVDD CVDD DVDD EMB_D[1]/ GP6[1] EMB_D[31] EMB_D[16] EMB_D[2]/ GP6[2] G F OSCOUT OSCIN NC USB0_DP DVDD CVDD RSV1 VSS VSS VSS DVDD DVDD EMB_D[15]/ GP6[15] EMB_D[29] EMB_D[30] EMB_D[0]/ GP6[0] F E PLL0_VSSA OSCVSS USB0_ VDDA18 USB0_ DRVVBUS/ GP4[15] DVDD VSS VSS DVDD DVDD VSS VSS DVDD EMB_D[13]/ GP6[13] EMB_D[27] EMB_D[28] EMB_D[14]/ GP6[14] E D PLL0_VDDA USB0_ID USB0_VBUS AMUTE1/ EPWMTZ/ GP4[14] AFSX0/ GP2[13]/ BOOT[10] AXR0[6]/ UART1_TXD/ RMII_RXER/ AXR0[10]/ ACLKR2/ GP3[10] GP3[6] AXR0[2]/ RMII_TXEN/ AXR2[3]/ GP3[2] EMB_CS[0] EMB_A[0]/ GP7[2] EMB_A[4]/ GP7[6] EMB_A[8]/ GP7[10] EMB_D[9]/ GP6[9] EMB_D[10]/ GP6[10] EMB_D[11]/ GP6[11] EMB_D[12]/ GP6[12] D C USB1_ VDDA33 USB1_ VDDA18 USB0_ VDDA12 AFSR0/ GP3[12] ACLKX0/ ECAP0/ APWM0/ GP2[12] AXR0[5]/ AXR0[1]/ UART1_RXD/ RMII_RXD[1]/ RMII_TXD[1]/ AXR0[9]/ AFSX2/ ACLKX2/ GP3[9] GP3[5] GP3[1] EMB_BA[0]/ GP7[1] EMB_A[1]/ GP7[3] EMB_A[5]/ GP7[7] EMB_A[9]/ GP7[11] EMB_SDCKE EMB_CLK EMB_WE_ DQM[1]/ GP5[14] EMB_D[8]/ GP6[8] C B RSV2 VSS USB1_DM ACLKR0/ ECAP1/ APWM1/ GP2[15] AHCLKX0/ AHCLKX2/ USB_ REFCLKIN/ GP2[11] AXR0[8]/ MDIO_D/ GP3[8] AXR0[4]/ AXR0[0]/ RMII_RXD[0]/ RMII_TXD[0]/ AXR2[1]/ AFSR2/ GP3[4] GP3[0] EMB_BA[1]/ GP7[0] EMB_A[2]/ GP7[4] EMB_A[6]/ GP7[8] EMB_A[11]/ GP7[13] EMB_WE_ DQM[2] EMB_D[25] EMB_A[12]/ GP3[13] DVDD B A VSS VSS USB1_DP AHCLKR0/ RMII_MHZ_ 50_CLK/ GP2[14]/ BOOT[11] AXR0[11]/ AXR2[0]/ GP3[11] AXR0[7]/ MDIO_CLK/ GP3[7] AXR0[3]/ RMII_CRS_DV/ AXR2[2]/ GP3[3] EMB_RAS EMB_A[10]/ GP7[12] EMB_A[3]/ GP7[5] EMB_A[7]/ GP7[9] EMB_WE_ DQM[3] EMB_D[24] EMB_D[26] VSS VSS A 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Figure 3-1. Pin Map (ZKB) Device Overview Copyright © 2010–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM1707 13 AM1707 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 3.6 www.ti.com Terminal Functions Table 3-3 to Table 3-23 identify the external signal names, the associated pin/ball numbers along with the mechanical package designator, the pin type (I, O, IO, OZ, or PWR), whether the pin/ball has any internal pullup/pulldown resistors, whether the pin/ball is configurable as an IO in GPIO mode, and a functional pin description. 3.6.1 Device Reset and JTAG Table 3-3. Reset and JTAG Terminal Functions PIN No. SIGNAL NAME ZKB TYPE (1) PULL (2) DESCRIPTION RESET RESET AMUTE0/ RESETOUT G3 I L4 (3) O Device reset input IPD Reset output. Multiplexed with McASP0 mute output. JTAG TMS J1 I IPU JTAG test mode select TDI TDO J2 I IPU JTAG test data input J3 O IPD JTAG test data output TCK H3 I IPU JTAG test clock TRST J4 I IPD JTAG test reset EMU[0]/GP7[15] J5 I/O IPU Emulation Signal RTCK/GP7[14] K1 I/O IPD JTAG Test Clock Return Clock Output (1) (2) (3) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: For multiplexed pins where functions have different types (i.e., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor Open drain mode for RESETOUT function. 3.6.2 High-Frequency Oscillator and PLL Table 3-4. High-Frequency Oscillator and PLL Terminal Functions PIN No. TYPE (1) PULL (2) R12 O IPU OSCIN F2 I Oscillator input OSCOUT F1 O Oscillator output OSCVSS E2 GND Oscillator ground PLL0_VDDA D1 PWR PLL analog VDD (1.2-V filtered supply) PLL0_VSSA E1 GND PLL analog VSS (for filter) SIGNAL NAME EMA_CLK/OBSCLK/AHCLKR2/ GP1[15] ZKB DESCRIPTION PLL Observation Clock 1.2-V OSCILLATOR 1.2-V PLL (1) (2) 14 I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: For multiplexed pins where functions have different types (i.e., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor Device Overview Copyright © 2010–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM1707 AM1707 www.ti.com 3.6.3 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 Real-Time Clock and 32-kHz Oscillator Table 3-5. Real-Time Clock (RTC) and 1.2-V, 32-kHz Oscillator Terminal Functions SIGNAL NAME PIN No. ZKB TYPE (1) PULL (2) DESCRIPTION RTC_CVDD G1 PWR RTC_XI H1 I Low-frequency (32-kHz) oscillator receiver for real-time clock RTC_XO H2 O Low-frequency (32-kHz) oscillator driver for real-time clock RTC_Vss G2 GND (1) (2) RTC module core power (isolated from rest of chip CVDD) Oscillator ground (for filter) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: For multiplexed pins where functions have different types (i.e., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor 3.6.4 External Memory Interface A (ASYNC, SDRAM) Table 3-6. External Memory Interface A (EMIFA) Terminal Functions PIN No. SIGNAL NAME TYPE (1) PULL (2) MUXED DESCRIPTION ZKB EMA_D[15]/UHPI_HD[15]/LCD_D[15]/GP0[15] M16 I/O IPD EMA_D[14]/UHPI_HD[14]/LCD_D[14]/GP0[14] N14 I/O IPD EMA_D[13]/UHPI_HD[13]/LCD_D[13]/GP0[13] N16 I/O IPD EMA_D[12]/UHPI_HD[12]/LCD_D[12]/GP0[12] P14 I/O IPD EMA_D[11]/UHPI_HD[11]/LCD_D[11]/GP0[11] P16 I/O IPD EMA_D[10]/UHPI_HD[10]/LCD_D[10]/GP0[10] R14 I/O IPD EMA_D[9]/UHPI_HD[9]/LCD_D[9]/GP0[9] T14 I/O IPD EMA_D[8]/UHPI_HD[8]/LCD_D[8]/GP0[8] N12 I/O IPD EMA_D[7]/MMCSD_DAT[7]/UHPI_HD[7]/GP0[7]/BOOT[13] M15 I/O IPU EMA_D[6]/MMCSD_DAT[6]/UHPI_HD[6]/GP0[6] N13 I/O IPU EMA_D[5]/MMCSD_DAT[5]/UHPI_HD[5]/GP0[5] N15 I/O IPU EMA_D[4]/MMCSD_DAT[4]/UHPI_HD[4]/GP0[4] P13 I/O IPU EMA_D[3]/MMCSD_DAT[3]/UHPI_HD[3]/GP0[3] P15 I/O IPU EMA_D[2]/MMCSD_DAT[2]/UHPI_HD[2]/GP0[2] R13 I/O IPU EMA_D[1]/MMCSD_DAT[1]/UHPI_HD[1]/GP0[1] R15 I/O IPU EMA_D[0]/MMCSD_DAT[0]/UHPI_HD[0]/GP0[0]/BOOT[12] T13 I/O IPU (1) (2) UHPI, LCD, GPIO MMC/SD, UHPI, EMIFA data bus GPIO, BOOT MMC/SD, UHPI, GPIO MMC/SD, UHPI, GPIO, BOOT I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (i.e., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor Device Overview Copyright © 2010–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM1707 15 AM1707 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 www.ti.com Table 3-6. External Memory Interface A (EMIFA) Terminal Functions (continued) SIGNAL NAME PIN No. TYPE (1) PULL (2) MUXED DESCRIPTION ZKB EMA_A[12]/LCD_MCLK/GP1[12] N11 O IPU EMA_A[11]/ LCD_AC_ENB_CS/GP1[11] P11 O IPU EMA_A[10]/LCD_VSYNC/GP1[10] N8 O IPU EMA_A[9]/LCD_HSYNC/GP1[9] R11 O IPU EMA_A[8]/LCD_PCLK/GP1[8] T11 O IPU EMA_A[7]/LCD_D[0]/GP1[7] N10 O IPD EMA_A[6]/LCD_D[1]/GP1[6] P10 O IPD EMA_A[5]/LCD_D[2]/GP1[5] R10 O IPD EMA_A[4]/LCD_D[3]/GP1[4] T10 O IPD EMA_A[3]/LCD_D[6]/GP1[3] N9 O IPD EMA_A[2]/MMCSD_CMD/UHPI_HCNTL1/GP1[2] P9 O IPU EMA_A[1]/MMCSD_CLK/UHPI_HCNTL0/GP1[1] R9 O EMA_A[0]/LCD_D[7]/GP1[0] T9 EMA_BA[1]/LCD_D[5]/UHPI_HHWIL/GP1[13] LCD, GPIO EMIFA address bus IPU MMCSD, UHPI, GPIO EMIFA address bus. O IPD LCD, GPIO P8 O IPU LCD, UHPI, GPIO EMA_BA[0]/LCD_D[4]/GP1[14] R8 O IPU LCD, GPIO EMA_CLK/OBSCLK/AHCLKR2/GP1[15] R12 O IPU McASP2, GPIO, EMIFA clock OBSCLK EMA_SDCKE/GP2[0] T12 O IPU GPIO EMA_RAS /EMA_CS[5]/GP2[2] N7 O IPU EMA_CAS /EMA_CS[4]/GP2[1] L16 O IPU EMA_RAS/ EMA_CS[5] /GP2[2] N7 O IPU EMA_CAS/ EMA_CS[4] /GP2[1] L16 O IPU EMIF A SDRAM, GPIO EMA_CS[3] /AMUTE2/GP2[6] T7 O IPU McASP2, GPIO EMA_CS[2] /UHPI_HCS/GP2[5]/BOOT[15] P7 O IPU UHPI, GPIO, BOOT EMA_CS[0] /UHPI_HAS/GP2[4] T8 O IPU UHPI, GPIO EMA_WE /UHPI_HRW/AXR0[12]/GP2[3]/BOOT[14] M13 O IPU UHPI, MCASP0, EMIFA SDRAM write GPIO, BOOT enable EMA_WE_DQM[1] /UHPI_HDS2/AXR0[14]/GP2[8] P12 O IPU EMIFA write enable/data mask for EMA_D[15:8] EMIF A chip select, GPIO UHPI, McASP, GPIO EMA_WE_DQM[0] /UHPI_HINT/AXR0[15]/GP2[9] EMIFA bank address EMIFA SDRAM clock enable EMIFA SDRAM row address strobe EMIFA SDRAM column address strobe EMIFA Async Chip Select EMIFA SDRAM chip select EMIFA write enable/data mask for EMA_D[7:0] M14 O IPU EMA_OE /UHPI_HDS1/AXR0[13]/GP2[7] R7 O IPU UHPI, McASP0, GPIO EMIFA output enable EMA_WAIT[0]/ UHPI_HRDY/GP2[10] N6 I IPU UHPI, GPIO EMIFA wait input/interrupt 16 Device Overview Copyright © 2010–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM1707 AM1707 www.ti.com 3.6.5 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 External Memory Interface B (SDRAM only) Table 3-7. External Memory Interface B (EMIFB) Terminal Functions SIGNAL NAME PIN No. ZKB TYPE (1) PULL (2) EMB_D[31] G14 I/O IPD EMB_D[30] F15 I/O IPD EMB_D[29] F14 I/O IPD EMB_D[28] E15 I/O IPD EMB_D[27] E14 I/O IPD EMB_D[26] A14 I/O IPD EMB_D[25] B14 I/O IPD EMB_D[24] A13 I/O IPD EMB_D[23] L15 I/O IPD EMB_D[22] L14 I/O IPD EMB_D[21] K16 I/O IPD EMB_D[20] K13 I/O IPD EMB_D[19] J14 I/O IPD EMB_D[18] H15 I/O IPD EMB_D[17] H14 I/O IPD EMB_D[16] G15 I/O IPD EMB_D[15]/GP6[15] F13 I/O IPD EMB_D[14]/GP6[14] E16 I/O IPD EMB_D[13]/GP6[13] E13 I/O IPD EMB_D[12]/GP6[12] D16 I/O IPD EMB_D[11]/GP6[11] D15 I/O IPD EMB_D[10]/GP6[10] D14 I/O IPD EMB_D[9]/GP6[9] D13 I/O IPD EMB_D[8]/GP6[8] C16 I/O IPD EMB_D[7]/GP6[7] J16 I/O IPD EMB_D[6]/GP6[6] J15 I/O IPD EMB_D[5]/GP6[5] J13 I/O IPD EMB_D[4]/GP6[4] H16 I/O IPD EMB_D[3]/GP6[3] H13 I/O IPD EMB_D[2]/GP6[2] G16 I/O IPD EMB_D[1]/GP6[1] G13 I/O IPD EMB_D[0]/GP6[0] F16 I/O IPD EMB_A[12]/GP3[13] B15 O IPD EMB_A[11]/GP7[13] B12 O IPD EMB_A[10]/GP7[12] A9 O IPD EMB_A[9]/GP7[11] C12 O IPD EMB_A[8]/GP7[10] D12 O IPD EMB_A[7]/GP7[9] A11 O IPD EMB_A[6]/GP7[8] B11 O IPD EMB_A[5]/GP7[7] C11 O IPD (1) (2) MUXED DESCRIPTION EMIFB SDRAM data bus GPIO GPIO EMIFB SDRAM row/column address bus I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (i.e., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor Device Overview Copyright © 2010–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM1707 17 AM1707 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 www.ti.com Table 3-7. External Memory Interface B (EMIFB) Terminal Functions (continued) PIN No. SIGNAL NAME ZKB TYPE (1) PULL (2) MUXED DESCRIPTION EMB_A[4]/GP7[6] D11 O IPD EMB_A[3]/GP7[5] A10 O IPD EMB_A[2]/GP7[4] B10 O IPD EMB_A[1]/GP7[3] C10 O IPD EMB_A[0]/GP7[2] D10 O IPD EMB_BA[1]/GP7[0] B9 O IPU EMB_BA[0]/GP7[1] C9 O IPU EMB_CLK C14 O IPU EMIF SDRAM clock EMB_SDCKE C13 O IPU EMIFB SDRAM clock enable EMB_WE K15 O IPU EMIFB write enable EMB_RAS A8 O IPU EMIFB SDRAM row address strobe EMB_CAS L13 O IPU EMIFB column address strobe EMB_CS[0] D9 O IPU EMIFB SDRAM chip select 0 EMB_WE_DQM[3] A12 O IPU EMB_WE_DQM[2] B13 O IPU EMB_WE_DQM[1] /GP5[14] C15 O IPU EMB_WE_DQM[0] /GP5[15] K14 O IPU 3.6.6 EMIFB SDRAM row/column address GPIO EMIFB SDRAM bank address EMIFB write enable/data mask for EMB_D GPIO Serial Peripheral Interface Modules (SPI0, SPI1) Table 3-8. Serial Peripheral Interface (SPI) Terminal Functions PIN No. SIGNAL NAME TYPE (1) PULL (2) MUXED DESCRIPTION ZKB SPI0 SPI0_SCS[0] /UART0_RTS/EQEP0B/GP5[4]/BOOT[4] N4 I/O IPU UART0, EQEP0B, GPIO, BOOT SPI0 chip select SPI0_ENA /UART0_CTS/EQEP0A/GP5[3]/BOOT[3] R5 I/O IPU UART0, EQEP0A, GPIO, BOOT SPI0 enable SPI0_CLK/EQEP1I/GP5[2]/BOOT[2] T5 I/O IPD eQEP1, GPIO, BOOT SPI0 clock SPI0_SIMO[0]/EQEP0S/GP5[1]/BOOT[1] P6 I/O IPD SPI0_SOMI[0]/EQEP0I/GP5[0]/BOOT[0] R6 I/O IPD SPI1_SCS[0] /UART2_TXD/GP5[13] P4 I/O IPU SPI1_ENA /UART2_RXD/GP5[12] R4 I/O IPU SPI1_CLK/EQEP1S/GP5[7]/BOOT[7] T6 I/O IPD SPI1_SIMO[0]/I2C1_SDA/GP5[6]/BOOT[6] N5 I/O IPU SPI1_SOMI[0]/I2C1_SCL/GP5[5]/BOOT[5] P5 I/O IPU eQEP0, GPIO, BOOT SPI0 data slave-inmaster-out SPI0 data slave-outmaster-in SPI1 UART2, GPIO eQEP1, GPIO, BOOT I2C1, GPIO, BOOT (1) (2) 18 SPI1 chip select SPI1 enable SPI1 clock SPI1 data slave-inmaster-out SPI1 data slave-outmaster-in I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (i.e., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor Device Overview Copyright © 2010–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM1707 AM1707 www.ti.com 3.6.7 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 Enhanced Capture/Auxiliary PWM Modules (eCAP0, eCAP1, eCAP2) The eCAP Module pins function as either input captures or auxilary PWM 32-bit outputs, depending upon how the eCAP module is programmed. Table 3-9. Enhanced Capture Module (eCAP) Terminal Functions PIN No. SIGNAL NAME TYPE (1) PULL (2) MUXED DESCRIPTION ZKB eCAP0 ACLKX0/ECAP0/APWM0/GP2[12] C5 I/O IPD McASP0, GPIO enhanced capture 0 input or auxiliary PWM 0 output eCAP1 ACLKR0/ECAP1/APWM1/GP2[15] B4 I/O IPD McASP0, GPIO enhanced capture 1 input or auxiliary PWM 1 output L2 I/O IPD McASP1, GPIO enhanced capture 2 input or auxiliary PWM 2 output eCAP2 ACLKR1/ECAP2/APWM2/GP4[12] (1) (2) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (i.e., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor Device Overview Copyright © 2010–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM1707 19 AM1707 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 3.6.8 www.ti.com Enhanced Pulse Width Modulators (eHRPWM0, eHRPWM1, eHRPWM2) Table 3-10. Enhanced Pulse Width Modulator (eHRPWM) Terminal Functions SIGNAL NAME PIN No. TYPE (1) PULL (2) MUXED DESCRIPTION ZKB eHRPWM0 eHRPWM0 A output (with high-resolution) ACLKX1/EPWM0A/GP3[15] K3 I/O IPD AHCLKX1/EPWM0B/GP3[14] K2 I/O IPD eHRPWM0 B output McASP1, GPIO AMUTE1/EPWMTZ/GP4[14] D4 I/O IPD McASP1, eHRPWM1, eHRPWM0 trip zone GPIO, eHRPWM2 input AFSX1/EPWMSYNCI/EPWMSYNCO/GP4[10] K4 I/O IPD Sync input to McASP1, eHRPWM0, eHRPWM0 module or GPIO sync output to external PWM eHRPWM1 eHRPWM1 A output (with high-resolution) AXR1[8]/EPWM1A/GP4[8] M2 I/O IPD AXR1[7]/EPWM1B/GP4[7] M3 I/O IPD eHRPWM1 B output IPD McASP1, eHRPWM1, eHRPWM1 trip zone GPIO, eHRPWM2 input AMUTE1/EPWMTZ/GP4[14] D4 I/O McASP1, GPIO eHRPWM2 eHRPWM2 A output (with high-resolution) AXR1[6]/EPWM2A/GP4[6] M4 I/O IPD AXR1[5]/EPWM2B/GP4[5] N1 I/O IPD eHRPWM2 B output AMUTE1/EPWMTZ/GP4[14] D4 I/O IPD McASP1, eHRPWM1, eHRPWM2 trip zone GPIO, eHRPWM2 input (1) (2) 20 McASP1, GPIO I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (i.e., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor Device Overview Copyright © 2010–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM1707 AM1707 www.ti.com 3.6.9 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 Enhanced Quadrature Encoder Pulse Module (eQEP) Table 3-11. Enhanced Quadrature Encoder Pulse Module (eQEP) Terminal Functions PIN No. SIGNAL NAME TYPE (1) PULL (2) MUXED DESCRIPTION ZKB eQEP0 SPI0_ENA/UART0_CTS/EQEP0A/GP5[3]/BOOT[3] R5 I IPU SPI0_SCS[0]/UART0_RTS/EQEP0B/GP5[4]/BOOT[4] N4 I IPU SPI0_SOMI[0]/EQEP0I/GP5[0]/BOOT[0] R6 I IPD SPI0_SIMO[0]/EQEP0S/GP5[1]/BOOT[1] P6 I IPD SPIO, UART0, GPIO, BOOT SPI1, GPIO, BOOT EQEP0A quadrature input EQEP0B quadrature input eQEP0 index eQEP0 strobe eQEP1 AXR1[3]/EQEP1A/GP4[3] P1 I IPD AXR1[4]/EQEP1B/GP4[4] N2 I IPD SPI0_CLK/EQEP1I/GP5[2]/BOOT[2] T5 I IPD SPI1_CLK/EQEP1S/GP5[7]/BOOT[7] T6 I IPD McASP1, GPIO (1) (2) SPI1, GPIO, BOOT eQEP1 quadrature input eQEP1 quadrature input eQEP1 index eQEP1 strobe I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (i.e., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor Device Overview Copyright © 2010–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM1707 21 AM1707 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 3.6.10 www.ti.com Boot Table 3-12. Boot Mode Selection Terminal Functions (1) PIN No. TYPE (2) PULL (3) P7 I IPU EMIFA, UHPI, GPIO EMA_WE/UHPI_HRW/AXR0[12]/GP2[3]/BOOT[14] M13 I IPU EMIFA, UHPI, McASP0, GPIO EMA_D[7]/MMCSD_DAT[7]/UHPI_HD[7]/GP0[7]/BOOT[13] M15 I IPU EMA_D[0]/MMCSD_DAT[0]/UHPI_HD[0]/GP0[0]/BOOT[12] T13 I IPU AHCLKR0/RMII_MHZ_50_CLK/GP2[14]/BOOT[11] A4 I IPD McASP0, EMAC, GPIO AFSX0/GP2[13]/BOOT[10] D5 I IPD McASP0, GPIO UART0_TXD/I2C0_SCL/TM64P0_OUT12/GP5[9]/BOOT[9] P3 I IPU UART0, I2C0, Timer0, GPIO UART0_RXD/I2C0_SDA/TM64P0_IN12/GP5[8]/BOOT[8] R3 I IPU SPI1_CLK/EQEP1S/GP5[7]/BOOT[7] T6 I IPD SPI1_SIMO[0]/I2C1_SDA/GP5[6]/BOOT[6] N5 I IPU SPI1_SOMI[0]/I2C1_SCL/GP5[5]/BOOT[5] P5 I IPU SPI0_SCS[0]/UART0_RTS/EQEP0B/GP5[4]/BOOT[4] N4 I IPU SPI0, UART0, eQEP0, GPIO SPI0_ENA/UART0_CTS/EQEP0A/GP5[3]/BOOT[3] R5 I IPU SPI0, UART0, eQEP0, GPIO SPI0_CLK/EQEP1I/GP5[2]/BOOT[2] T5 I IPD SPIO, eQEP1, GPIO SPI0_SIMO[0]/EQEP0S/GP5[1]/BOOT[1] P6 I IPD SPI0_SOMI[0]/EQEP0I/GP5[0]/BOOT[0] R6 I IPD SIGNAL NAME ZKB EMA_CS[2]/UHPI_HCS/GP2[5]/BOOT[15] (1) (2) (3) 22 MUXED DESCRIPTION EMIFA, MMC/SD, UHPI, GPIO UART0, I2C0, Timer0, Boot Mode GPIO Selection Pins SPI1, eQEP1, GPIO SPI1, I2C1, GPIO SPI0, eQEP0, GPIO Boot decoding will be defined in the ROM datasheet. I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (i.e., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor Device Overview Copyright © 2010–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM1707 AM1707 www.ti.com SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 3.6.11 Universal Asynchronous Receiver/Transmitters (UART0, UART1, UART2) Table 3-13. Universal Asynchronous Receiver/Transmitter (UART) Terminal Functions PIN No. SIGNAL NAME TYPE (1) PULL (2) MUXED DESCRIPTION ZKB UART0 UART0_RXD/I2C0_SDA/TM64P0_IN12/GP5[8]/BOOT[8] R3 I IPU I2C0, BOOT, Timer0, GPIO, UART0_TXD/I2C0_SCL/TM64P0_OUT12/GP5[9]/BOOT[9] P3 O IPU I2C0, Timer0, GPIO, UART0 transmit BOOT data SPI0_SCS[0]/ UART0_RTS /EQEP0B/GP5[4]/BOOT[4] N4 O IPU SPI0_ENA/ UART0_CTS /EQEP0A/GP5[3]/BOOT[3] R5 I IPU I IPD UART0 receive data UART0 ready-tosend output SPIO, eQEP0, GPIO, BOOT UART0 clear-tosend input UART1 UART1_RXD/AXR0[9]/GP3[9] (3) C6 UART1_TXD/AXR0[10]/GP3[10] (3) D6 O IPD I IPU UART1 receive data McASP0, GPIO UART1 transmit data UART2 SPI1_ENA/UART2_RXD/GP5[12] R4 SPI1_SCS[0]/UART2_TXD/GP5[13] (1) (2) (3) P4 O IPU UART2 receive data SPI1, GPIO UART2 transmit data I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (i.e., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor As these signals are internally pulled down while the device is in reset, it is necessary to externally pull them high with resistors if UART1 boot mode is used. 3.6.12 Inter-Integrated Circuit Modules (I2C0, I2C1) Table 3-14. Inter-Integrated Circuit (I2C) Terminal Functions PIN No. SIGNAL NAME TYPE (1) PULL (2) MUXED DESCRIPTION ZKB I2C0 UART0_RXD/I2C0_SDA/TM64P0_IN12/GP5[8]/BOOT[8] R3 I/O IPU UART0, Timer0, GPIO, BOOT I2C0 serial data UART0_TXD/I2C0_SCL/TM64P0_OUT12/GP5[9]/BOOT[9] P3 I/O IPU UART0, Timer0, GPIO, BOOT I2C0 serial clock SPI1_SIMO[0]/I2C1_SDA/GP5[6]/BOOT[6] N5 I/O IPU SPI1_SOMI[0]/I2C1_SCL/GP5[5]/BOOT[5] P5 I/O IPU I2C1 (1) (2) SPI1, GPIO, BOOT I2C1 serial data I2C1 serial clock I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (i.e., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor Device Overview Copyright © 2010–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM1707 23 AM1707 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 www.ti.com 3.6.13 Timers Table 3-15. Timers Terminal Functions PIN No. SIGNAL NAME TYPE (1) PULL (2) MUXED DESCRIPTION ZKB TIMER0 UART0_RXD/I2C0_SDA/TM64P0_IN12/GP5[8]/BOOT[8] R3 I IPU UART0_TXD/I2C0_SCL/TM64P0_OUT12/GP5[9]/BOOT[9] P3 O IPU UART0, I2C0, GPIO, BOOT Timer0 lower input Timer0 lower output TIMER1 (Watchdog ) No external pins. The Timer1 peripheral signals are not pinned out as external pins. (1) (2) 24 I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (i.e., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor Device Overview Copyright © 2010–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM1707 AM1707 www.ti.com 3.6.14 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 Universal Host-Port Interface (UHPI) Table 3-16. Universal Host-Port Interface (UHPI) Terminal Functions SIGNAL NAME PIN No. TYPE (1) PULL (2) MUXED DESCRIPTION ZKB EMA_D[15]/UHPI_HD[15]/LCD_D[15]/GP0[15] M16 I/O IPD EMA_D[14]/UHPI_HD[14]/LCD_D[14]/GP0[14] N14 I/O IPD EMA_D[13]/UHPI_HD[13]/LCD_D[13]/GP0[13] N16 I/O IPD EMA_D[12]/UHPI_HD[12]/LCD_D[12]/GP0[12] P14 I/O IPD EMA_D[11]/UHPI_HD[11]/LCD_D[11]/GP0[11] P16 I/O IPD EMA_D[10]/UHPI_HD[10]/LCD_D[10]/GP0[10] R14 I/O IPD EMA_D[9]/UHPI_HD[9]/LCD_D[9]/GP0[9] T14 I/O IPD EMA_D[8]/UHPI_HD[8]/LCD_D[8]/GP0[8] N12 I/O IPD EMA_D[7]/MMCSD_DAT[7]/UHPI_HD[7]/GP0[7]/ BOOT[13] M15 I/O IPU EMA_D[6]/MMCSD_DAT[6]/UHPI_HD[6]/GP0[6] N13 I/O IPU EMA_D[5]/MMCSD_DAT[5]/UHPI_HD[5]/GP0[5] N15 I/O IPU EMA_D[4]/MMCSD_DAT[4]/UHPI_HD[4]/GP0[4] P13 I/O IPU EMA_D[3]/MMCSD_DAT[3]/UHPI_HD[3]/GP0[3] P15 I/O IPU EMA_D[2]/MMCSD_DAT[2]/UHPI_HD[2]/GP0[2] R13 I/O IPU EMA_D[1]/MMCSD_DAT[1]/UHPI_HD[1]/GP0[1] R15 I/O IPU EMA_D[0]/MMCSD_DAT[0]/UHPI_HD[0]/GP0[0]/ BOOT[12] T13 I/O IPU EMA_A[2]/MMCSD_CMD/UHPI_HCNTL1/GP1[2] P9 I/O IPU EMA_A[1]/MMCSD_CLK/UHPI_HCNTL0/GP1[1] R9 I/O EMA_BA[1]/LCD_D[5]/UHPI_HHWIL/GP1[13] P8 EMIFA, LCD, GPIO EMIFA, MMC/SD, GPIO, BOOT UHPI data bus EMIFA, MMC/SD, GPIO EMIFA, MMC/SD, GPIO, BOOT IPU EMIFA, MMCSD_CMD, GPIO UHPI access control I/O IPU EMIFA, LCD, GPIO UHPI half-word identification control M13 I/O IPU EMIFA, McASP, GPIO, BOOT UHPI read/write EMA_CS[2]/ UHPI_HCS /GP2[5]/BOOT[15] P7 I/O IPU EMIFA, GPIO, BOOT UHPI chip select EMA_WE_DQM[1]/ UHPI_HDS2 /AXR0[14]/GP2[8] P12 I/O IPU EMA_OE/ UHPI_HDS1 /AXR0[13]/GP2[7] R7 I/O IPU M14 I/O IPU EMA_WAIT[0]/ UHPI_HRDY /GP2[10] N6 I/O IPU EMA_CS[0]/ UHPI_HAS /GP2[4] T8 I/O IPU EMA_WE/UHPI_HRW /AXR0[12]/GP2[3]/BOOT[14] EMA_WE_DQM[0]/ UHPI_HINT /AXR0[15]/GP2[9] (1) (2) EMIFA, McASP0, GPIO UHPI data strobe UHPI host interrupt EMIFA, GPIO UHPI ready UHPI address strobe I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (i.e., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor Device Overview Copyright © 2010–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM1707 25 AM1707 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 www.ti.com 3.6.15 Multichannel Audio Serial Ports (McASP0, McASP1, McASP2) Table 3-17. Multichannel Audio Serial Ports (McASPs) Terminal Functions PIN No. SIGNAL NAME TYPE (1) PULL (2) MUXED DESCRIPTION ZKB McASP0 EMA_WE_DQM[0]/UHPI_HINT/AXR0[15]/GP2[9] M14 I/O IPU EMA_WE_DQM[1]/UHPI_HDS2/AXR0[14]/GP2[8] P12 I/O IPU EMA_OE/UHPI_HDS1/AXR0[13]/GP2[7] R7 I/O IPU M13 I/O IPU EMIFA, UHPI, GPIO, BOOT AXR0[11]/ AXR2[0]/GP3[11] A5 I/O IPD McASP2, GPIO UART1_TXD/AXR0[10]/GP3[10] D6 I/O IPD GPIO UART1_RXD/AXR0[9]/GP3[9] C6 I/O IPD GPIO AXR0[8]/MDIO_D/GP3[8] B6 I/O IPU AXR0[7]/MDIO_CLK/GP3[7] A6 I/O IPD AXR0[6]/RMII_RXER/ACLKR2/GP3[6] D7 I/O IPD AXR0[5]/RMII_RXD[1]/AFSX2/GP3[5] C7 I/O IPD AXR0[4]/RMII_RXD[0]/AXR2[1]/GP3[4] B7 I/O IPD AXR0[3]/RMII_CRS_DV/AXR2[2]/GP3[3] A7 I/O IPD AXR0[2]/RMII_TXEN/AXR2[3]/GP3[2] D8 I/O IPD AXR0[1]/RMII_TXD[1]/ACLKX2/GP3[1] C8 I/O IPD AXR0[0]/RMII_TXD[0]/AFSR2/GP3[0] B8 I/O IPD AHCLKX0/AHCLKX2/USB_REFCLKIN/GP2[11] B5 I/O IPD McASP2, USB, GPIO McASP1 transmit master clock ACLKX0/ECAP0/APWM0/GP2[12] C5 I/O IPD eCAP0, GPIO McASP0 transmit bit clock AFSX0/GP2[13]/BOOT[10] D5 I/O IPD GPIO, BOOT McASP0 transmit frame sync AHCLKR0/RMII_MHZ_50_CLK/GP2[14]/BOOT[11] A4 I/O IPD EMAC, GPIO, BOOT McASP0 receive master clock ACLKR0/ECAP1/APWM1/GP2[15] B4 I/O IPD eCAP1, GPIO McASP0 receive bit clock AFSR0/GP3[12] C4 I/O IPD GPIO McASP0 receive frame sync AMUTE0/RESETOUT L4 I/O IPD RESETOUT McASP0 mute output EMA_WE/UHPI_HRW/AXR0[12]/GP2[3]/BOOT[14] (1) (2) 26 EMIFA, UHPI, GPIO MDIO, GPIO McASP0 serial data EMAC, McASP2, GPIO I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (i.e., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor Device Overview Copyright © 2010–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM1707 AM1707 www.ti.com SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 Table 3-17. Multichannel Audio Serial Ports (McASPs) Terminal Functions (continued) PIN No. TYPE (1) PULL (2) T4 I/O IPU AXR1[10]/GP5[10] N3 I/O IPU AXR1[9]/GP4[9] M1 I/O IPD AXR1[8]/EPWM1A/GP4[8] M2 I/O IPD eHRPWM1 A, GPIO AXR1[7]/EPWM1B/GP4[7] M3 I/O IPD eHRPWM1 B, GPIO AXR1[6]/EPWM2A/GP4[6] M4 I/O IPD eHRPWM2 A, GPIO AXR1[5]/EPWM2B/GP4[5] N1 I/O IPD eHRPWM2 B, GPIO AXR1[4]/EQEP1B/GP4[4] N2 I/O IPD AXR1[3]/EQEP1A/GP4[3] P1 I/O IPD AXR1[2]/GP4[2] P2 I/O IPD AXR1[1]/GP4[1] R2 I/O IPD AXR1[0]/GP4[0] T3 I/O IPD AHCLKX1/EPWM0B/GP3[14] K2 I/O IPD eHRPWM0, GPIO McASP1 transmit master clock ACLKX1/EPWM0A/GP3[15] K3 I/O IPD eHRPWM0, GPIO McASP1 transmit bit clock AFSX1/EPWMSYNCI/EPWMSYNCO/GP4[10] K4 I/O IPD eHRPWM0, GPIO McASP1 transmit frame sync AHCLKR1/GP4[11] L1 I/O IPD GPIO McASP1 receive master clock ACLKR1/ECAP2/APWM2/GP4[12] L2 I/O IPD eCAP2, GPIO McASP1 receive bit clock AFSR1/GP4[13] L3 I/O IPD GPIO McASP1 receive frame sync eHRPWM0, eHRPWM1, eHRPWM2, GPIO McASP1 mute output McASP0, EMAC, GPIO McASP2 serial data SIGNAL NAME MUXED DESCRIPTION ZKB McASP1 AXR1[11]/GP5[11] AMUTE1/EPWMTZ/GP4[14] GPIO McASP1 serial data eQEP1, GPIO GPIO D4 I/O IPD AXR0[0]/RMII_TXD[0]/AFSR2/GP3[0] B8 I/O IPD AXR0[2]/RMII_TXEN/AXR2[3]/GP3[2] D8 I/O IPD AXR0[3]/RMII_CRS_DV/AXR2[2]/GP3[3] A7 I/O IPD AXR0[4]/RMII_RXD[0]/AXR2[1]/GP3[4] B7 I/O IPD AXR0[11]/AXR2[0]/GP3[11] A5 I/O IPD AHCLKX0/AHCLKX2/USB_REFCLKIN/GP2[11] B5 I/O IPD McASP0, USB, GPIO McASP2 transmit master clock AXR0[1]/RMII_TXD[1]/ACLKX2/GP3[1] C8 I/O IPD McASP0, EMAC, GPIO McASP2 transmit bit clock AXR0[5]/RMII_RXD[1]/AFSX2/GP3[5] C7 I/O IPD McASP0, EMAC, GPIO McASP2 transmit frame sync EMA_CLK/OBSCLK/AHCLKR2/GP1[15] R12 I/O IPU EMIFA, GPIO, OBSCLK McASP2 receive master clock AXR0[6]/RMII_RXER/ACLKR2/GP3[6] D7 I/O IPD McASP0, EMAC, GPIO McASP2 receive bit clock EMA_CS[3]/AMUTE2/GP2[6] T7 I/O IPU EMIFA, GPIO McASP2 mute output McASP2 Device Overview Copyright © 2010–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM1707 27 AM1707 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 www.ti.com 3.6.16 Universal Serial Bus Modules (USB0, USB1) Table 3-18. Universal Serial Bus (USB) Terminal Functions SIGNAL NAME PIN No. TYPE (1) PULL (2) MUXED DESCRIPTION ZKB USB0 2.0 OTG (USB0) USB0_DM G4 A NA USB0 PHY data minus USB0_DP F4 A NA USB0 PHY data plus USB0_VDDA33 H5 PWR NA USB0 PHY 3.3-V supply USB0_VDDA18 E3 PWR NA USB0 PHY 1.8-V supply input C3 PWR NA USB0 PHY 1.2-V LDO output for bypass cap. For proper device operation, this pin is recommended to be connected via a 0.22 μF capacitor to VSS (GND), even if USB0 is not being used. USB0_ID D2 A NA USB0 PHY identification (mini-A or mini-B plug) USB0_VBUS D3 A NA USB0 bus voltage USB0_DRVVBUS/GP4[15] E4 O IPD GPIO USB0 controller VBUS control output. AHCLKX0/AHCLKX2/USB_REFCLKIN/ GP2[11] B5 I IPD USB0_VDDA12 (3) USB_REFCLKIN. Optional clock input. USB1 1.1 OHCI (USB1) USB1_DM B3 A NA USB1 PHY data minus USB1_DP A3 A NA USB1 PHY data plus USB1_VDDA33 C1 PWR NA USB1 PHY 3.3-V supply USB1_VDDA18 C2 PWR NA USB1 PHY 1.8-V supply AHCLKX0/AHCLKX2/USB_REFCLKIN/ GP2[11] B5 I NA USB_REFCLKIN. Optional clock input. (1) (2) (3) 28 IPD I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (i.e., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor Core power supply LDO output for USB PHY. This pin must be connected via a 0.22 uF capacitor to VSS. Device Overview Copyright © 2010–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM1707 AM1707 www.ti.com SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 3.6.17 Ethernet Media Access Controller (EMAC) Table 3-19. Ethernet Media Access Controller (EMAC) Terminal Functions SIGNAL NAME PIN No. TYPE (1) PULL (2) MUXED DESCRIPTION ZKB RMII AHCLKR0/RMII_MHZ_50_CLK/GP2[14]/BOOT[11] A4 I/O IPD AXR0[6]/RMII_RXER/ACLKR2/GP3[6] D7 I IPD AXR0[5]/RMII_RXD[1]/AFSX2/GP3[5] C7 I IPD AXR0[4]/RMII_RXD[0]/AXR2[1]/GP3[4] B7 I IPD AXR0[3]/RMII_CRS_DV/AXR2[2]/GP3[3] A7 I IPD AXR0[2]/RMII_TXEN/AXR2[3]/GP3[2] D8 O IPD AXR0[1]/RMII_TXD[1]/ACLKX2/GP3[1] C8 O IPD AXR0[0]/RMII_TXD[0]/AFSR2/GP3[0] B8 O IPD AXR0[8]/MDIO_D/GP3[8] B6 I/O IPU AXR0[7]/MDIO_CLK/GP3[7] A6 O IPD EMAC 50-MHz clock input or output McASP0, GPIO, BOOT EMAC RMII receiver error EMAC RMII receive data EMAC RMII carrier sense data valid McASP0, McASP2, GPIO EMAC RMII transmit enable EMAC RMII trasmit data MDIO (1) (2) MDIO serial data McASP0, GPIO MDIO clock I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (i.e., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor 3.6.18 Multimedia Card/Secure Digital (MMC/SD) Table 3-20. Multimedia Card/Secure Digital (MMC/SD) Terminal Functions PIN No. SIGNAL NAME TYPE (1) PULL (2) MUXED DESCRIPTION ZKB EMA_A[1]/MMCSD_CLK/UHPI_HCNTL0/GP1[1] R9 O IPU EMA_A[2]/MMCSD_CMD/UHPI_HCNTL1/GP1[2] P9 I/O IPU EMA_D[7]/MMCSD_DAT[7]/UHPI_HD[7]/GP0[7]/BOOT[13] M15 I/O IPU EMA_D[6]/MMCSD_DAT[6]/UHPI_HD[6]/GP0[6] N13 I/O IPU EMA_D[5]/MMCSD_DAT[5]/UHPI_HD[5]/GP0[5] N15 I/O IPU EMA_D[4]/MMCSD_DAT[4]/UHPI_HD[4]/GP0[4] P13 I/O IPU EMA_D[3]/MMCSD_DAT[3]/UHPI_HD[3]/GP0[3] P15 I/O IPU EMA_D[2]/MMCSD_DAT[2]/UHPI_HD[2]/GP0[2] R13 I/O IPU EMA_D[1]/MMCSD_DAT[1]/UHPI_HD[1]/GP0[1] R15 I/O IPU EMA_D[0]/MMCSD_DAT[0]/UHPI_HD[0]/GP0[0]/BOOT[12] T13 I/O IPU (1) (2) EMIFA, UHPI, GPIO MMCSD Clock MMCSD Command EMIFA, UHPI, GPIO, BOOT EMIFA, UHPI, GPIO MMC/SD data EMIFA, UHPI, GPIO, BOOT I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (i.e., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor Device Overview Copyright © 2010–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM1707 29 AM1707 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 3.6.19 www.ti.com Liquid Crystal Display Controller (LCD) Table 3-21. Liquid Crystal Display Controller (LCD) Terminal Functions PIN No. SIGNAL NAME ZKB TYPE (1) PULL (2) EMA_D[15]/UHPI_HD[15]/LCD_D [15]/GP0[15] M16 I/O IPD EMA_D[14]/UHPI_HD[14]/LCD_D[14]/GP0[14] N14 I/O IPD EMA_D[13]/UHPI_HD[13]/LCD_D[13]/GP0[13] N16 I/O IPD EMA_D[12]/UHPI_HD[12]/LCD_D[12]/GP0[12] P14 I/O IPD EMA_D[11]/UHPI_HD[11]/LCD_D[11 ]/GP0[11] P16 I/O IPD EMA_D[10]/UHPI_HD[10]/LCD_D[10]/GP0[10] R14 I/O IPD EMA_D[9]/UHPI_HD[9]/LCD_D[9]/GP0[9] T14 I/O IPD EMA_D[8]/UHPI_HD[8]/LCD_D[8]/GP0[8] MUXED DESCRIPTION EMIFA, UHPI, GPIO LCD data bus N12 I/O IPD EMA_A[0]/LCD_D[7]/GP1[0] T9 I/O IPD EMA_A[3]/LCD_D[6]/GP1[3] N9 I/O IPD EMA_BA[1]/LCD_D[5]/UHPI_HHWIL/GP1[13] P8 I/O IPU EMA_BA[0]/LCD_D[4]/GP1[14] R8 I/O IPU EMA_A[4]/LCD_D[3]/GP1[4] T10 I/O IPD EMA_A[5]/LCD_D[2]/GP1[5] R10 I/O IPD EMA_A[6]/LCD_D[1]/GP1[6] P10 I/O IPD EMA_A[7]/LCD_D[0]/GP1[7] N10 I/O IPD EMA_A[8]/LCD_PCLK/GP1[8] T11 O IPU EMA_A[9]/LCD_HSYNC/GP1[9] R11 O IPU LCD horizontal sync EMA_A[10]/LCD_VSYNC/GP1[10] N8 O IPU LCD vertical sync EMA_A[11]/ LCD_AC_ENB_CS /GP1[11] P11 O IPU LCD AC bias enable chip select EMA_A[12]/LCD_MCLK/GP1[12] N11 O IPU LCD memory clock (1) (2) EMIFA, GPIO EMIFA, UHPI, GPIO LCD data bus EMIFA, GPIO LCD pixel clock I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (i.e., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor 3.6.20 Reserved and No Connect Table 3-22. Reserved and No Connect Terminal Functions SIGNAL NAME PIN No. ZKB TYPE (1) DESCRIPTION RSV1 F7 - RSV2 B1 PWR NC F3 - No Connect (leave unconnected) H4 - No Connect (leave unconnected) NC (1) PWR = Supply voltage. 30 Device Overview Reserved. (Leave unconnected, do not connect to power or ground.) Reserved. For proper device operation, this pin must be tied directly to CVDD or left unconnected [do not connect to ground VSS)]. Copyright © 2010–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM1707 AM1707 www.ti.com SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 3.6.21 Supply and Ground Table 3-23. Supply and Ground Terminal Functions SIGNAL NAME PIN No. TYPE (1) ZKB DESCRIPTION CVDD (Core supply) F6,G6, G7, G10, G11, H7, H10, H11, J6, J7, J10, J11, J12, K6, K7, K10, K11,L6 PWR Core supply voltage pins RVDD (Internal RAM supply) H6, H12 PWR Internal ram supply voltage pins DVDD (I/O supply) B16, E5, E8, E9, E12, F5, F11, F12, G5, G12, K5, K12, L5, L11, L12, M5, M8, M9, M12, R1, R16 PWR I/O supply voltage pins VSS (Ground) A1, A2, A15, A16, B2, E6, E7, E10, E11, F8, F9, F10, G8, G9, H8, H9, J8, J9, K8, K9, L7, L8, L9, L10, M6, M7, M10, M11, T1, T2, T15, T16 GND Ground pins (1) PWR = Supply voltage, GND - Ground. Device Overview Copyright © 2010–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM1707 31 AM1707 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 www.ti.com 3.6.22 Unused USB0 (USB2.0) and USB1 (USB1.1) Pin Configurations If one or both USB modules on the device are not used, then some of the power supplies to those modules may not be required. This can eliminate the requirement for a 1.8V power supply to the USB modules. The required pin configurations for unused USB modules are shown below. Table 3-24. Unused USB0 and USB1 Pin Configurations SIGNAL NAME Configuration (When USB0 and USB1 are not used) Configuration (When USB0 is used and USB1 is not used) USB0_DM No connect Use as USB0 function USB0_DP No connect Use as USB0 function USB0_VDDA33 No connect 3.3V USB0_VDDA18 No connect 1.8V Use as USB0 function USB0_ID No connect USB0_VBUS No connect Use as USB0 function USB0_DRVVBUS/GP4[15] No connect or use as alternate function Use as USB0 or alternate function USB0_VDDA12 32 Internal USB0 PHY output connected to an external 0.22μF filter capacitor, even if USB0 is not used. USB1_DM No connect VSS USB1_DP No connect VSS USB1_VDDA33 No connect No connect USB1_VDDA18 No connect No connect AHCLKX0/AHCLKX2/USB_REFCLKIN/ GP2[11] No connect or use as alternate function Use as USB0 or alternate function Device Overview Copyright © 2010–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM1707 AM1707 www.ti.com SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 4 Device Configuration 4.1 Boot Modes This device supports a variety of boot modes through an internal ROM bootloader. This device does not support dedicated hardware boot modes; therefore, all boot modes utilize the internal ROM. The input states of the BOOT pins are sampled and latched into the BOOTCFG register, which is part of the system configuration (SYSCFG) module, when device reset is deasserted. Boot mode selection is determined by the values of the BOOT pins The following boot modes are supported: • NAND Flash boot – 8-bit NAND – 16-bit NAND • NOR Flash boot – NOR Direct boot (8-bit or 16-bit) – NOR Legacy boot (8-bit or 16-bit) – NOR AIS boot (8-bit or 16-bit) • HPI Boot • I2C0 / I2C1 Boot – EEPROM (Master Mode) – External Host (Slave Mode) • SPI0 / SPI1 Boot – Serial Flash (Master Mode) – SERIAL EEPROM (Master Mode) – External Host (Slave Mode) • UART0 / UART1 / UART2 Boot – External Host Device Configuration Copyright © 2010–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM1707 33 AM1707 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 4.2 www.ti.com SYSCFG Module The following system level features of the chip are controlled by the SYSCFG peripheral: • Readable Device, Die, and Chip Revision ID • Control of Pin Multiplexing • Priority of bus accesses different bus masters in the system • Capture at power on reset the chip BOOT[15:0] pin values and make them available to software • Special case settings for peripherals: – Locking of PLL controller settings – Default burst sizes for EDMA3 TC0 and TC1 – Selection of the source for the eCAP module input capture (including on chip sources) – McASP AMUTEIN selection and clearing of AMUTE status for the three McASP peripherals – Control of the reference clock source and other side-band signals for both of the integrated USB PHYs – Clock source selection for EMIFA and EMIFB • Selects the source of emulation suspend signal of peripherals supporting this function. Many registers are accessible only by a host (ARM) when it is operating in its privileged mode. (ex. from the kernel, but not from user space code). Table 4-1. System Configuration (SYSCFG) Module Register Access BYTE ADDRESS ACRONYM 0x01C1 4000 REVID Revision Identification Register — 0x01C14008 DIEIDR0 Device Identification Register 0 — 0x01C1 400C DIEIDR1 Device Identification Register 1 — 0x01C1 4010 DIEIDR2 Device Identification Register 2 — 0x01C1 4014 DIEIDR3 Device Identification Register 3 — 0x01C1 4018 DEVIDR0 JTAG Identification Register — 0x01C1 4020 BOOTCFG Boot Configuration Register Privileged mode 0x01C1 4024 CHIPREVID Silicon Revision Identification Register Privileged mode 0x01C1 4038 KICK0R Kick 0 Register Privileged mode 0x01C1 403C KICK1R Kick 1 Register Privileged mode 0x01C1 4040 HOST0CFG Host 0 Configuration Register 0x01C1 4044 HOST1CFG Host 1 Configuration Register 0x01C1 40E0 IRAWSTAT Interrupt Raw Status/Set Register Privileged mode 0x01C1 40E4 IENSTAT Interrupt Enable Status/Clear Register Privileged mode 0x01C1 40E8 IENSET Interrupt Enable Register Privileged mode 0x01C1 40EC IENCLR Interrupt Enable Clear Register Privileged mode End of Interrupt Register Privileged mode Fault Address Register Privileged mode 34 REGISTER DESCRIPTION ACCESS — — 0x01C1 40F0 EOI 0x01C1 40F4 FLTADDRR 0x01C1 40F8 FLTSTAT Fault Status Register 0x01C1 4110 MSTPRI0 Master Priority 0 Register Privileged mode 0x01C1 4114 MSTPRI1 Master Priority 1 Register Privileged mode 0x01C1 4118 MSTPRI2 Master Priority 2 Register Privileged mode 0x01C1 4120 PINMUX0 Pin Multiplexing Control 0 Register Privileged mode 0x01C1 4124 PINMUX1 Pin Multiplexing Control 1 Register Privileged mode 0x01C1 4128 PINMUX2 Pin Multiplexing Control 2 Register Privileged mode 0x01C1 412C PINMUX3 Pin Multiplexing Control 3 Register Privileged mode 0x01C1 4130 PINMUX4 Pin Multiplexing Control 4 Register Privileged mode 0x01C1 4134 PINMUX5 Pin Multiplexing Control 5 Register Privileged mode Device Configuration — Copyright © 2010–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM1707 AM1707 www.ti.com SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 Table 4-1. System Configuration (SYSCFG) Module Register Access (continued) BYTE ADDRESS ACRONYM 0x01C1 4138 PINMUX6 Pin Multiplexing Control 6 Register REGISTER DESCRIPTION Privileged mode ACCESS 0x01C1 413C PINMUX7 Pin Multiplexing Control 7 Register Privileged mode 0x01C1 4140 PINMUX8 Pin Multiplexing Control 8 Register Privileged mode 0x01C1 4144 PINMUX9 Pin Multiplexing Control 9 Register Privileged mode 0x01C1 4148 PINMUX10 Pin Multiplexing Control 10 Register Privileged mode 0x01C1 414C PINMUX11 Pin Multiplexing Control 11 Register Privileged mode 0x01C1 4150 PINMUX12 Pin Multiplexing Control 12 Register Privileged mode 0x01C1 4154 PINMUX13 Pin Multiplexing Control 13 Register Privileged mode 0x01C1 4158 PINMUX14 Pin Multiplexing Control 14 Register Privileged mode 0x01C1 415C PINMUX15 Pin Multiplexing Control 15 Register Privileged mode 0x01C1 4160 PINMUX16 Pin Multiplexing Control 16 Register Privileged mode 0x01C1 4164 PINMUX17 Pin Multiplexing Control 17 Register Privileged mode 0x01C1 4168 PINMUX18 Pin Multiplexing Control 18 Register Privileged mode 0x01C1 416C PINMUX19 Pin Multiplexing Control 19 Register Privileged mode 0x01C1 4170 SUSPSRC Suspend Source Register Privileged mode 0x01C1 4174 - Reserved — 0x01C1 4178 - Reserved — 0x01C1 417C CFGCHIP0 Chip Configuration 0 Register Privileged mode 0x01C1 4180 CFGCHIP1 Chip Configuration 1 Register Privileged mode 0x01C1 4184 CFGCHIP2 Chip Configuration 2 Register Privileged mode 0x01C1 4188 CFGCHIP3 Chip Configuration 3 Register Privileged mode 0x01C1 418C CFGCHIP4 Chip Configuration 4 Register Privileged mode Device Configuration Copyright © 2010–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM1707 35 AM1707 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 4.3 www.ti.com Pullup/Pulldown Resistors Proper board design should ensure that input pins to the device always be at a valid logic level and not floating. This may be achieved via pullup/pulldown resistors. The device features internal pullup (IPU) and internal pulldown (IPD) resistors on most pins to eliminate the need, unless otherwise noted, for external pullup/pulldown resistors. An external pullup/pulldown resistor needs to be used in the following situations: • Boot and Configuration Pins: If the pin is both routed out and 3-stated (not driven), an external pullup/pulldown resistor is strongly recommended, even if the IPU/IPD matches the desired value/state. • Other Input Pins: If the IPU/IPD does not match the desired value/state, use an external pullup/pulldown resistor to pull the signal to the opposite rail. For the boot and configuration pins, if they are both routed out and 3-stated (not driven), it is strongly recommended that an external pullup/pulldown resistor be implemented. Although, internal pullup/pulldown resistors exist on these pins and they may match the desired configuration value, providing external connectivity can help ensure that valid logic levels are latched on these device boot and configuration pins. In addition, applying external pullup/pulldown resistors on the boot and configuration pins adds convenience to the user in debugging and flexibility in switching operating modes. Tips for choosing an external pullup/pulldown resistor: • Consider the total amount of current that may pass through the pullup or pulldown resistor. Make sure to include the leakage currents of all the devices connected to the net, as well as any internal pullup or pulldown resistors. • Decide a target value for the net. For a pulldown resistor, this should be below the lowest VIL level of all inputs connected to the net. For a pullup resistor, this should be above the highest VIH level of all inputs on the net. A reasonable choice would be to target the VOL or VOH levels for the logic family of the limiting device; which, by definition, have margin to the VIL and VIH levels. • Select a pullup/pulldown resistor with the largest possible value; but, which can still ensure that the net will reach the target pulled value when maximum current from all devices on the net is flowing through the resistor. The current to be considered includes leakage current plus, any other internal and external pullup/pulldown resistors on the net. • For bidirectional nets, there is an additional consideration which sets a lower limit on the resistance value of the external resistor. Verify that the resistance is small enough that the weakest output buffer can drive the net to the opposite logic level (including margin). • Remember to include tolerances when selecting the resistor value. • For pullup resistors, also remember to include tolerances on the IO supply rail. • For most systems, a 1-kΩ resistor can be used to oppose the IPU/IPD while meeting the above criteria. Users should confirm this resistor value is correct for their specific application. • For most systems, a 20-kΩ resistor can be used to compliment the IPU/IPD on the boot and configuration pins while meeting the above criteria. Users should confirm this resistor value is correct for their specific application. • For more detailed information on input current (II), and the low-/high-level input voltages (VIL and VIH) for the device, see Section 5.3, Recommended Operating Conditions. • For the internal pullup/pulldown resistors for all device pins, see the peripheral/system-specific terminal functions table. 36 Device Configuration Copyright © 2010–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM1707 AM1707 www.ti.com SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 5 Device Operating Conditions 5.1 Absolute Maximum Ratings Over Operating Junction Temperature Range (Unless Otherwise Noted) (1) Core (CVDD, RVDD, RTC_CVDD, PLL0_VDDA ) I/O, 1.8V (USB0_VDDA18, USB1_VDDA18) Supply voltage ranges -0.5 V to 2 V (2) I/O, 3.3V (DVDD, USB0_VDDA33, USB1_VDDA33) Input voltage ranges -0.5 V to 1.4 V (2) -0.5 V to 3.8V (2) VI I/O, 1.2V (OSCIN, RTC_XI) -0.3 V to CVDD + 0.3V VI I/O, 3.3V (Steady State) -0.3V to DVDD + 0.35V VI I/O, 3.3V (Transient) VI I/O, USB0 VBUS 5.50V (3) -0.5 V to DVDD + 0.3V 20% of DVDD for up to 20% of the signal period Input or Output Voltages 0.3V above or below their respective power rails. Limit clamp current that flows through the I/O's internal diode protection cells. Operating Junction Temperature ranges, TJ 5.2 5.25V (3) VO I/O, 3.3V (Transient Overshoot/Undershoot) Clamp Current (2) (3) VI I/O, USB 5V Tolerant Pins: (USB0_DM, USB0_DP, USB0_ID, USB1_DM, USB1_DP) VO I/O, 3.3V (Steady State) Output voltage ranges (1) DVDD + 20% up to 20% of Signal Period ±20mA Commercial (default) 0°C to 90°C Industrial (D version) -40°C to 90°C Extended (A version) -40°C to 105°C Automotive (T version) -40°C to 125°C Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltage values are with respect to VSS, PLL0_VSSA, OSCVSS, RTC_VSS Up to a max of 24 hours. Handling Ratings UNIT Storage temperature range, Tstg ESD Stress Voltage, VESD (1) (1) (2) (3) (default) Human Body Model (HBM) (2) Charged Device Model (CDM) (3) -55 to 150 °C >2000 V >500 V Electrostatic discharge (ESD) to measure device sensitivity/immunity to damage caused by electrostatic discharges into the device. Level listed above is the passing level per ANSI/ESDA/JEDEC JS-001-2010. JEDEC document JEP155 states that 500V HBM allows safe manufacturing with a standard ESD control process, and manufacturing with less than 500V HBM is possible if necessary precautions are taken. Pins listed as 1000V may actually have higher performance. Level listed above is the passing level per EIA-JEDEC JESD22-C101E. JEDEC document JEP157 states that 250V CDM allows safe manufacturing with a standard ESD control process. Pins listed as 250V may actually have higher performance. Device Operating Conditions Copyright © 2010–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM1707 37 AM1707 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 5.3 Recommended Operating Conditions CVDD RVDD DVDD VIL MIN NOM MAX UNIT 375 MHz version 1.14 1.2 1.32 V 456 MHz version 1.25 1.3 1.35 V 375 MHz version 1.14 1.2 1.32 V 456 MHz version 1.25 1.3 1.35 V Supply voltage, I/O, 1.8V (USB0_VDDA18, USB1_VDDA18) 1.71 1.8 1.89 V Supply voltage, I/O, 3.3V (DVDD, USB0_VDDA33, USB1_VDDA33) 3.0 3.3 3.45 V 0 0 0 V Supply voltage, Core (CVDD, RTC_CVDD, PLL0_VDDA) Supply Voltage, Internal RAM Supply ground (VSS, PLL0_VSSA, OSCVSS (1), RTC_VSS (1)) VSS VIH www.ti.com (2) (2) High-level input voltage, I/O, 3.3V 2 V High-level input voltage, OSCIN 0.7*CVDD V High-level input voltage, RTC_XI 0.7*RTC_CVDD 0.8 V Low-level input voltage, OSCIN 0.3*CVDD V Low-level input voltage, RTC_XI 0.3*RTC_CVDD VHYS Input Hysteresis USB USB0_VBUS tt Transition time, 10%-90%, All Inputs (unless otherwise specified in the electrical data sections) FSYSCLK6 (1) (2) (3) 38 V Low-level input voltage, I/O, 3.3V ARM Operating Frequency (SYSCLK6) 160 4.75 5 V mV 5.25 0.25P or 10 V (3) ns Commercial (default) 0 375 (1.2V) 456 (1.3V) MHz Industrial (D suffix) 0 456 (1.3V) MHz Extended (A suffix) 0 375(1.2V) MHz Automotive (T suffix) 0 375 (1.2V) MHz When an external crystal is used, oscillator (OSC_VSS, RTC_VSS) ground must be kept separate from other grounds and connected directly to the crystal load capacitor ground. These pins are shorted to VSS on the device itself and should not be connected to VSS on the circuit board. If a crystal is not used and the clock input is driven directly, then the oscillator VSS may be connected to board ground. Unless specifically indicated, these I/O specifications do not apply to USB I/Os. USB0 I/Os adhere to USB2.0 specification. USB1 I/Os adhere to USB1.1 specification. Whichever is smaller. P = the period of the applied signal. Maintaining transition times as fast as possible is recommended to improve noise immunity on input signals. Device Operating Conditions Copyright © 2010–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM1707 AM1707 www.ti.com 5.4 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 Notes on Recommended Power-On Hours (POH) The information in the section below is provided solely for your convenience and does not extend or modify the warranty provided under TI’s standard terms and conditions for TI semiconductor products. To avoid significant degradation, the device power-on hours (POH) must be limited to the following: Table 5-1. Recommended Power-On Hours (1) Operating Junction Temperature (Tj) Nominal CVDD Voltage (V) 375 MHz 0 to 90 °C 1.2V 100,000 375 MHz -40 to 105 °C 1.2V 75,000 (1) D 375 MHz -40 to 125 °C 1.2V 20,000 D 456 MHz 0 to 90 °C 1.3V 100,000 D 456 MHz -40 to 90 °C 1.3V 100,000 Silicon Revision Speed Grade D D Power-On Hours [POH] (hours) 100,000 POH can be achieved at this temperature condition if the device operation is limited to 345 MHz. Note: Logic functions and parameter values are not assured out of the range specified in the recommended operating conditions. The above notations cannot be deemed a warranty or deemed to extend or modify the warranty under TI’s standard terms and conditions for TI semiconductor products. Device Operating Conditions Copyright © 2010–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM1707 39 AM1707 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 5.5 Electrical Characteristics Over Recommended Ranges of Supply Voltage and Operating Junction Temperature (Unless Otherwise Noted) PARAMETER VOH VOL II www.ti.com (1) (1) (2) (1) High-level output voltage (3.3V I/O) Low-level output voltage (3.3V I/O) Input current TEST CONDITIONS MIN DVDD= 3.15V, IOH = -4 mA 2.4 DVDD= 3.15V, IOH = 100 μA 2.95 TYP MAX UNIT V V DVDD= 3.15V, IOL = 4mA 0.4 V DVDD= 3.15V, IOL = -100 μA 0.2 V VI = VSS to DVDD without opposing internal resistor ±35 μA VI = VSS to DVDD with opposing internal pullup resistor (3) -30 -200 μA VI = VSS to DVDD with opposing internal pulldown resistor (3) 50 300 μA ±40 μA VI = VSS to USB1_VDDA33 USB1_DM and USB1_DP IOH (1) High-level output current -4 mA IOL (1) Low-level output current 4 mA IOZ (4) I/O Off-state output current ±35 μA LVCMOS signals 3 pF OSCIN and RTC_XI 2 pF LVCMOS signals 3 pF CI Input capacitance CO Output capacitance (1) (2) (3) (4) 40 VO = VDD or VSS; Internal pull disabled These I/O specifications apply to regular 3.3V IOs and do not apply to USB0 and USB1 unless specifically indicated. USB0 I/Os adhere to the USB 2.0 specification. USB1 I/Os adhere to the USB 1.1 specification. II applies to input-only pins and bi-directional pins. For input-only pins, II indicates the input leakage current. For bi-directional pins, II indicates the input leakage current and off-state (Hi-Z) output leakage current. Applies only to pins with an internal pullup (IPU) or pulldown (IPD) resistor. IOZ applies to output-only pins, indicating off-state (Hi-Z) output leakage current. Device Operating Conditions Copyright © 2010–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM1707 AM1707 www.ti.com SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 6 Peripheral Information and Electrical Specifications 6.1 Parameter Information 6.1.1 Parameter Information Device-Specific Information Tester Pin Electronics 42 Ω 3.5 nH Transmission Line Z0 = 50 Ω (see note) 4.0 pF A. 1.85 pF Data Sheet Timing Reference Point Output Under Test Device Pin (see note) The data sheet provides timing at the device pin. For output timing analysis, the tester pin electronics and its transmission line effects must be taken into account. A transmission line with a delay of 2 ns or longer can be used to produce the desired transmission line effect. The transmission line is intended as a load only. It is not necessary to add or subtract the transmission line delay (2 ns or longer) from the data sheet timings. Input requirements in this data sheet are tested with an input slew rate of < 4 Volts per nanosecond (4 V/ns) at the device pin and the input signals are driven between 0V and the appropriate IO supply rail for the signal. Figure 6-1. Test Load Circuit for AC Timing Measurements The load capacitance value stated is only for characterization and measurement of AC timing signals. This load capacitance value does not indicate the maximum load the device is capable of driving. 6.1.1.1 Signal Transition Levels All input and output timing parameters are referenced to Vref for both "0" and "1" logic levels. For 3.3 V I/O, Vref = 1.65 V. For 1.8 V I/O, Vref = 0.9 V. For 1.2 V I/O, Vref = 0.6 V. Vref Figure 6-2. Input and Output Voltage Reference Levels for AC Timing Measurements All rise and fall transition timing parameters are referenced to VIL MAX and VIH MIN for input clocks, VOLMAX and VOH MIN for output clocks. Vref = VIH MIN (or VOH MIN) Vref = VIL MAX (or VOL MAX) Figure 6-3. Rise and Fall Transition Time Voltage Reference Levels Copyright © 2010–2014, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 41 AM1707 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 6.2 www.ti.com Recommended Clock and Control Signal Transition Behavior All clocks and control signals must transition between VIH and VIL (or between VIL and VIH) in a monotonic manner. 6.3 6.3.1 Power Supplies Power-on Sequence The device should be powered-on in the following order: 1. RTC (RTC_CVDD) may be powered from an external device (such as a battery) prior to all other supplies being applied or powered-up at the same time as CVDD. If the RTC is not used, RTC_CVDD should be connected to CVDD. RTC_CVDD should not be left unpowered while CVDD is powered. 2. Core logic supplies: (a) CVDD core logic supply (b) Other 1.2V logic supplies (PLL0_VDDA). Groups 2a) and 2b) may be powered up together or 2a) first followed by 2b). 3. All 1.8V IO supplies (USB0_VDDA18, USB1_VDDA18). 4. All digital IO and analog 3.3V PHY supplies (DVDD, USB0_VDDA33 , USB1_VDDA33). USB0_VDDA33 and USB1_VDDA33 are not required if both USB0 and USB1 are not used) and may be left unconnected. Group 3) and group 4) may be powered on in either order [3 then 4, or 4 then 3] but group 4) must be powered-on after the core logic supplies. There is no specific required voltage ramp rate for any of the supplies. RESET must be maintained active until all power supplies have reached their nominal values. 6.3.2 Power-off Sequence The power supplies can be powered-off in any order as long as the 3.3V supplies do not remain powered with the other supplies unpowered. 42 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 Copyright © 2010–2014, Texas Instruments Incorporated AM1707 www.ti.com 6.4 6.4.1 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 Reset Power-On Reset (POR) A power-on reset (POR) is required to place the device in a known good state after power-up. Power-On Reset is initiated by bringing RESET and TRST low at the same time. POR sets all of the device internal logic to its default state. All pins are tri-stated with the exception of RESETOUT, which remains active through the reset sequence, and RTCK/GP7[14]. If an emulator is driving TCK into the device during reset, then RTCK/GP7[14] will drive out RTCK. If TCK is not being driven into the device during reset, then RTCK/GP7[14] will drive low. RESETOUT is an output for use by other controllers in the system that indicates the device is currently in reset. While both TRST and RESET need to be asserted upon power up, only RESET needs to be released for the device to boot properly. TRST may be asserted indefinitely for normal operation, keeping the JTAG port interface and device's emulation logic in the reset state. . TRST only needs to be released when it is necessary to use a JTAG controller to debug the device or exercise the device's boundary scan functionality. Note: TRST is synchronous and must be clocked by TCK; otherwise, the boundary scan logic may not respond as expected after TRST is asserted. .RESET must be released only in order for boundary-scan JTAG to read the variant field of IDCODE correctly. Other boundary-scan instructions work correctly independent of current state of RESET. For maximum reliability, the device includes an internal pulldown on the TRST pin to ensure that TRST will always be asserted upon power up and the device's internal emulation logic will always be properly initialized. JTAG controllers from Texas Instruments actively drive TRST high. However, some third-party JTAG controllers may not drive TRST high but expect the use of a pullup resistor on TRST. When using this type of JTAG controller, assert TRST to intialize the device after powerup and externally drive TRST high before attempting any emulation or boundary scan operations. RTCK/GP7[14] is maintained active through a POR. A • • • • • summary of the effects of Power-On Reset is given below: All internal logic (including emulation logic and the PLL logic) is reset to its default state Internal memory is not maintained through a POR RESETOUT goes active All device pins go to a high-impedance state The RTC peripheral is not reset during a POR. A software sequence is required to reset the RTC. CAUTION: A watchdog reset triggers a POR. Copyright © 2010–2014, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 43 AM1707 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 6.4.2 www.ti.com Warm Reset A warm reset provides a limited reset to the device. Warm Reset is initiated by bringing only RESET low (TRST is maintained high through a warm reset). Warm reset sets certain portions of the device to their default state while leaving others unaltered. All pins are 3-stated with the exception of RESETOUT which remains active through the reset sequence and RTCK/GP7[14]. If an emulator is driving TCK into the device during reset, then RTCK/GP7[14] will drive out RTCK. If TCK is not being driven into the device during reset, then RTCK/GP7[14] will drive low. RESETOUT is an output for use by other controllers in the system that indicates the device is currently in reset During emulation, the emulator will maintain TRST high and hence only warm reset (not POR) is available during emulation debug and development. RTCK/GP7[14] is maintained active through a warm reset. A • • • • • 44 summary of the effects of Warm Reset is given below: All internal logic (except for the emulation logic and the PLL logic) is reset to its default state Internal memory is maintained through a warm reset RESETOUT goes active All device pins go to a high-impedance state The RTC peripheral is not reset during a warm reset. A software sequence is required to reset the RTC. Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 Copyright © 2010–2014, Texas Instruments Incorporated AM1707 www.ti.com 6.4.3 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 Reset Electrical Data Timings Table 6-1 assumes testing over the recommended operating conditions. Table 6-1. Reset Timing Requirements (1) (2) N o. MIN MAX UNIT 1 tw(RSTL) Pulse width, RESET/TRST low 100 ns 2 tsu(BPV-RSTH) Setup time, boot pins valid before RESET/TRST high 20 ns 3 th(RSTH-BPV) Hold time, boot pins valid after RESET/TRST high 20 ns td(RSTH-RESETOUTH) RESET high to RESETOUT high; Warm reset 4096 RESET high to RESETOUT high; Power-on Reset 6192 4 (1) (2) (3) cycles (3) RESETOUT is multiplexed with other pin functions. See the Terminal Functions table, Table 3-3 for details. For power-on reset (POR), the reset timings in this table refer to RESET and TRST together. For warm reset, the reset timings in this table refer to RESET only (TRST is held high). OSCIN cycles. Power Supplies Ramping Power Supplies Stable Clock Source Stable OSCIN 1 RESET TRST 4 RESETOUT 3 2 Boot Pins Config Figure 6-4. Power-On Reset (RESET and TRST active) Timing Power Supplies Stable OSCIN TRST 1 RESET 4 RESETOUT 3 2 Boot Pins Driven or Hi-Z Config Figure 6-5. Warm Reset (RESET active, TRST high) Timing Copyright © 2010–2014, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 45 AM1707 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 6.5 www.ti.com Crystal Oscillator or External Clock Input The device includes two choices to provide an external clock input, which is fed to the on-chip PLL to generate high-frequency system clocks. These options are illustrated in Figure 6-6 and Figure 6-7. For input clock frequencies between 12 and 20 MHz, a crystal with 80 ohm max ESR is recommended. For input clock frequencies between 20 and 30 MHz, a crystal with 60 ohm max ESR is recommended. Typical load capacitance values are 10-20 pF, where the load capacitance is the series combination of C1 and C2. The CLKMODE bit in the PLLCTL register must be 0 to use the on-chip oscillator. If CLKMODE is set to 1, the internal oscillator is disabled. • Figure 6-6 illustrates the option that uses on-chip 1.2V oscillator with external crystal circuit. • Figure 6-7 illustrates the option that uses an external 1.2V clock input. C2 OSCIN Clock Input to PLL X1 OSCOUT C1 OSCVSS Figure 6-6. On-Chip 1.2V Oscillator Table 6-2. Oscillator Timing Requirements PARAMETER fosc 46 Oscillator frequency range (OSCIN/OSCOUT) Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 MIN MAX UNIT 12 30 MHz Copyright © 2010–2014, Texas Instruments Incorporated AM1707 www.ti.com SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 OSCIN NC Clock Input to PLL OSCOUT OSCVSS Figure 6-7. External 1.2V Clock Source Table 6-3. OSCIN Timing Requirements MIN MAX UNIT fOSCIN OSCIN frequency range (OSCIN) PARAMETER 12 50 MHz tc(OSCIN) Cycle time, external clock driven on OSCIN 20 ns tw(OSCINH) Pulse width high, external clock on OSCIN 0.4 tc(OSCIN) ns tw(OSCINL) Pulse width low, external clock on OSCIN 0.4 tc(OSCIN) tt(OSCIN) Transition time, OSCIN tj(OSCIN) Period jitter, OSCIN (1) ns 0.25P or 10 (1) 0.02P ns ns Whichever is smaller. P = the period of the applied signal. Maintaining transition times as fast as possible is recommended to improve noise immunity on input signals. Copyright © 2010–2014, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 47 AM1707 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 6.6 www.ti.com Clock PLLs The device has one PLL controller that provides clock to different parts of the system. PLL0 provides clocks (though various dividers) to most of the components of the device. The PLL controller provides the following: • Glitch-Free Transitions (on changing clock settings) • Domain Clocks Alignment • Clock Gating • PLL power down The various clock outputs given by the controller are as follows: • Domain Clocks: SYSCLK [1:n] • Auxiliary Clock from reference clock source: AUXCLK Various dividers that can be used are as follows: • Post-PLL Divider: POSTDIV • SYSCLK Divider: D1, ¼, Dn Various other controls supported are as follows: • PLL Multiplier Control: PLLM • Software programmable PLL Bypass: PLLEN 6.6.1 PLL Device-Specific Information The PLL requires some external filtering components to reduce power supply noise as shown in Figure 68. 1.14V - 1.32V PLL0_VDDA 50R 0.1 µF VSS 0.01 µF 50R PLL0_VSSA Ferrite Bead: Murata BLM31PG500SN1L or Equivalent Figure 6-8. PLL External Filtering Components The input to the PLL is either from the on-chip oscillator (OSCIN pin) or from an external clock on the OSCIN pin. The PLL outputs seven clocks that have programmable divider options. Figure 6-9 illustrates the PLL Topology. The PLL is disabled by default after a device reset. It must be configured by software according to the allowable operating conditions listed in Table 6-4 before enabling the processor to run from the PLL by setting PLLEN = 1. 48 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 Copyright © 2010–2014, Texas Instruments Incorporated AM1707 www.ti.com SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 CLKMODE OSCIN PLLEN Square Wave 1 Crystal 0 Pre-Div PLL Post-Div PLLM 1 PLLDIV1 (/1) SYSCLK1 0 PLLDIV2 (/2) SYSCLK2 PLLDIV3 (/3) SYSCLK3 PLLDIV4 (/4) SYSCLK4 PLLDIV5 (/3) SYSCLK5 PLLDIV6 (/1) SYSCLK6 PLLDIV7 (/6) SYSCLK7 AUXCLK 0 DIV4.5 1 EMIFA Internal Clock Source CFGCHIP3[EMA_CLKSRC] DIV4.5 1 0 EMIFB Internal Clock Source CFGCHIP3[EMB_CLKSRC] SYSCLK1 SYSCLK2 SYSCLK3 SYSCLK4 SYSCLK5 SYSCLK6 SYSCLK7 14h 17h 18h 19h 1Ah 1Bh 1Ch 1Dh DIV4.5 OSCDIV OBSCLK Pin OCSEL[OCSRC] Figure 6-9. PLL Topology Copyright © 2010–2014, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 49 AM1707 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 www.ti.com Table 6-4. Allowed PLL Operating Conditions No. PARAMETER Default Value MIN MAX UNIT 1 PLLRST: Assertion time during initialization N/A 1000 N/A ns 2 Lock time: The time that the application has to wait for the PLL to acquire locks before setting PLLEN, after changing PREDIV, PLLM, or OSCIN N/A 3 PREDIV /1 4 PLL input frequency ( PLLREF) 5 6 7 (1) 50 PLL multiplier values (PLLM) (1) 2000 N m where N = Pre-Divider Ratio Max PLL Lock Time = N/A OSCIN cycles M = PLL Multiplier /1 /32 12 30 (if internal oscillator is used) 50 (if external clock source is used) x20 x4 x32 PLL output frequency. ( PLLOUT ) N/A 300 600 POSTDIV /1 /1 /32 MHz MHz The multiplier values must be chosen such that the PLL output frequency (at PLLOUT) is between 300 and 600 MHz, but the frequency going into the SYSCLK dividers (after the post divider) cannot exceed the maximum clock frequency defined for the device at a given voltage operating point. Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 Copyright © 2010–2014, Texas Instruments Incorporated AM1707 www.ti.com 6.6.2 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 Device Clock Generation PLL0 is controlled by PLL Controller 0. The PLLC0 manages the clock ratios, alignment, and gating for the system clocks to the chip. The PLLC is responsible for controlling all modes of the PLL through software, in terms of pre-division of the clock inputs, multiply factor within the PLL, and post-division for each of the chip-level clocks from the PLL output. The PLLC also controls reset propagation through the chip, clock alignment, and test points. 6.6.3 PLL Controller 0 Registers Table 6-5. PLL Controller 0 Registers BYTE ADDRESS ACRONYM REGISTER DESCRIPTION 0x01C1 1000 REVID 0x01C1 10E4 RSTYPE Revision Identification Register Reset Type Status Register 0x01C1 1100 PLLCTL PLL Control Register 0x01C1 1104 OCSEL OBSCLK Select Register 0x01C1 1110 PLLM PLL Multiplier Control Register 0x01C1 1114 PREDIV PLL Pre-Divider Control Register 0x01C1 1118 PLLDIV1 PLL Controller Divider 1 Register 0x01C1 111C PLLDIV2 PLL Controller Divider 2 Register 0x01C1 1120 PLLDIV3 PLL Controller Divider 3 Register 0x01C1 1124 OSCDIV Oscillator Divider 1 Register (OBSCLK) 0x01C1 1128 POSTDIV PLL Post-Divider Control Register 0x01C1 1138 PLLCMD PLL Controller Command Register 0x01C1 113C PLLSTAT PLL Controller Status Register 0x01C1 1140 ALNCTL PLL Controller Clock Align Control Register 0x01C1 1144 DCHANGE PLLDIV Ratio Change Status Register 0x01C1 1148 CKEN 0x01C1 114C CKSTAT Clock Enable Control Register Clock Status Register 0x01C1 1150 SYSTAT SYSCLK Status Register 0x01C1 1160 PLLDIV4 PLL Controller Divider 4 Register 0x01C1 1164 PLLDIV5 PLL Controller Divider 5 Register 0x01C1 1168 PLLDIV6 PLL Controller Divider 6 Register 0x01C1 116C PLLDIV7 PLL Controller Divider 7 Register Copyright © 2010–2014, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 51 AM1707 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 6.7 www.ti.com Interrupts 6.7.1 ARM CPU Interrupts The ARM9 CPU core supports 2 direct interrupts: FIQ and IRQ. The ARM Interrupt Controller extends the number of interrupts to 100, and provides features like programmable masking, priority, hardware nesting support, and interrupt vector generation. 6.7.1.1 ARM Interrupt Controller (AINTC) Interrupt Signal Hierarchy The ARM Interrupt controller organizes interrupts into the following hierarchy: • Peripheral Interrupt Requests – Individual Interrupt Sources from Peripherals • 100 System Interrupts – One or more Peripheral Interrupt Requests are combined (fixed configuration) to generate a System Interrupt. – After prioritization, the AINTC will provide an interrupt vector based unique to each System Interrupt • 32 Interrupt Channels – Each System Interrupt is mapped to one of the 32 Interrupt Channels – Channel Number determines the first level of prioritization, Channel 0 is highest priority and 31 lowest. – If more than one system interrupt is mapped to a channel, priority within the channel is determined by system interrupt number (0 highest priority) • Host Interrupts (FIQ and IRQ) – Interrupt Channels 0 and 1 generate the ARM FIQ interrupt – Interrupt Channels 2 through 31 Generate the ARM IRQ interrupt • Debug Interrupts – Two Debug Interrupts are supported and can be used to trigger events in the debug subsystem – Sources can be selected from any of the System Interrupts or Host Interrupts 6.7.1.2 AINTC Hardware Vector Generation The AINTC also generates an interrupt vector in hardware for both IRQ and FIQ host interrupts. This may be used to accelerate interrupt dispatch. A unique vector is generated for each of the 100 system interrupts. The vector is computed in hardware as: VECTOR = BASE + (SYSTEM INTERRUPT NUMBER × SIZE) Where BASE and SIZE are programmable. The computed vector is a 32-bit address which may dispatched to using a single instruction of type LDR PC, [PC, #-<offset_12>] at the FIQ and IRQ vector locations (0xFFFF0018 and 0xFFFF001C respectively). 6.7.1.3 AINTC Hardware Interrupt Nesting Support Interrupt nesting occurs when an interrupt service routine re-enables interrupts, to allow the CPU to interrupt the ISR if a higher priority event occurs. The AINTC provides hardware support to facilitate interrupt nesting. It supports both global and per host interrupt (FIQ and IRQ in this case) automatic nesting. If enabled, the AINTC will automatically update an internal nesting register that temporarily masks interrupts at and below the priority of the current interrupt channel. Then if the ISR re-enables interrupts; only higher priority channels will be able to interrupt it. The nesting level is restored by the ISR by writing to the nesting level register on completion. Support for nesting can be enabled/disabled by software, with the option of automatic nesting on a global or per host interrupt basis; or manual nesting. 6.7.1.4 AINTC System Interrupt Assignments on the device System Interrupt assignments for the device are listed in Table 6-6 52 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 Copyright © 2010–2014, Texas Instruments Incorporated AM1707 www.ti.com SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 Table 6-6. AINTC System Interrupt Assignments System Interrupt Interrupt Name Source 0 COMMTX ARM 1 COMMRX ARM 2 NINT ARM 3 PRU_EVTOUT0 PRUSS Interrupt 4 PRU_EVTOUT1 PRUSS Interrupt 5 PRU_EVTOUT2 PRUSS Interrupt 6 PRU_EVTOUT3 PRUSS Interrupt 7 PRU_EVTOUT4 PRUSS Interrupt 8 PRU_EVTOUT5 PRUSS Interrupt 9 PRU_EVTOUT6 PRUSS Interrupt 10 PRU_EVTOUT7 PRUSS Interrupt 11 EDMA3_CC0_CCINT EDMA CC Region 0 12 EDMA3_CC0_CCERRINT EDMA Channel Controller 13 EDMA3_TC0_TCERRINT EDMA Transfer Controller 0 14 EMIFA_INT EMIFA 15 IIC0_INT I2C0 16 MMCSD_INT0 MMCSD 17 MMCSD_INT1 MMCSD 18 PSC0_ALLINT PSC0 19 RTC_IRQS[1:0] RTC 20 SPI0_INT SPI0 21 T64P0_TINT12 Timer64P0 Interrupt 12 22 T64P0_TINT34 Timer64P0 Interrupt 34 23 T64P1_TINT12 Timer64P1 Interrupt 12 24 T64P1_TINT34 Timer64P1 Interrupt 34 25 UART0_INT UART0 26 - Reserved 27 MPU_BOOTCFG_ERR Shared MPU and SYSCFG Address/Protection Error Interrupt - Reserved 32 EDMA3_TC1_TCERRINT EDMA Transfer Controller 1 33 EMAC_C0RXTHRESH EMAC - Core 0 Receive Threshold Interrupt 34 EMAC_C0RX EMAC - Core 0 Receive Interrupt 35 EMAC_C0TX EMAC - Core 0 Transmit Interrupt 36 EMAC_C0MISC EMAC - Core 0 Miscellaneous Interrupt 37 EMAC_C1RXTHRESH EMAC - Core 1 Receive Threshold Interrupt 38 EMAC_C1RX EMAC - Core 1 Receive Interrupt 39 EMAC_C1TX EMAC - Core 1 Transmit Interrupt 40 EMAC_C1MISC EMAC - Core 1 Miscellaneous Interrupt 41 EMIF_MEMERR EMIFB 42 GPIO_B0INT GPIO Bank 0 Interrupt 43 GPIO_B1INT GPIO Bank 1 Interrupt 44 GPIO_B2INT GPIO Bank 2 Interrupt 45 GPIO_B3INT GPIO Bank 3 Interrupt 46 GPIO_B4INT GPIO Bank 4 Interrupt 47 GPIO_B5INT GPIO Bank 5 Interrupt 48 GPIO_B6INT GPIO Bank 6 Interrupt 28 - 31 Copyright © 2010–2014, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 53 AM1707 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 www.ti.com Table 6-6. AINTC System Interrupt Assignments (continued) System Interrupt Source GPIO_B7INT GPIO Bank 7 Interrupt 50 - Reserved 51 IIC1_INT I2C1 52 LCDC_INT LCD Controller 53 UART_INT1 UART1 54 MCASP_INT McASP0, 1, 2 Combined RX / TX Interrupts 55 PSC1_ALLINT PSC1 56 SPI1_INT SPI1 57 UHPI_ARMINT HPI ARM Interrupt 58 USB0_INT USB0 Interrupt 59 USB1_HCINT USB1 OHCI Host Controller Interrupt 60 USB1_RWAKEUP USB1 Remote Wakeup Interrupt 61 UART2_INT UART2 62 - Reserved 63 EHRPWM0 HiResTimer / PWM0 Interrupt 64 EHRPWM0TZ HiResTimer / PWM0 Trip Zone Interrupt 65 EHRPWM1 HiResTimer / PWM1 Interrupt 66 EHRPWM1TZ HiResTimer / PWM1 Trip Zone Interrupt 67 EHRPWM2 HiResTimer / PWM2 Interrupt 68 EHRPWM2TZ HiResTimer / PWM2 Trip Zone Interrupt 69 ECAP0 ECAP0 70 ECAP1 ECAP1 71 ECAP2 ECAP2 72 EQEP0 EQEP0 73 EQEP1 EQEP1 74 T64P0_CMPINT0 Timer64P0 - Compare 0 75 T64P0_CMPINT1 Timer64P0 - Compare 1 76 T64P0_CMPINT2 Timer64P0 - Compare 2 77 T64P0_CMPINT3 Timer64P0 - Compare 3 78 T64P0_CMPINT4 Timer64P0 - Compare 4 79 T64P0_CMPINT5 Timer64P0 - Compare 5 80 T64P0_CMPINT6 Timer64P0 - Compare 6 81 T64P0_CMPINT7 Timer64P0 - Compare 7 82 T64P1_CMPINT0 Timer64P1 - Compare 0 83 T64P1_CMPINT1 Timer64P1 - Compare 1 84 T64P1_CMPINT2 Timer64P1 - Compare 2 85 T64P1_CMPINT3 Timer64P1 - Compare 3 86 T64P1_CMPINT4 Timer64P1 - Compare 4 87 T64P1_CMPINT5 Timer64P1 - Compare 5 88 T64P1_CMPINT6 Timer64P1 - Compare 6 89 T64P1_CMPINT7 Timer64P1 - Compare 7 90 ARMCLKSTOPREQ PSC0 - Reserved 91 - 100 54 Interrupt Name 49 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 Copyright © 2010–2014, Texas Instruments Incorporated AM1707 www.ti.com 6.7.1.5 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 AINTC Memory Map Table 6-7. AINTC Memory Map BYTE ADDRESS ACRONYM 0xFFFE E000 REV Revision Register Control Register 0xFFFE E004 CR 0xFFFE E008 - 0xFFFE E00F - 0xFFFE E010 GER REGISTER DESCRIPTION Reserved Global Enable Register 0xFFFE E014 - 0xFFFE E01B - 0xFFFE E01C GNLR Reserved Global Nesting Level Register 0xFFFE E020 SISR System Interrupt Status Indexed Set Register 0xFFFE E024 SICR System Interrupt Status Indexed Clear Register 0xFFFE E028 EISR System Interrupt Enable Indexed Set Register 0xFFFE E02C EICR System Interrupt Enable Indexed Clear Register 0xFFFE E030 - Reserved 0xFFFE E034 HIEISR Host Interrupt Enable Indexed Set Register 0xFFFE E038 HIEICR Host Interrupt Enable Indexed Clear Register 0xFFFE E03C - 0xFFFE E04F - 0xFFFE E050 VBR Vector Base Register 0xFFFE E054 VSR Vector Size Register 0xFFFE E058 VNR Vector Null Register 0xFFFE E05C - 0xFFFE E07F - Reserved Reserved 0xFFFE E080 GPIR Global Prioritized Index Register 0xFFFE E084 GPVR Global Prioritized Vector Register 0xFFFE E088 - 0xFFFE E1FF - 0xFFFE E200 - 0xFFFE E20B SRSR[1] - SRSR[3] 0xFFFE E20C- 0xFFFE E27F - 0xFFFE E280 - 0xFFFE E28B SECR[1] - SECR[3] 0xFFFE E28C - 0xFFFE E2FF - 0xFFFE E300 - 0xFFFE E30B ESR[1] - ESR[3] 0xFFFE E30C - 0xFFFE E37F - 0xFFFE E380 - 0xFFFE E38B ECR[1] - ECR[3] Reserved System Interrupt Status Raw / Set Registers Reserved System Interrupt Status Enabled / Clear Registers Reserved System Interrupt Enable Set Registers Reserved System Interrupt Enable Clear Registers 0xFFFE E38C - 0xFFFE E3FF - 0xFFFE E400 - 0xFFFE E458 CMR[0] - CMR[22] Reserved 0xFFFE E459 - 0xFFFE E7FF - Reserved Channel Map Registers (Byte Wide Registers) 0xFFFE E800 - 0xFFFE E81F - Reserved 0xFFFE E820 - 0xFFFE E8FF - Reserved 0xFFFE E900 - 0xFFFE E904 HIPIR[1] - HIPIR[2] 0xFFFE E908 - 0xFFFE EEFF - Reserved 0xFFFE EF00 - 0xFFFE EF04 - Reserved 0xFFFE EF08 - 0xFFFE F0FF - Reserved 0xFFFE F100 - 0xFFFE F104 HINLR[1] - HINLR[2] 0xFFFE F108 - 0xFFFE F4FF - 0xFFFE F500 HIER 0xFFFE F504 - 0xFFFE F5FF - 0xFFFE F600 HIPVR[1] - HIPVR[2] 0xFFFE F608 - 0xFFFE FFFF - Copyright © 2010–2014, Texas Instruments Incorporated Host Interrupt Prioritized Index Registers Host Interrupt Nesting Level Registers Reserved Host Interrupt Enable Register Reserved Host Interrupt Prioritized Vector Registers Reserved Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 55 AM1707 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 6.8 www.ti.com General-Purpose Input/Output (GPIO) The GPIO peripheral provides general-purpose pins that can be configured as either inputs or outputs. When configured as an output, a write to an internal register can control the state driven on the output pin. When configured as an input, the state of the input is detectable by reading the state of an internal register. In addition, the GPIO peripheral can produce CPU interrupts and EDMA events in different interrupt/event generation modes. The GPIO peripheral provides generic connections to external devices. The GPIO pins are grouped into banks of 16 pins per bank (i.e., bank 0 consists of GPIO [0:15]). The device GPIO peripheral supports the following: • Up to 128 Pins on ZKB package configurable as GPIO • External Interrupt and DMA request Capability – Every GPIO pin may be configured to generate an interrupt request on detection of rising and/or falling edges on the pin. – The interrupt requests within each bank are combined (logical or) to create eight unique bank level interrupt requests. – The bank level interrupt service routine may poll the INTSTATx register for its bank to determine which pin(s) have triggered the interrupt. – GPIO Banks 0, 1, 2, 3, 4, 5, 6, and 7 Interrupts assigned to ARM INTC Interrupt Requests 42, 43, 44, 45, 46, 47, 48, and 49 respectively – Additionally, GPIO Banks 0, 1, 2, 3, 4, and 5 Interrupts assigned to EDMA events 6, 7, 22, 23, 28, and 29 respectively. • Set/clear functionality: Firmware writes 1 to corresponding bit position(s) to set or to clear GPIO signal(s). This allows multiple firmware processes to toggle GPIO output signals without critical section protection (disable interrupts, program GPIO, re-enable interrupts, to prevent context switching to anther process during GPIO programming). • Separate Input/Output registers • Output register in addition to set/clear so that, if preferred by firmware, some GPIO output signals can be toggled by direct write to the output register(s). • Output register, when read, reflects output drive status. This, in addition to the input register reflecting pin status and open-drain I/O cell, allows wired logic be implemented. The memory map for the GPIO registers is shown in Table 6-8. 56 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 Copyright © 2010–2014, Texas Instruments Incorporated AM1707 www.ti.com 6.8.1 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 GPIO Register Description(s) Table 6-8. GPIO Registers BYTE ADDRESS ACRONYM 0x01E2 6000 REV 0x01E2 6004 - 0x01E2 6008 BINTEN REGISTER DESCRIPTION Peripheral Revision Register Reserved GPIO Interrupt Per-Bank Enable Register GPIO BANKS 0 AND 1 0x01E2 6010 DIR01 0x01E2 6014 OUT_DATA01 GPIO Banks 0 and 1 Direction Register GPIO Banks 0 and 1 Output Data Register 0x01E2 6018 SET_DATA01 GPIO Banks 0 and 1 Set Data Register 0x01E2 601C CLR_DATA01 GPIO Banks 0 and 1 Clear Data Register 0x01E2 6020 IN_DATA01 GPIO Banks 0 and 1 Input Data Register 0x01E2 6024 SET_RIS_TRIG01 GPIO Banks 0 and 1 Set Rising Edge Interrupt Register 0x01E2 6028 CLR_RIS_TRIG01 GPIO Banks 0 and 1 Clear Rising Edge Interrupt Register 0x01E2 602C SET_FAL_TRIG01 GPIO Banks 0 and 1 Set Falling Edge Interrupt Register 0x01E2 6030 CLR_FAL_TRIG01 GPIO Banks 0 and 1 Clear Falling Edge Interrupt Register 0x01E2 6034 INTSTAT01 0x01E2 6038 DIR23 0x01E2 603C OUT_DATA23 GPIO Banks 2 and 3 Output Data Register 0x01E2 6040 SET_DATA23 GPIO Banks 2 and 3 Set Data Register 0x01E2 6044 CLR_DATA23 GPIO Banks 2 and 3 Clear Data Register 0x01E2 6048 IN_DATA23 GPIO Banks 2 and 3 Input Data Register GPIO Banks 0 and 1 Interrupt Status Register GPIO BANKS 2 AND 3 GPIO Banks 2 and 3 Direction Register 0x01E2 604C SET_RIS_TRIG23 GPIO Banks 2 and 3 Set Rising Edge Interrupt Register 0x01E2 6050 CLR_RIS_TRIG23 GPIO Banks 2 and 3 Clear Rising Edge Interrupt Register 0x01E2 6054 SET_FAL_TRIG23 GPIO Banks 2 and 3 Set Falling Edge Interrupt Register 0x01E2 6058 CLR_FAL_TRIG23 GPIO Banks 2 and 3 Clear Falling Edge Interrupt Register 0x01E2 605C INTSTAT23 GPIO Banks 2 and 3 Interrupt Status Register GPIO BANKS 4 AND 5 0x01E2 6060 DIR45 GPIO Banks 4 and 5 Direction Register 0x01E2 6064 OUT_DATA45 GPIO Banks 4 and 5 Output Data Register 0x01E2 6068 SET_DATA45 GPIO Banks 4 and 5 Set Data Register 0x01E2 606C CLR_DATA45 GPIO Banks 4 and 5 Clear Data Register 0x01E2 6070 IN_DATA45 GPIO Banks 4 and 5 Input Data Register 0x01E2 6074 SET_RIS_TRIG45 GPIO Banks 4 and 5 Set Rising Edge Interrupt Register 0x01E2 6078 CLR_RIS_TRIG45 GPIO Banks 4 and 5 Clear Rising Edge Interrupt Register 0x01E2 607C SET_FAL_TRIG45 GPIO Banks 4 and 5 Set Falling Edge Interrupt Register 0x01E2 6080 CLR_FAL_TRIG45 GPIO Banks 4 and 5 Clear Falling Edge Interrupt Register 0x01E2 6084 INTSTAT45 GPIO Banks 4 and 5 Interrupt Status Register GPIO BANKS 6 AND 7 0x01E2 6088 DIR67 0x01E2 608C OUT_DATA67 GPIO Banks 6 and 7 Output Data Register 0x01E2 6090 SET_DATA67 GPIO Banks 6 and 7 Set Data Register 0x01E2 6094 CLR_DATA67 GPIO Banks 6 and 7 Clear Data Register 0x01E2 6098 IN_DATA67 GPIO Banks 6 and 7 Input Data Register 0x01E2 609C SET_RIS_TRIG67 GPIO Banks 6 and 7 Set Rising Edge Interrupt Register 0x01E2 60A0 CLR_RIS_TRIG67 GPIO Banks 6 and 7 Clear Rising Edge Interrupt Register 0x01E2 60A4 SET_FAL_TRIG67 GPIO Banks 6 and 7 Set Falling Edge Interrupt Register Copyright © 2010–2014, Texas Instruments Incorporated GPIO Banks 6 and 7 Direction Register Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 57 AM1707 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 www.ti.com Table 6-8. GPIO Registers (continued) 6.8.2 BYTE ADDRESS ACRONYM 0x01E2 60A8 CLR_FAL_TRIG67 0x01E2 60AC INTSTAT67 REGISTER DESCRIPTION GPIO Banks 6 and 7 Clear Falling Edge Interrupt Register GPIO Banks 6 and 7 Interrupt Status Register GPIO Peripheral Input/Output Electrical Data/Timing Table 6-9. Timing Requirements for GPIO Inputs (1) (see Figure 6-10) No. PARAMETER MIN MAX UNIT 1 tw(GPIH) Pulse duration, GPn[m] as input high 2C (1) (2) ns 2 tw(GPIL) Pulse duration, GPn[m] as input low 2C (1) (2) ns (1) The pulse width given is sufficient to generate a CPU interrupt or an EDMA event. However, if a user wants to have the device recognize the GPIx changes through software polling of the GPIO register, the GPIx duration must be extended to allow the device enough time to access the GPIO register through the internal bus. C=SYSCLK4 period in ns. (2) Table 6-10. Switching Characteristics Over Recommended Operating Conditions for GPIO Outputs (see Figure 6-10) No. PARAMETER MIN MAX UNIT 3 tw(GPOH) Pulse duration, GPn[m] as output high 2C (1) (2) ns 4 tw(GPOL) Pulse duration, GPn[m] as output low 2C (1) (2) ns (1) This parameter value should not be used as a maximum performance specification. Actual performance of back-to-back accesses of the GPIO is dependent upon internal bus activity. C=SYSCLK4 period in ns. (2) 2 1 GPn[m] as input 4 3 GPn[m] as output Figure 6-10. GPIO Port Timing 6.8.3 GPIO Peripheral External Interrupts Electrical Data/Timing Table 6-11. Timing Requirements for External Interrupts (1) (see Figure 6-11) No. (1) (2) PARAMETER MIN 1 tw(ILOW) Width of the external interrupt pulse low 2C 2 tw(IHIGH) Width of the external interrupt pulse high 2C MAX UNIT (1) (2) ns (1) (2) ns The pulse width given is sufficient to generate an interrupt or an EDMA event. However, if a user wants to have device recognize the GPIO changes through software polling of the GPIO register, the GPIO duration must be extended to allow the device enough time to access the GPIO register through the internal bus. C=SYSCLK4 period in ns. 2 1 GPn[m] as input Figure 6-11. GPIO External Interrupt Timing 58 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 Copyright © 2010–2014, Texas Instruments Incorporated AM1707 www.ti.com 6.9 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 EDMA Table 6-12 is the list of EDMA3 Channel Contoller Registers and Table 6-13 is the list of EDMA3 Transfer Controller registers. Table 6-12. EDMA3 Channel Controller (EDMA3CC) Registers BYTE ADDRESS ACRONYM 0x01C0 0000 PID REGISTER DESCRIPTION 0x01C0 0004 CCCFG 0x01C0 0200 QCHMAP0 QDMA Channel 0 Mapping Register 0x01C0 0204 QCHMAP1 QDMA Channel 1 Mapping Register Peripheral Identification Register EDMA3CC Configuration Register GLOBAL REGISTERS 0x01C0 0208 QCHMAP2 QDMA Channel 2 Mapping Register 0x01C0 020C QCHMAP3 QDMA Channel 3 Mapping Register 0x01C0 0210 QCHMAP4 QDMA Channel 4 Mapping Register 0x01C0 0214 QCHMAP5 QDMA Channel 5 Mapping Register 0x01C0 0218 QCHMAP6 QDMA Channel 6 Mapping Register 0x01C0 021C QCHMAP7 QDMA Channel 7 Mapping Register 0x01C0 0240 DMAQNUM0 DMA Channel Queue Number Register 0 0x01C0 0244 DMAQNUM1 DMA Channel Queue Number Register 1 0x01C0 0248 DMAQNUM2 DMA Channel Queue Number Register 2 0x01C0 024C DMAQNUM3 DMA Channel Queue Number Register 3 0x01C0 0260 QDMAQNUM QDMA Channel Queue Number Register 0x01C0 0284 QUEPRI Queue Priority Register (1) 0x01C0 0300 EMR 0x01C0 0308 EMCR Event Missed Register Event Missed Clear Register 0x01C0 0310 QEMR QDMA Event Missed Register 0x01C0 0314 QEMCR QDMA Event Missed Clear Register 0x01C0 0318 CCERR EDMA3CC Error Register 0x01C0 031C CCERRCLR 0x01C0 0320 EEVAL Error Evaluate Register 0x01C0 0340 DRAE0 DMA Region Access Enable Register for Region 0 0x01C0 0348 DRAE1 DMA Region Access Enable Register for Region 1 0x01C0 0350 DRAE2 DMA Region Access Enable Register for Region 2 0x01C0 0358 DRAE3 DMA Region Access Enable Register for Region 3 0x01C0 0380 QRAE0 QDMA Region Access Enable Register for Region 0 0x01C0 0384 QRAE1 QDMA Region Access Enable Register for Region 1 0x01C0 0388 QRAE2 QDMA Region Access Enable Register for Region 2 0x01C0 038C QRAE3 QDMA Region Access Enable Register for Region 3 0x01C0 0400 - 0x01C0 043C Q0E0-Q0E15 Event Queue Entry Registers Q0E0-Q0E15 0x01C0 0440 - 0x01C0 047C Q1E0-Q1E15 Event Queue Entry Registers Q1E0-Q1E15 0x01C0 0600 QSTAT0 Queue 0 Status Register 0x01C0 0604 QSTAT1 Queue 1 Status Register 0x01C0 0620 QWMTHRA 0x01C0 0640 CCSTAT EDMA3CC Error Clear Register Queue Watermark Threshold A Register EDMA3CC Status Register GLOBAL CHANNEL REGISTERS (1) 0x01C0 1000 ER 0x01C0 1008 ECR Event Register Event Clear Register On previous architectures, the EDMA3TC priority was controlled by the queue priority register (QUEPRI) in the EDMA3CC memorymap. However for this device, the priority control for the transfer controllers is controlled by the chip-level registers in the System Configuration Module. You should use the chip-level registers and not QUEPRI to configure the TC priority. Copyright © 2010–2014, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 59 AM1707 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 www.ti.com Table 6-12. EDMA3 Channel Controller (EDMA3CC) Registers (continued) BYTE ADDRESS ACRONYM 0x01C0 1010 ESR Event Set Register REGISTER DESCRIPTION 0x01C0 1018 CER Chained Event Register 0x01C0 1020 EER Event Enable Register 0x01C0 1028 EECR Event Enable Clear Register 0x01C0 1030 EESR Event Enable Set Register 0x01C0 1038 SER Secondary Event Register 0x01C0 1040 SECR Secondary Event Clear Register 0x01C0 1050 IER 0x01C0 1058 IECR Interrupt Enable Register Interrupt Enable Clear Register 0x01C0 1060 IESR Interrupt Enable Set Register 0x01C0 1068 IPR Interrupt Pending Register 0x01C0 1070 ICR Interrupt Clear Register 0x01C0 1078 IEVAL 0x01C0 1080 QER Interrupt Evaluate Register QDMA Event Register 0x01C0 1084 QEER 0x01C0 1088 QEECR QDMA Event Enable Register QDMA Event Enable Clear Register 0x01C0 108C QEESR QDMA Event Enable Set Register 0x01C0 1090 QSER QDMA Secondary Event Register 0x01C0 1094 QSECR QDMA Secondary Event Clear Register SHADOW REGION 0 CHANNEL REGISTERS 0x01C0 2000 ER Event Register 0x01C0 2008 ECR Event Clear Register 0x01C0 2010 ESR Event Set Register 0x01C0 2018 CER Chained Event Register 0x01C0 2020 EER Event Enable Register 0x01C0 2028 EECR Event Enable Clear Register 0x01C0 2030 EESR Event Enable Set Register 0x01C0 2038 SER Secondary Event Register 0x01C0 2040 SECR 0x01C0 2050 IER 0x01C0 2058 IECR Interrupt Enable Clear Register 0x01C0 2060 IESR Interrupt Enable Set Register 0x01C0 2068 IPR Interrupt Pending Register 0x01C0 2070 ICR Interrupt Clear Register 0x01C0 2078 IEVAL 0x01C0 2080 QER 0x01C0 2084 QEER Secondary Event Clear Register Interrupt Enable Register Interrupt Evaluate Register QDMA Event Register QDMA Event Enable Register 0x01C0 2088 QEECR QDMA Event Enable Clear Register 0x01C0 208C QEESR QDMA Event Enable Set Register 0x01C0 2090 QSER QDMA Secondary Event Register 0x01C0 2094 QSECR 0x01C0 2200 ER 0x01C0 2208 ECR Event Clear Register 0x01C0 2210 ESR Event Set Register 0x01C0 2218 CER Chained Event Register 0x01C0 2220 EER Event Enable Register QDMA Secondary Event Clear Register SHADOW REGION 1 CHANNEL REGISTERS 60 Event Register Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 Copyright © 2010–2014, Texas Instruments Incorporated AM1707 www.ti.com SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 Table 6-12. EDMA3 Channel Controller (EDMA3CC) Registers (continued) BYTE ADDRESS ACRONYM 0x01C0 2228 EECR Event Enable Clear Register REGISTER DESCRIPTION 0x01C0 2230 EESR Event Enable Set Register 0x01C0 2238 SER Secondary Event Register 0x01C0 2240 SECR Secondary Event Clear Register 0x01C0 2250 IER 0x01C0 2258 IECR Interrupt Enable Register Interrupt Enable Clear Register 0x01C0 2260 IESR Interrupt Enable Set Register 0x01C0 2268 IPR Interrupt Pending Register 0x01C0 2270 ICR Interrupt Clear Register 0x01C0 2278 IEVAL 0x01C0 2280 QER Interrupt Evaluate Register QDMA Event Register 0x01C0 2284 QEER 0x01C0 2288 QEECR QDMA Event Enable Register QDMA Event Enable Clear Register 0x01C0 228C QEESR QDMA Event Enable Set Register 0x01C0 2290 QSER QDMA Secondary Event Register 0x01C0 2294 QSECR 0x01C0 4000 - 0x01C0 4FFF — QDMA Secondary Event Clear Register Parameter RAM (PaRAM) Table 6-13. EDMA3 Transfer Controller (EDMA3TC) Registers TRANSFER CONTROLLER 0 BYTE ADDRESS TRANSFER CONTROLLER 1 BYTE ADDRESS 0x01C0 8000 0x01C0 8400 PID Peripheral Identification Register 0x01C0 8004 0x01C0 8404 TCCFG EDMA3TC Configuration Register 0x01C0 8100 0x01C0 8500 TCSTAT EDMA3TC Channel Status Register 0x01C0 8120 0x01C0 8520 ERRSTAT Error Status Register 0x01C0 8124 0x01C0 8524 ERREN Error Enable Register 0x01C0 8128 0x01C0 8528 ERRCLR Error Clear Register 0x01C0 812C 0x01C0 852C ERRDET Error Details Register 0x01C0 8130 0x01C0 8530 ERRCMD Error Interrupt Command Register 0x01C0 8140 0x01C0 8540 RDRATE Read Command Rate Register 0x01C0 8240 0x01C0 8640 SAOPT Source Active Options Register 0x01C0 8244 0x01C0 8644 SASRC Source Active Source Address Register 0x01C0 8248 0x01C0 8648 SACNT Source Active Count Register 0x01C0 824C 0x01C0 864C SADST Source Active Destination Address Register 0x01C0 8250 0x01C0 8650 SABIDX Source Active B-Index Register 0x01C0 8254 0x01C0 8654 SAMPPRXY Source Active Memory Protection Proxy Register 0x01C0 8258 0x01C0 8658 SACNTRLD Source Active Count Reload Register 0x01C0 825C 0x01C0 865C SASRCBREF Source Active Source Address B-Reference Register 0x01C0 8260 0x01C0 8660 SADSTBREF Source Active Destination Address B-Reference Register 0x01C0 8280 0x01C0 8680 DFCNTRLD 0x01C0 8284 0x01C0 8684 DFSRCBREF Destination FIFO Set Source Address B-Reference Register 0x01C0 8288 0x01C0 8688 DFDSTBREF Destination FIFO Set Destination Address B-Reference Register 0x01C0 8300 0x01C0 8700 DFOPT0 Destination FIFO Options Register 0 0x01C0 8304 0x01C0 8704 DFSRC0 Destination FIFO Source Address Register 0 0x01C0 8308 0x01C0 8708 DFCNT0 Destination FIFO Count Register 0 0x01C0 830C 0x01C0 870C DFDST0 Destination FIFO Destination Address Register 0 0x01C0 8310 0x01C0 8710 DFBIDX0 Destination FIFO B-Index Register 0 Copyright © 2010–2014, Texas Instruments Incorporated ACRONYM REGISTER DESCRIPTION Destination FIFO Set Count Reload Register Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 61 AM1707 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 www.ti.com Table 6-13. EDMA3 Transfer Controller (EDMA3TC) Registers (continued) TRANSFER CONTROLLER 0 BYTE ADDRESS TRANSFER CONTROLLER 1 BYTE ADDRESS ACRONYM 0x01C0 8314 0x01C0 8714 DFMPPRXY0 0x01C0 8340 0x01C0 8740 DFOPT1 Destination FIFO Options Register 1 0x01C0 8344 0x01C0 8744 DFSRC1 Destination FIFO Source Address Register 1 0x01C0 8348 0x01C0 8748 DFCNT1 Destination FIFO Count Register 1 0x01C0 834C 0x01C0 874C DFDST1 Destination FIFO Destination Address Register 1 0x01C0 8350 0x01C0 8750 DFBIDX1 Destination FIFO B-Index Register 1 0x01C0 8354 0x01C0 8754 DFMPPRXY1 0x01C0 8380 0x01C0 8780 DFOPT2 Destination FIFO Options Register 2 0x01C0 8384 0x01C0 8784 DFSRC2 Destination FIFO Source Address Register 2 REGISTER DESCRIPTION Destination FIFO Memory Protection Proxy Register 0 Destination FIFO Memory Protection Proxy Register 1 0x01C0 8388 0x01C0 8788 DFCNT2 Destination FIFO Count Register 2 0x01C0 838C 0x01C0 878C DFDST2 Destination FIFO Destination Address Register 2 0x01C0 8390 0x01C0 8790 DFBIDX2 Destination FIFO B-Index Register 2 0x01C0 8394 0x01C0 8794 DFMPPRXY2 0x01C0 83C0 0x01C0 87C0 DFOPT3 Destination FIFO Memory Protection Proxy Register 2 Destination FIFO Options Register 3 0x01C0 83C4 0x01C0 87C4 DFSRC3 Destination FIFO Source Address Register 3 0x01C0 83C8 0x01C0 87C8 DFCNT3 Destination FIFO Count Register 3 0x01C0 83CC 0x01C0 87CC DFDST3 Destination FIFO Destination Address Register 3 0x01C0 83D0 0x01C0 87D0 DFBIDX3 Destination FIFO B-Index Register 3 0x01C0 83D4 0x01C0 87D4 DFMPPRXY3 Destination FIFO Memory Protection Proxy Register 3 Table 6-14 shows an abbreviation of the set of registers which make up the parameter set for each of 128 EDMA events. Each of the parameter register sets consist of 8 32-bit word entries. Table 6-15 shows the parameter set entry registers with relative memory address locations within each of the parameter sets. Table 6-14. EDMA Parameter Set RAM BYTE ADDRESS DESCRIPTION 0x01C0 4000 - 0x01C0 401F Parameters Set 0 (8 32-bit words) 0x01C0 4020 - 0x01C0 403F Parameters Set 1 (8 32-bit words) 0x01C0 4040 - 0x01C0 405F Parameters Set 2 (8 32-bit words) 0x01C0 4060 - 0x01C0 407F Parameters Set 3 (8 32-bit words) 0x01C0 4080 - 0x01C0 409F Parameters Set 4 (8 32-bit words) 0x01C0 40A0 - 0x01C0 40BF Parameters Set 5 (8 32-bit words) ... ... 0x01C0 4FC0 - 0x01C0 4FDF Parameters Set 126 (8 32-bit words) 0x01C0 4FE0 - 0x01C0 4FFF Parameters Set 127 (8 32-bit words) Table 6-15. Parameter Set Entries BYTE OFFSET ADDRESS WITHIN THE PARAMETER SET 62 ACRONYM PARAMETER ENTRY 0x0000 OPT Option 0x0004 SRC Source Address 0x0008 A_B_CNT A Count, B Count 0x000C DST 0x0010 SRC_DST_BIDX Source B Index, Destination B Index 0x0014 LINK_BCNTRLD Link Address, B Count Reload 0x0018 SRC_DST_CIDX Source C Index, Destination C Index Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 Destination Address Copyright © 2010–2014, Texas Instruments Incorporated AM1707 www.ti.com SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 Table 6-15. Parameter Set Entries (continued) BYTE OFFSET ADDRESS WITHIN THE PARAMETER SET ACRONYM 0x001C CCNT PARAMETER ENTRY C Count Table 6-16. EDMA Events Event Event Name / Source Event 0 McASP0 Receive 16 Event Name / Source MMCSD Receive 1 McASP0 Transmit 17 MMCSD Transmit 2 McASP1 Receive 18 SPI1 Receive 3 McASP1 Transmit 19 SPI1 Transmit 4 McASP2 Receive 20 PRU_EVTOUT6 5 McASP2 Transmit 21 PRU_EVTOUT7 6 GPIO Bank 0 Interrupt 22 GPIO Bank 2 Interrupt 7 GPIO Bank 1 Interrupt 23 GPIO Bank 3 Interrupt 8 UART0 Receive 24 I2C0 Receive I2C0 Transmit 9 UART0 Transmit 25 10 Timer64P0 Event Out 12 26 I2C1 Receive 11 Timer64P0 Event Out 34 27 I2C1 Transmit 12 UART1 Receive 28 GPIO Bank 4 Interrupt 13 UART1 Transmit 29 GPIO Bank 5 Interrupt 14 SPI0 Receive 30 UART2 Receive 15 SPI0 Transmit 31 UART2 Transmit Copyright © 2010–2014, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 63 AM1707 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 www.ti.com 6.10 External Memory Interface A (EMIFA) EMIFA is one of two external memory interfaces supported on the device. It is primarily intended to support asynchronous memory types, such as NAND and NOR flash and Asynchronous SRAM. However the EMIFA also provides a secondary interface to SDRAM. 6.10.1 EMIFA Asynchronous Memory Support EMIFA supports asynchronous: • SRAM memories • NAND Flash memories • NOR Flash memories The EMIFA data bus width is up to 16-bits on the ZKB package. The device supports up to fifteen address lines and an external wait/interrupt input. Up to four asynchronous chip selects are supported by EMIFA (EMA_CS[5:2]) . All four chip selects are available on the ZKB package. Each chip select has the following individually programmable attributes: • Data Bus Width • Read cycle timings: setup, hold, strobe • Write cycle timings: setup, hold, strobe • Bus turn around time • Extended Wait Option With Programmable Timeout • Select Strobe Option • NAND flash controller supports 1-bit and 4-bit ECC calculation on blocks of 512 bytes. 6.10.2 EMIFA Synchronous DRAM Memory Support The device ZKB package supports 16-bit SDRAM in addition to the asynchronous memories listed in Section 6.10.1. It has a single SDRAM chip select (EMA_CS[0]). SDRAM configurations that are supported are: • One, Two, and Four Bank SDRAM devices • Devices with Eight, Nine, Ten, and Eleven Column Address • CAS Latency of two or three clock cycles • Sixteen Bit Data Bus Width • 3.3V LVCMOS Interface Additionally, the SDRAM interface of EMIFA supports placing the SDRAM in Self Refresh and Powerdown Modes. Self Refresh mode allows the SDRAM to be put into a low power state while still retaining memory contents. Powerdown mode achieves even lower power, except the processor must periodically wake the SDRAM up and issue refreshes if data retention is required. Finally, note that the EMIFA does not support Mobile SDRAM devices. Table 6-17 below shows the supported SDRAM configurations for EMIFA. 64 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 Copyright © 2010–2014, Texas Instruments Incorporated AM1707 www.ti.com SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 Table 6-17. EMIFA Supported SDRAM Configurations (1) SDRAM Memory Data Bus Width (bits) 16 8 (1) Number of Memories EMIFB Data Bus Size Rows Columns Banks Total Memory (Mbits) Total Memory (Mbytes) Memory Density (Mbits) 1 16 13 8 1 32 4 32 1 16 13 8 2 64 8 64 1 16 13 8 4 128 16 128 1 16 13 9 1 64 8 64 1 16 13 9 2 128 16 128 1 16 13 9 4 256 32 256 1 16 13 10 1 128 16 128 1 16 13 10 2 256 32 256 1 16 13 10 4 512 64 512 1 16 13 11 1 256 32 256 1 16 13 11 2 512 64 512 1 16 13 11 4 1024 128 1024 2 16 13 8 1 32 4 16 2 16 13 8 2 64 8 32 2 16 13 8 4 128 16 64 2 16 13 9 1 64 8 32 2 16 13 9 2 128 16 64 2 16 13 9 4 256 32 128 2 16 13 10 1 128 16 64 2 16 13 10 2 256 32 128 2 16 13 10 4 512 64 256 2 16 13 11 1 256 32 128 2 16 13 11 2 512 64 256 2 16 13 11 4 1024 128 512 The shaded cells indicate configurations that are possible on the EMIFA interface but as of this writing SDRAM memories capable of supporting these densities are not available in the market. 6.10.3 EMIFA SDRAM Loading Limitations EMIFA supports SDRAM up to 100 MHz with up to two SDRAM or asynchronous memory loads. Additional loads will limit the SDRAM operation to lower speeds and the maximum speed should be confirmed by board simulation using IBIS models. 6.10.4 EMIFA Connection Examples Figure 6-12 illustrates an example of how SDRAM, NOR, and NAND flash devices might be connected to EMIFA of a AM1707 device simultaneously. The SDRAM chip select must be EMA_CS[0]. Note that the NOR flash is connected to EMA_CS[2] and the NAND flash is connected to EMA_CS[3] in this example. Note that any type of asynchronous memory may be connected to EMA_CS[5:2]. The on-chip bootloader makes some assumptions on which chip select the contains the boot image, and this depends on the boot mode. For NOR boot mode; the on-chip bootloader requires that the image be stored in NOR flash on EMA_CS[2]. For NAND boot mode, the bootloader requires that the boot image is stored in NAND flash on EMA_CS[3]. It is always possible to have the image span multiple chip selects, but this must be supported by second stage boot code stored in the external flash. Copyright © 2010–2014, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 65 AM1707 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 www.ti.com A likely use case with more than one EMIFA chip select used for NAND flash is illustrated in Figure 6-13. This figure shows how two multiplane NAND flash devices with two chip selects each would connect to the EMIFA. In this case if NAND is the boot memory, then the boot image needs to be stored in the NAND area selected by EMA_CS[3]. Part of the application image could spill over into the NAND regions selected by other EMIFA chip selects; but would rely on the code stored in the EMA_CS[3] area to bootload it. RESET CE CAS RAS WE SDRAM 2M x 16 x 4 CLK Bank CKE BA[1:0] A[11:0] LDQM UDQM DQ[15:0] EMA_BA[1] EMA_CS[0] EMA_CAS EMIFA EMA_RAS EMA_WE EMA_CLK EMA_SDCKE EMA_BA[1:0] EMA_A[12:0] EMA_WE_DQM[0] EMA_WE_DQM[1] EMA_D[15:0] EMA_CS[2] EMA_CS[3] EMA_WAIT EMA_OE A[0] A[12:1] DQ[15:0] NOR CE FLASH WE 512K x 16 OE RESET A[18:13] GPIO (6 Pins) RESET ... RY/BY EMA_A[1] EMA_A[2] DVDD ALE CLE DQ[15:0] NAND FLASH CE 1Gb x 16 WE RE RB Figure 6-12. AM1707 Connection Diagram: SDRAM, NOR, NAND 66 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 Copyright © 2010–2014, Texas Instruments Incorporated AM1707 www.ti.com SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 EMA_A[1] EMA_A[2] EMA_D[7:0] EMA_CS[2] EMA_CS[3] EMA_WE EMA_OE EMIFA EMA_WAIT EMA_CS[4] EMA_CS[5] ALE CLE DQ[7:0] CE1 CE2 WE RE R/B1 R/B2 NAND FLASH x8, MultiPlane ALE CLE DQ[7:0] CE1 CE2 WE RE R/B1 R/B2 NAND FLASH x8, MultiPlane DVDD Figure 6-13. AM1707 EMIFA Connection Diagram: Multiple NAND Flash Planes Copyright © 2010–2014, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 67 AM1707 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 www.ti.com 6.10.5 External Memory Interface A (EMIFA) Registers Table 6-18 is a list of the EMIF registers. Table 6-18. External Memory Interface (EMIFA) Registers 68 BYTE ADDRESS ACRONYM 0x6800 0000 MIDR Module ID Register REGISTER DESCRIPTION 0x6800 0004 AWCC Asynchronous Wait Cycle Configuration Register SDRAM Configuration Register 0x6800 0008 SDCR 0x6800 000C SDRCR SDRAM Refresh Control Register 0x6800 0010 CE2CFG Asynchronous 1 Configuration Register 0x6800 0014 CE3CFG Asynchronous 2 Configuration Register 0x6800 0018 CE4CFG Asynchronous 3 Configuration Register 0x6800 001C CE5CFG Asynchronous 4 Configuration Register 0x6800 0020 SDTIMR SDRAM Timing Register 0x6800 003C SDSRETR 0x6800 0040 INTRAW EMIFA Interrupt Raw Register 0x6800 0044 INTMSK EMIFA Interrupt Mask Register SDRAM Self Refresh Exit Timing Register 0x6800 0048 INTMSKSET EMIFA Interrupt Mask Set Register 0x6800 004C INTMSKCLR EMIFA Interrupt Mask Clear Register 0x6800 0060 NANDFCR NAND Flash Control Register 0x6800 0064 NANDFSR NAND Flash Status Register 0x6800 0070 NANDF1ECC NAND Flash 1 ECC Register (CS2 Space) 0x6800 0074 NANDF2ECC NAND Flash 2 ECC Register (CS3 Space) 0x6800 0078 NANDF3ECC NAND Flash 3 ECC Register (CS4 Space) NAND Flash 4 ECC Register (CS5 Space) 0x6800 007C NANDF4ECC 0x6800 00BC NAND4BITECCLOAD 0x6800 00C0 NAND4BITECC1 NAND Flash 4-Bit ECC Register 1 0x6800 00C4 NAND4BITECC2 NAND Flash 4-Bit ECC Register 2 0x6800 00C8 NAND4BITECC3 NAND Flash 4-Bit ECC Register 3 0x6800 00CC NAND4BITECC4 NAND Flash 4-Bit ECC Register 4 0x6800 00D0 NANDERRADD1 NAND Flash 4-Bit ECC Error Address Register 1 0x6800 00D4 NANDERRADD2 NAND Flash 4-Bit ECC Error Address Register 2 0x6800 00D8 NANDERRVAL1 NAND Flash 4-Bit ECC Error Value Register 1 0x6800 00DC NANDERRVAL2 NAND Flash 4-Bit ECC Error Value Register 2 NAND Flash 4-Bit ECC Load Register Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 Copyright © 2010–2014, Texas Instruments Incorporated AM1707 www.ti.com SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 6.10.6 EMIFA Electrical Data/Timing The following assume testing over recommended operating conditions. Table 6-19. EMIFA SDRAM Interface Timing Requirements No. PARAMETER MIN MAX UNIT 19 tsu(DV-CLKH) Input setup time, read data valid on EMA_D[15:0] before EMA_CLK rising 1.3 ns 20 th(CLKH-DIV) Input hold time, read data valid on EMA_D[15:0] after EMA_CLK rising 1.5 ns Table 6-20. EMIFA SDRAM Interface Switching Characteristics No. PARAMETER MIN 1 tc(CLK) Cycle time, EMIF clock EMA_CLK 10 2 tw(CLK) Pulse width, EMIF clock EMA_CLK high or low 3 3 td(CLKH-CSV) Delay time, EMA_CLK rising to EMA_CS[0] valid 4 toh(CLKH-CSIV) Output hold time, EMA_CLK rising to EMA_CS[0] invalid 5 td(CLKH-DQMV) Delay time, EMA_CLK rising to EMA_WE_DQM[1:0] valid 6 toh(CLKH-DQMIV) Output hold time, EMA_CLK rising to EMA_WE_DQM[1:0] invalid 7 td(CLKH-AV) Delay time, EMA_CLK rising to EMA_A[12:0] and EMA_BA[1:0] valid 8 toh(CLKH-AIV) Output hold time, EMA_CLK rising to EMA_A[12:0] and EMA_BA[1:0] invalid 9 td(CLKH-DV) Delay time, EMA_CLK rising to EMA_D[15:0] valid 10 toh(CLKH-DIV) Output hold time, EMA_CLK rising to EMA_D[15:0] invalid 11 td(CLKH-RASV) Delay time, EMA_CLK rising to EMA_RAS valid 12 toh(CLKH-RASIV) Output hold time, EMA_CLK rising to EMA_RAS invalid 13 td(CLKH-CASV) Delay time, EMA_CLK rising to EMA_CAS valid 14 toh(CLKH-CASIV) Output hold time, EMA_CLK rising to EMA_CAS invalid 15 td(CLKH-WEV) Delay time, EMA_CLK rising to EMA_WE valid 16 toh(CLKH-WEIV) Output hold time, EMA_CLK rising to EMA_WE invalid 17 tdis(CLKH-DHZ) Delay time, EMA_CLK rising to EMA_D[15:0] 3-stated 18 tena(CLKH-DLZ) Output hold time, EMA_CLK rising to EMA_D[15:0] driving MAX UNIT ns ns 7 1 ns ns 7 1 ns ns 7 1 ns ns 7 1 ns ns 7 1 ns ns 7 1 ns ns 7 1 ns ns 7 1 ns ns Table 6-21. EMIFA Asynchronous Memory Timing Requirements (1) No. PARAMETER MIN NOM MAX UNIT READS and WRITES E tc(CLK) Cycle time, EMIFA module clock 10 ns 2 tw(EM_WAIT) Pulse duration, EM_WAIT assertion and deassertion 2E ns READS 12 tsu(EMDV-EMOEH) Setup time, EM_D[15:0] valid before EM_OE high 3 ns 13 th(EMOEH-EMDIV) Hold time, EM_D[15:0] valid after EM_OE high 0 ns 14 tsu (EMOEL-EMWAIT) Setup Time, EM_WAIT asserted before end of Strobe Phase (2) 4E+3 ns 4E+3 ns WRITES 28 (1) (2) tsu (EMWEL-EMWAIT) Setup Time, EM_WAIT asserted before end of Strobe Phase (2) E = EMA_CLK period or in ns. EMA_CLK is selected either as SYSCLK3 or the PLL output clock divided by 4.5. As an example, when SYSCLK3 is selected and set to 100MHz, E=10ns. Setup before end of STROBE phase (if no extended wait states are inserted) by which EM_WAIT must be asserted to add extended wait states. Figure 6-18 and Figure 6-19 describe EMIF transactions that include extended wait states inserted during the STROBE phase. However, cycles inserted as part of this extended wait period should not be counted; the 4E requirement is to the start of where the HOLD phase would begin if there were no extended wait cycles. Copyright © 2010–2014, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 69 AM1707 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 www.ti.com Table 6-22. EMIFA Asynchronous Memory Switching Characteristics (1) No. PARAMETER MIN NOM (2) (3) MAX UNIT READS and WRITES 1 td(TURNAROUND) Turn around time (TA)*E - 3 (TA)*E (TA)*E + 3 ns EMIF read cycle time (EW = 0) (RS+RST+RH)*E -3 (RS+RST+RH)*E (RS+RST+RH)*E +3 ns EMIF read cycle time (EW = 1) (RS+RST+RH+E (RS+RST+RH+EWC (RS+RST+RH+E WC)*E - 3 )*E WC)*E + 3 ns READS 3 tc(EMRCYCLE) 4 tsu(EMCEL-EMOEL) 5 th(EMOEH-EMCEH) Output setup time, EMA_CE[5:2] low to EMA_OE low (SS = 0) (RS)*E-3 (RS)*E (RS)*E+3 ns Output setup time, EMA_CE[5:2] low to EMA_OE low (SS = 1) -3 0 +3 ns Output hold time, EMA_OE high to EMA_CE[5:2] high (SS = 0) (RH)*E - 3 (RH)*E (RH)*E + 3 ns Output hold time, EMA_OE high to EMA_CE[5:2] high (SS = 1) -3 0 +3 ns 6 tsu(EMBAV-EMOEL) Output setup time, EMA_BA[1:0] valid to EMA_OE low (RS)*E-3 (RS)*E (RS)*E+3 ns 7 th(EMOEH-EMBAIV) Output hold time, EMA_OE high to EMA_BA[1:0] invalid (RH)*E-3 (RH)*E (RH)*E+3 ns 8 tsu(EMBAV-EMOEL) Output setup time, EMA_A[13:0] valid to EMA_OE low (RS)*E-3 (RS)*E (RS)*E+3 ns 9 th(EMOEH-EMAIV) Output hold time, EMA_OE high to EMA_A[13:0] invalid (RH)*E-3 (RH)*E (RH)*E+3 ns EMA_OE active low width (EW = 0) (RST)*E-3 (RST)*E (RST)*E+3 ns 10 tw(EMOEL) (RST+EWC)*E-3 (RST+EWC)*E (RST+EWC)*E+ 3 ns 11 td(EMWAITH- 3E-3 4E 4E+3 ns (WS+WST+WH)* E-3 (WS+WST+WH)*E (WS+WST+WH)* E+3 ns (WS+WST+WH+E (WS+WST+WH+EW (WS+WST+WH+ WC)*E - 3 C)*E EWC)*E + 3 ns EMOEH) EMA_OE active low width (EW = 1) Delay time from EMA_WAIT deasserted to EMA_OE high WRITES EMIF write cycle time (EW = 0) 15 tc(EMWCYCLE) EMIF write cycle time (EW = 1) 16 17 18 tsu(EMCEL-EMWEL) th(EMWEH-EMCEH) tsu(EMDQMVEMWEL) 19 th(EMWEHEMDQMIV) 20 tsu(EMBAVEMWEL) 21 (1) (2) (3) 70 th(EMWEH-EMBAIV) Output setup time, EMA_CE[5:2] low to EMA_WE low (SS = 0) (WS)*E - 3 (WS)*E (WS)*E + 3 ns Output setup time, EMA_CE[5:2] low to EMA_WE low (SS = 1) -3 0 +3 ns Output hold time, EMA_WE high to EMA_CE[5:2] high (SS = 0) (WH)*E-3 (WH)*E (WH)*E+3 ns Output hold time, EMA_WE high to EMA_CE[5:2] high (SS = 1) -3 0 +3 ns Output setup time, EMA_BA[1:0] valid to EMA_WE low (WS)*E-3 (WS)*E (WS)*E+3 ns Output hold time, EMA_WE high to EMA_BA[1:0] invalid (WH)*E-3 (WH)*E (WH)*E+3 ns Output setup time, EMA_BA[1:0] valid to EMA_WE low (WS)*E-3 (WS)*E (WS)*E+3 ns Output hold time, EMA_WE high to EMA_BA[1:0] invalid (WH)*E-3 (WH)*E (WH)*E+3 ns TA = Turn around, RS = Read setup, RST = Read strobe, RH = Read hold, WS = Write setup, WST = Write strobe, WH = Write hold, MEWC = Maximum external wait cycles. These parameters are programmed via the Asynchronous Bank and Asynchronous Wait Cycle Configuration Registers. These support the following range of values: TA[4-1], RS[16-1], RST[64-1], RH[8-1], WS[16-1], WST[64-1], WH[8-1], and MEW[1-256]. E = EMA_CLK period or in ns. EMA_CLK is selected either as SYSCLK3 or the PLL output clock divided by 4.5. As an example, when SYSCLK3 is selected and set to 100MHz, E=10ns. EWC = external wait cycles determined by EMA_WAIT input signal. EWC supports the following range of values EWC[256-1]. Note that the maximum wait time before timeout is specified by bit field MEWC in the Asynchronous Wait Cycle Configuration Register. Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 Copyright © 2010–2014, Texas Instruments Incorporated AM1707 www.ti.com SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 Table 6-22. EMIFA Asynchronous Memory Switching Characteristics(1) No. PARAMETER MIN (2) (3) (continued) NOM MAX UNIT 22 tsu(EMAV-EMWEL) Output setup time, EMA_A[13:0] valid to EMA_WE low 23 th(EMWEH-EMAIV) Output hold time, EMA_WE high to EMA_A[13:0] invalid (WH)*E-3 (WH)*E EMA_WE active low width (EW = 0) (WST)*E-3 (WST)*E (WST)*E+3 ns 24 tw(EMWEL) (WST+EWC)*E-3 (WST+EWC)*E (WST+EWC)*E+ 3 ns 25 td(EMWAITH- 3E-3 4E 4E+3 ns EMWEH) EMA_WE active low width (EW = 1) (WS)*E-3 (WS)*E (WS)*E+3 ns (WH)*E+3 ns Delay time from EMA_WAIT deasserted to EMA_WE high 26 tsu(EMDV-EMWEL) Output setup time, EMA_D[15:0] valid to EMA_WE low (WS)*E-3 (WS)*E (WS)*E+3 ns 27 th(EMWEH-EMDIV) Output hold time, EMA_WE high to EMA_D[15:0] invalid (WH)*E-3 (WH)*E (WH)*E+3 ns BASIC SDRAM WRITE OPERATION 1 2 2 EMA_CLK 3 4 EMA_CS[0] 5 6 EMA_WE_DQM[1:0] 7 8 7 8 EMA_BA[1:0] EMA_A[12:0] 9 10 EMA_D[15:0] 11 12 EMA_RAS 13 EMA_CAS 15 16 EMA_WE Figure 6-14. EMIFA Basic SDRAM Write Operation Copyright © 2010–2014, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 71 AM1707 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 www.ti.com BASIC SDRAM READ OPERATION 1 2 2 EMA_CLK 3 4 EMA_CS[0] 5 6 EMA_WE_DQM[1:0] 7 8 7 8 EMA_BA[1:0] EMA_A[12:0] 19 17 2 EM_CLK Delay 20 18 EMA_D[15:0] 11 12 EMA_RAS 13 14 EMA_CAS EMA_WE Figure 6-15. EMIFA Basic SDRAM Read Operation 3 1 EMA_CS[5:2] EMA_BA[1:0] EMA_A[12:0] EMA_WE_DQM[1:0] 4 8 5 9 6 7 10 EMA_OE 13 12 EMA_D[15:0] EMA_WE Figure 6-16. Asynchronous Memory Read Timing for EMIFA 72 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 Copyright © 2010–2014, Texas Instruments Incorporated AM1707 www.ti.com SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 15 1 EMA_CS[5:2] EMA_BA[1:0] EMA_A[12:0] EMA_WE_DQM[1:0] 16 17 18 19 20 21 22 23 24 EMA_WE 26 27 EMA_D[15:0] EMA_OE Figure 6-17. Asynchronous Memory Write Timing for EMIFA EMA_CS[5:2] SETUP STROBE Extended Due to EMA_WAIT STROBE HOLD EMA_BA[1:0] EMA_A[12:0] EMA_D[15:0] 14 11 EMA_OE 2 EMA_WAIT Asserted 2 Deasserted Figure 6-18. EMA_WAIT Read Timing Requirements Copyright © 2010–2014, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 73 AM1707 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 www.ti.com Figure 6-19. EMA_WAIT Write Timing Requirements 74 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 Copyright © 2010–2014, Texas Instruments Incorporated AM1707 www.ti.com SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 6.11 External Memory Interface B (EMIFB) The following EMIFB Functional Block Diagram illustrates a high-level view of the EMIFB and its connections within the device. Multiple requesters have access to EMIFB through a switched central resource (indicated as an overbar in the figure). The EMIFB implements a split transaction internal bus, allowing concurrence between reads and writes from the various requesters. EMIFB Registers CPU EDMA Crossbar MPU2 Master Peripherals (USB, UHPI...) EMB_CS EMB_CAS Cmd/Write EMB_RAS FIFO EMB_WE EMB_CLK EMB_SDCKE Read EMB_BA[1:0] FIFO EMB_A[x:0] EMB_D[x:0] EMB_WE_DQM[x:0] SDRAM Interface Figure 6-20. EMIFB Functional Block Diagram EMIFB supports a 3.3V LVCMOS Interface. 6.11.1 EMIFB SDRAM Loading Limitations EMIFB supports SDRAM up to 152 MHz with up to two SDRAM or asynchronous memory loads. Additional loads will limit the SDRAM operation to lower speeds and the maximum speed should be confirmed by board simulation using IBIS models. Copyright © 2010–2014, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 75 AM1707 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 www.ti.com 6.11.2 Interfacing to SDRAM The EMIFB supports a glueless interface to SDRAM devices with the following characteristics: • Pre-charge bit is A[10] • Supports 8, 9, 10 or 11 column address bits • Supports up to 13 row address bits • Supports 1, 2 or 4 internal banks Table 6-23 shows the supported SDRAM configurations for EMIFB. Table 6-23. EMIFB Supported SDRAM Configurations (1) SDRAM Memory Data Bus Width (bits) 32 16 (1) Total Memory (Mbits) Total Memory (Mbytes) Memory Density (Mbits) Number of Memories EMIFB Data Bus Size Rows Columns Banks 1 32 13 8 1 64 8 64 1 32 13 8 2 128 16 128 1 32 13 8 4 256 32 256 1 32 13 9 1 128 16 128 1 32 13 9 2 256 32 256 1 32 13 9 4 512 64 512 1 32 13 10 1 256 32 256 1 32 13 10 2 512 64 512 1 32 13 10 4 1024 128 1024 1 32 13 11 1 512 64 512 1 32 13 11 2 1024 128 1024 1 32 13 11 4 2048 256 2048 2 32 13 8 1 64 8 32 2 32 13 8 2 128 16 64 2 32 13 8 4 256 32 128 2 32 13 9 1 128 16 64 2 32 13 9 2 256 32 128 2 32 13 9 4 512 64 256 2 32 13 10 1 256 32 128 2 32 13 10 2 512 64 256 2 32 13 10 4 1024 128 512 2 32 13 11 1 512 64 256 2 32 13 11 2 1024 128 512 2 32 13 11 4 2048 256 1024 The shaded cells indicate configurations that are possible on the EMIFB interface but as of this writing SDRAM memories capable of supporting these densities are not available in the market. Figure 6-21 shows an interface between the EMIFB and a 2M × 16 × 4 bank SDRAM device. In addition, Figure 6-22 shows an interface between the EMIFB and a 2M × 32 × 4 bank SDRAM device and Figure 623 shows an interface between the EMIFB and two 4M × 16 × 4 bank SDRAM devices. Refer to Table 624 , as an example that shows additional list of commonly-supported SDRAM devices and the required connections for the address pins. Note that in Table 6-24, page size/column size (not indicated in the table) is varied to get the required addressability range. 76 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 Copyright © 2010–2014, Texas Instruments Incorporated AM1707 www.ti.com SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 EMIFB EMB_CS EMB_CAS EMB_RAS EMB_WE EMB_CLK EMB_SDCKE EMB_BA[1:0] EMB_A[11:0] EMB_WE_DQM[0] EMB_WE_DQM[1] EMB_D[15:0] SDRAM 2M x 16 x 4 Bank CE CAS RAS WE CLK CKE BA[1:0] A[11:0] LDQM UDQM DQ[15:0] Figure 6-21. EMIFB to 2M × 16 × 4 bank SDRAM Interface SDRAM 2M x 32 x 4 Bank EMIFB EMB_CS EMB_CAS EMB_RAS EMB_WE EMB_CLK EMB_SDCKE EMB_BA[1:0] EMB_A[11:0] EMB_WE_DQM[3:0] EMB_D[31:0] CE CAS RAS WE CLK CKE BA[1:0] A[11:0] DQM[3:0] DQ[31:0] Figure 6-22. EMIFB to 2M × 32 × 4 bank SDRAM Interface Copyright © 2010–2014, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 77 AM1707 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 www.ti.com SDRAM 4M x 16 x 4 Bank EMIFB EMB_CS EMB_CAS EMB_RAS EMB_WE EMB_CLK EMB_SDCKE EMB_BA[1:0] EMB_A[12:0] EMB_WE_DQM[0] EMB_WE_DQM[1] EMB_D[15:0] EMB_WE_DQM[2] EMB_WE_DQM[3] EMB_D[31:16] CE CAS RAS WE CLK CKE BA[1:0] A[12:0] LDQM UDQM DQ[15:0] SDRAM 4M x 16 x 4 Bank CE CAS RAS WE CLK CKE BA[1:0] A[12:0] LDQM UDQM DQ[15:0] Figure 6-23. EMIFB to Dual 4M × 16 × 4 bank SDRAM Interface Table 6-24. Example of 16/32-bit EMIFB Address Pin Connections SDRAM Size Width Banks 64M bits ×16 4 ×32 128M bits 256M bits ×16 4 SDRAM A[11:0] EMIFB EMB_A[11:0] SDRAM A[10:0] EMIFB EMB_A[10:0] SDRAM A[11:0] EMIFB EMB_A[11:0] ×32 4 SDRAM A[11:0] EMIFB EMB_A[11:0] ×16 4 SDRAM A[12:0] EMIFB EMB_A[12:0] ×32 512M bits 4 Address Pins ×16 ×32 4 4 4 SDRAM A[11:0] EMIFB EMB_A[11:0] SDRAM A[12:0] EMIFB EMB_A[12:0] SDRAM A[12:0] EMIFB EMB_A[12:0] 6.11.3 EMIFB Registers Table 6-25 is a list of the EMIFB registers. 78 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 Copyright © 2010–2014, Texas Instruments Incorporated AM1707 www.ti.com SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 Table 6-25. EMIFB Controller Registers BYTE ADDRESS ACRONYM 0xB000 0000 MIDR REGISTER DESCRIPTION Module ID Register 0xB000 0008 SDCFG SDRAM Configuration Register 0xB000 000C SDRFC SDRAM Refresh Control Register 0xB000 0010 SDTIM1 SDRAM Timing Register 1 0xB000 0014 SDTIM2 SDRAM Timing Register 2 0xB000 001C SDCFG2 SDRAM Configuration 2 Register 0xB000 0020 BPRIO 0xB000 0040 PC1 Performance Counter 1 Register 0xB000 0044 PC2 Performance Counter 2 Register Performance Counter Configuration Register Peripheral Bus Burst Priority Register 0xB000 0048 PCC 0xB000 004C PCMRS 0xB000 0050 PCT Performance Counter Time Register 0xB000 00C0 IRR Interrupt Raw Register 0xB000 00C4 IMR Interrupt Mask Register 0xB000 00C8 IMSR Interrupt Mask Set Register 0xB000 00CC IMCR Interrupt Mask Clear Register Performance Counter Master Region Select Register Copyright © 2010–2014, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 79 AM1707 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 www.ti.com 6.11.4 EMIFB Electrical Data/Timing Table 6-26. EMIFB SDRAM Interface Timing Requirements CVDD = 1.3 V (1) NO. MIN MAX CVDD = 1.2V (2) MIN MAX UNI T 19 t(DV-CLKH) Input setup time, read data valid on EMB_D[31:0] before EMB_CLK rising 0.59 0.8 ns 20 th(CLKH-DIV) Input hold time, read data valid on EMB_D[31:0] after EMB_CLK rising 1.25 1.5 ns (1) Commercial (default), Industrial and Extended temperature range rated devices for 456 MHz max CPU operating frequency as applicable to the device Commercial (default), Industrial, Extended and Automotive temperature range rated devices for 400/375/300/266/200 MHz max CPU operating frequencies as applicable to the device (2) Table 6-27. EMIFB SDRAM Interface Switching Characteristics for Commercial (Default) Temperature Range NO. PARAMETER 1 tc(CLK) Cycle time, EMIF clock EMB_CLK 2 tw(CLK) Pulse width, EMIF clock EMB_CLK high or low 3 td(CLKH-CSV) Delay time, EMB_CLK rising to EMB_CS[0] valid 4 toh(CLKH-CSIV) Output hold time, EMB_CLK rising to EMB_CS[0] invalid 5 td(CLKH-DQMV) Delay time, EMB_CLK rising to EMB_WE_DQM[3:0] valid 6 toh(CLKH-DQMIV) Output hold time, EMB_CLK rising to EMB_WE_DQM[3:0] invalid 7 td(CLKH-AV) Delay time, EMB_CLK rising to EMB_A[12:0] and EMB_BA[1:0] valid 8 toh(CLKH-AIV) Output hold time, EMB_CLK rising to EMB_A[12:0] and EMB_BA[1:0] invalid 9 td(CLKH-DV) Delay time, EMB_CLK rising to EMB_D[31:0] valid 10 toh(CLKH-DIV) Output hold time, EMB_CLK rising to EMB_D[31:0] invalid 11 td(CLKH-RASV) Delay time, EMB_CLK rising to EMB_RAS valid 12 toh(CLKH-RASIV) Output hold time, EMB_CLK rising to EMB_RAS invalid 13 td(CLKH-CASV) Delay time, EMB_CLK rising to EMB_CAS valid 14 toh(CLKH-CASIV) Output hold time, EMB_CLK rising to EMB_CAS invalid 15 td(CLKH-WEV) Delay time, EMB_CLK rising to EMB_WE valid 16 toh(CLKH-WEIV) Output hold time, EMB_CLK rising to EMB_WE invalid 17 tdis(CLKH-DHZ) Delay time, EMB_CLK rising to EMB_D[31:0] tri-stated t(CLKH-DLZ) Output hold time, EMB_CLK rising to EMB_D[31:0] driving 18 (1) (2) CVDD = 1.3 V (1) MIN MAX CVDD = 1.2V (2) MIN 6.579 7.5 2.63 3 4.25 1.1 MAX ns ns 5.1 1.1 4.25 1.1 1.1 1.1 5.1 4.25 5.1 4.25 1.1 5.1 1.1 1.1 1.1 1.1 ns ns 5.1 4.25 ns ns 5.1 4.25 ns ns 1.1 4.25 ns ns 1.1 1.1 ns ns 1.1 1.1 ns ns 5.1 4.25 UNI T ns ns 5.1 1.1 ns ns Commercial (default) temperature range rated devices for 456 MHz max CPU operating frequency as applicable to the device Commercial (default) temperature range rated devices for 400/375/300/266/200 MHz max CPU operating frequencies as applicable to the device Table 6-28. EMIFB SDRAM Interface Switching Characteristics for Industrial, Extended, and Automotive Temperature Ranges NO. (1) (2) 80 PARAMETER 1 tc(CLK) Cycle time, EMIF clock EMB_CLK 2 tw(CLK) Pulse width, EMIF clock EMB_CLK high or low 3 td(CLKH-CSV) Delay time, EMB_CLK rising to EMB_CS[0] valid 4 toh(CLKH-CSIV) Output hold time, EMB_CLK rising to EMB_CS[0] invalid CVDD = 1.3 V (1) MIN MAX 6.579 CVDD = 1.2V (2) MIN 7.5 2.63 ns 5.1 0.9 UNI T ns 3 4.25 1.1 MAX ns ns Industrial temperature range rated devices for 456 MHz max CPU operating frequency as applicable to the device Industrial, Extended and Automotive temperature range rated devices for 400/375/300/266/200 MHz max CPU operating frequencies as applicable to the device Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 Copyright © 2010–2014, Texas Instruments Incorporated AM1707 www.ti.com SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 Table 6-28. EMIFB SDRAM Interface Switching Characteristics for Industrial, Extended, and Automotive Temperature Ranges (continued) NO. CVDD = 1.3 V (1) PARAMETER MIN 5 td(CLKH-DQMV) Delay time, EMB_CLK rising to EMB_WE_DQM[3:0] valid 6 toh(CLKH-DQMIV) Output hold time, EMB_CLK rising to EMB_WE_DQM[3:0] invalid 7 td(CLKH-AV) Delay time, EMB_CLK rising to EMB_A[12:0] and EMB_BA[1:0] valid 8 toh(CLKH-AIV) Output hold time, EMB_CLK rising to EMB_A[12:0] and EMB_BA[1:0] invalid 9 td(CLKH-DV) Delay time, EMB_CLK rising to EMB_D[31:0] valid 10 toh(CLKH-DIV) Output hold time, EMB_CLK rising to EMB_D[31:0] invalid 11 td(CLKH-RASV) Delay time, EMB_CLK rising to EMB_RAS valid 12 toh(CLKH-RASIV) Output hold time, EMB_CLK rising to EMB_RAS invalid 13 td(CLKH-CASV) Delay time, EMB_CLK rising to EMB_CAS valid 14 toh(CLKH-CASIV) Output hold time, EMB_CLK rising to EMB_CAS invalid 15 td(CLKH-WEV) Delay time, EMB_CLK rising to EMB_WE valid 16 toh(CLKH-WEIV) Output hold time, EMB_CLK rising to EMB_WE invalid 17 tdis(CLKH-DHZ) Delay time, EMB_CLK rising to EMB_D[31:0] tri-stated 18 t(CLKH-DLZ) Output hold time, EMB_CLK rising to EMB_D[31:0] driving BASIC SDRAM WRITE OPERATION CVDD = 1.2V (2) MAX MIN 4.25 MAX 5.1 1.1 0.9 4.25 0.9 4.25 0.9 4.25 0.9 4.25 0.9 4.25 0.9 4.25 ns ns 5.1 1.1 ns ns 5.1 1.1 ns ns 5.1 1.1 ns ns 5.1 1.1 ns ns 5.1 1.1 ns ns 5.1 1.1 UNI T 0.9 ns ns 1 2 2 EMB_CLK 3 4 EMB_CS[0] 5 6 EMB_WE_DQM[3:0] 7 8 7 8 EMB_BA[1:0] EMB_A[12:0] 9 10 EMB_D[31:0] 11 12 EMB_RAS 13 EMB_CAS 15 16 EMB_WE Figure 6-24. EMIFB Basic SDRAM Write Operation Copyright © 2010–2014, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 81 AM1707 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 www.ti.com BASIC SDRAM READ OPERATION 1 2 2 EMB_CLK 3 4 EMB_CS[0] 5 6 EMB_WE_DQM[3:0] 7 8 7 8 EMB_BA[1:0] EMB_A[12:0] 19 17 2 EM_CLK Delay 20 18 EMB_D[31:0] 11 12 EMB_RAS 13 14 EMB_CAS EMB_WE Figure 6-25. EMIFB Basic SDRAM Read Operation 82 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 Copyright © 2010–2014, Texas Instruments Incorporated AM1707 www.ti.com SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 6.12 Memory Protection Units The MPU performs memory protection checking. It receives requests from a bus master in the system and checks the address against the fixed and programmable regions to see if the access is allowed. If allowed, the transfer is passed unmodified to its output bus (to the targeted address). If the transfer is illegal (fails the protection check) then the MPU does not pass the transfer to the output bus but rather services the transfer internally back to the input bus (to prevent a hang) returning the fault status to the requestor as well as generating an interrupt about the fault. The following features are supported by the MPU: • Provides memory protection for fixed and programmable address ranges • Supports multiple programmable address region • Supports secure and debug access privileges • Supports read, write, and execute access privileges • Supports privid(8) associations with ranges • Generates an interrupt when there is a protection violation, and saves violating transfer parameters • MMR access is also protected Table 6-29. MPU1 Configuration Registers MPU1 BYTE ADDRESS ACRONYM 0x01E1 4000 REVID 0x01E1 4004 CONFIG 0x01E1 4010 IRAWSTAT 0x01E1 4014 IENSTAT REGISTER DESCRIPTION Revision ID Configuration Interrupt raw status/set Interrupt enable status/clear 0x01E1 4018 IENSET Interrupt enable 0x01E1 401C IENCLR Interrupt enable clear 0x01E1 4020 - 0x01E1 41FF - 0x01E1 4200 PROG1_MPSAR Programmable range 1, start address 0x01E1 4204 PROG1_MPEAR Programmable range 1, end address 0x01E1 4208 PROG1_MPPA Reserved Programmable range 1, memory page protection attributes 0x01E1 420C - 0x01E1 420F - 0x01E1 4210 PROG2_MPSAR Reserved Programmable range 2, start address 0x01E1 4214 PROG2_MPEAR Programmable range 2, end address 0x01E1 4218 PROG2_MPPA Programmable range 2, memory page protection attributes 0x01E1 421C - 0x01E1 421F - 0x01E1 4220 PROG3_MPSAR Reserved Programmable range 3, start address 0x01E1 4224 PROG3_MPEAR Programmable range 3, end address 0x01E1 4228 PROG3_MPPA 0x01E1 422C - 0x01E1 422F - 0x01E1 4230 PROG4_MPSAR Programmable range 4, start address 0x01E1 4234 PROG4_MPEAR Programmable range 4, end address 0x01E1 4238 PROG4_MPPA 0x01E1 423C - 0x01E1 423F - 0x01E1 4240 PROG5_MPSAR Programmable range 5, start address 0x01E1 4244 PROG5_MPEAR Programmable range 5, end address 0x01E1 4248 PROG5_MPPA 0x01E1 424C - 0x01E1 424F - 0x01E1 4250 PROG6_MPSAR Programmable range 6, start address 0x01E1 4254 PROG6_MPEAR Programmable range 6, end address 0x01E1 4258 PROG6_MPPA 0x01E1 425C - 0x01E1 42FF - Copyright © 2010–2014, Texas Instruments Incorporated Programmable range 3, memory page protection attributes Reserved Programmable range 4, memory page protection attributes Reserved Programmable range 5, memory page protection attributes Reserved Programmable range 6, memory page protection attributes Reserved Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 83 AM1707 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 www.ti.com Table 6-29. MPU1 Configuration Registers (continued) MPU1 BYTE ADDRESS ACRONYM REGISTER DESCRIPTION 0x01E14300 FLTADDRR 0x01E1 4304 FLTSTAT Fault address Fault status 0x01E1 4308 FLTCLR Fault clear 0x01E1 430C - 0x01E1 4FFF - Reserved Table 6-30. MPU2 Configuration Registers MPU2 BYTE ADDRESS ACRONYM REGISTER DESCRIPTION 0x01E1 5000 REVID 0x01E1 5004 CONFIG Revision ID 0x01E1 5010 IRAWSTAT 0x01E1 5014 IENSTAT 0x01E1 5018 IENSET Interrupt enable Interrupt enable clear Configuration Interrupt raw status/set Interrupt enable status/clear 0x01E1 501C IENCLR 0x01E1 5020 - 0x01E1 50FF - 0x01E1 5100 FXD_MPSAR Fixed range start address 0x01E1 5104 FXD_MPEAR Fixed range end start address Reserved 0x01E1 5108 FXD_MPPA 0x01E1 510C - 0x01E1 51FF - Fixed range memory page protection attributes 0x01E1 5200 PROG1_MPSAR Programmable range 1, start address 0x01E1 5204 PROG1_MPEAR Programmable range 1, end address 0x01E1 5208 PROG1_MPPA 0x01E1 520C - 0x01E1 520F - 0x01E1 5210 PROG2_MPSAR Programmable range 2, start address 0x01E1 5214 PROG2_MPEAR Programmable range 2, end address 0x01E1 5218 PROG2_MPPA 0x01E1 521C - 0x01E1 521F - 0x01E1 5220 PROG3_MPSAR Programmable range 3, start address 0x01E1 5224 PROG3_MPEAR Programmable range 3, end address 0x01E1 5228 PROG3_MPPA Reserved Programmable range 1, memory page protection attributes Reserved Programmable range 2, memory page protection attributes Reserved Programmable range 3, memory page protection attributes 0x01E1 522C - 0x01E1 522F - 0x01E1 5230 PROG4_MPSAR Reserved Programmable range 4, start address 0x01E1 5234 PROG4_MPEAR Programmable range 4, end address 0x01E1 5238 PROG4_MPPA 0x01E1 523C - 0x01E1 523F - Programmable range 4, memory page protection attributes 0x01E1 5240 PROG5_MPSAR Programmable range 5, start address 0x01E1 5244 PROG5_MPEAR Programmable range 5, end address Reserved 0x01E1 5248 PROG5_MPPA 0x01E1 524C - 0x01E1 524F - 0x01E1 5250 PROG6_MPSAR Programmable range 6, start address 0x01E1 5254 PROG6_MPEAR Programmable range 6, end address 0x01E1 5258 PROG6_MPPA 0x01E1 525C - 0x01E1 525F - 0x01E1 5260 PROG7_MPSAR Programmable range 7, start address 0x01E1 5264 PROG7_MPEAR Programmable range 7, end address 0x01E1 5268 PROG7_MPPA 0x01E1 526C - 0x01E1 526F - 84 Programmable range 5, memory page protection attributes Reserved Programmable range 6, memory page protection attributes Reserved Programmable range 7, memory page protection attributes Reserved Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 Copyright © 2010–2014, Texas Instruments Incorporated AM1707 www.ti.com SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 Table 6-30. MPU2 Configuration Registers (continued) MPU2 BYTE ADDRESS ACRONYM 0x01E1 5270 PROG8_MPSAR Programmable range 8, start address 0x01E1 5274 PROG8_MPEAR Programmable range 8, end address 0x01E1 5278 PROG8_MPPA REGISTER DESCRIPTION Programmable range 8, memory page protection attributes 0x01E1 527C - 0x01E1 527F - 0x01E1 5280 PROG9_MPSAR Reserved Programmable range 9, start address 0x01E1 5284 PROG9_MPEAR Programmable range 9, end address 0x01E1 5288 PROG9_MPPA Programmable range 9, memory page protection attributes 0x01E1 528C - 0x01E1 528F - 0x01E1 5290 PROG10_MPSAR Reserved Programmable range 10, start address 0x01E1 5294 PROG10_MPEAR Programmable range 10, end address 0x01E1 5298 PROG10_MPPA 0x01E1 529C - 0x01E1 529F - 0x01E1 52A0 PROG11_MPSAR Programmable range 11, start address 0x01E1 52A4 PROG11_MPEAR Programmable range 11, end address 0x01E1 52A8 PROG11_MPPA 0x01E1 52AC - 0x01E1 52AF - 0x01E1 52B0 PROG12_MPSAR Programmable range 12, start address 0x01E1 52B4 PROG12_MPEAR Programmable range 12, end address 0x01E1 52B8 PROG12_MPPA 0x01E1 52BC - 0x01E1 52FF - 0x01E1 5300 FLTADDRR 0x01E1 5304 FLTSTAT Fault status 0x01E1 5308 FLTCLR Fault clear 0x01E1 530C - 0x01E1 5FFF - Reserved Copyright © 2010–2014, Texas Instruments Incorporated Programmable range 10, memory page protection attributes Reserved Programmable range 11, memory page protection attributes Reserved Programmable range 12, memory page protection attributes Reserved Fault address Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 85 AM1707 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 www.ti.com 6.13 MMC / SD / SDIO (MMCSD) 6.13.1 MMCSD Peripheral Description The device includes an MMCSD controller which is compliant with MMC V4.0, Secure Digital Part 1 Physical Layer Specification V1.1 and Secure Digital Input Output (SDIO) V2.0 specifications. The MMC/SD Controller has following features: • MultiMediaCard (MMC) support • Secure Digital (SD) Memory Card support • MMC/SD protocol support • SD high capacity support • SDIO protocol support • Programmable clock frequency • 512 bit Read/Write FIFO to lower system overhead • Slave EDMA transfer capability The device MMC/SD Controller does not support SPI mode. 6.13.2 MMCSD Peripheral Register Description(s) Table 6-31. Multimedia Card/Secure Digital (MMC/SD) Card Controller Registers BYTE ADDRESS ACRONYM REGISTER DESCRIPTION 0x01C4 0000 MMCCTL MMC Control Register 0x01C4 0004 MMCCLK MMC Memory Clock Control Register 0x01C4 0008 MMCST0 MMC Status Register 0 0x01C4 000C MMCST1 MMC Status Register 1 0x01C4 0010 MMCIM 0x01C4 0014 MMCTOR MMC Response Time-Out Register 0x01C4 0018 MMCTOD MMC Data Read Time-Out Register 0x01C4 001C MMCBLEN MMC Block Length Register 0x01C4 0020 MMCNBLK MMC Number of Blocks Register 0x01C4 0024 MMCNBLC MMC Number of Blocks Counter Register 0x01C4 0028 MMCDRR MMC Data Receive Register 0x01C4 002C MMCDXR MMC Data Transmit Register 0x01C4 0030 MMCCMD MMC Command Register 0x01C4 0034 MMCARGHL MMC Argument Register 0x01C4 0038 MMCRSP01 MMC Response Register 0 and 1 0x01C4 003C MMCRSP23 MMC Response Register 2 and 3 0x01C4 0040 MMCRSP45 MMC Response Register 4 and 5 0x01C4 0044 MMCRSP67 MMC Response Register 6 and 7 0x01C4 0048 MMCDRSP MMC Data Response Register 0x01C4 0050 MMCCIDX MMC Command Index Register 0x01C4 0064 SDIOCTL SDIO Control Register 0x01C4 0068 SDIOST0 SDIO Status Register 0 0x01C4 006C SDIOIEN SDIO Interrupt Enable Register 0x01C4 0070 SDIOIST SDIO Interrupt Status Register 0x01C4 0074 MMCFIFOCTLπ 86 MMC Interrupt Mask Register MMC FIFO Control Register Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 Copyright © 2010–2014, Texas Instruments Incorporated AM1707 www.ti.com SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 6.13.3 MMC/SD Electrical Data/Timing Table 6-32. Timing Requirements for MMC/SD Module (see Figure 6-27 and Figure 6-29) No. PARAMETER MIN MAX UNIT 1 tsu(CMDV-CLKH) Setup time, MMCSD_CMD valid before MMCSD_CLK high 3.2 ns 2 th(CLKH-CMDV) Hold time, MMCSD_CMD valid after MMCSD_CLK high 1.5 ns 3 tsu(DATV-CLKH) Setup time, MMCSD_DATx valid before MMCSD_CLK high 3.2 ns 4 th(CLKH-DATV) Hold time, MMCSD_DATx valid after MMCSD_CLK high 1.5 ns Table 6-33. Switching Characteristics Over Recommended Operating Conditions for MMC/SD Module (see Figure 6-26 through Figure 6-29) No. PARAMETER MIN MAX UNIT 0 52 MHz 0 400 KHz 7 f(CLK) Operating frequency, MMCSD_CLK 8 f(CLK_ID) Identification mode frequency, MMCSD_CLK 9 tW(CLKL) Pulse width, MMCSD_CLK low 6.5 ns 10 tW(CLKH) Pulse width, MMCSD_CLK high 6.5 ns 11 tr(CLK) Rise time, MMCSD_CLK 3 ns 12 tf(CLK) Fall time, MMCSD_CLK 3 ns 13 td(CLKL-CMD) Delay time, MMCSD_CLK low to MMCSD_CMD transition -4.5 2.5 ns 14 td(CLKL-DAT) Delay time, MMCSD_CLK low to MMCSD_DATx transition -4.5 2.5 ns Copyright © 2010–2014, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 87 AM1707 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 www.ti.com 10 9 7 MMCSD_CLK 13 13 START MMCSD_CMD 13 XMIT Valid Valid 13 Valid END Figure 6-26. MMC/SD Host Command Timing 9 7 10 MMCSD_CLK 1 2 START MMCSD_CMD XMIT Valid Valid Valid END Figure 6-27. MMC/SD Card Response Timing 10 9 7 MMCSD_CLK 14 14 START MMCSD_DATx 14 D0 D1 14 Dx END Figure 6-28. MMC/SD Host Write Timing 9 10 7 MMCSD_CLK 4 4 3 MMCSD_DATx Start 3 D0 D1 Dx End Figure 6-29. MMC/SD Host Read and Card CRC Status Timing 88 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 Copyright © 2010–2014, Texas Instruments Incorporated AM1707 www.ti.com SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 6.14 Ethernet Media Access Controller (EMAC) The Ethernet Media Access Controller (EMAC) provides an efficient interface between the device and the network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The EMAC controls the flow of packet data from the device to the PHY. The MDIO module controls PHY configuration and status monitoring. Both the EMAC and the MDIO modules interface to the device through a custom interface that allows efficient data transmission and reception. This custom interface is referred to as the EMAC control module, and is considered integral to the EMAC/MDIO peripheral. The control module is also used to multiplex and control interrupts. 6.14.1 EMAC Peripheral Register Description(s) Table 6-34. Ethernet Media Access Controller (EMAC) Registers BYTE ADDRESS ACRONYM REGISTER DESCRIPTION 0x01E2 3000 TXREV 0x01E2 3004 TXCONTROL Transmit Revision Register 0x01E2 3008 TXTEARDOWN Transmit Control Register Transmit Teardown Register 0x01E2 3010 RXREV 0x01E2 3014 RXCONTROL Receive Revision Register 0x01E2 3018 RXTEARDOWN Receive Teardown Register 0x01E2 3080 TXINTSTATRAW Transmit Interrupt Status (Unmasked) Register 0x01E2 3084 TXINTSTATMASKED 0x01E2 3088 TXINTMASKSET 0x01E2 308C TXINTMASKCLEAR Receive Control Register Transmit Interrupt Status (Masked) Register Transmit Interrupt Mask Set Register Transmit Interrupt Clear Register 0x01E2 3090 MACINVECTOR 0x01E2 3094 MACEOIVECTOR MAC Input Vector Register MAC End Of Interrupt Vector Register 0x01E2 30A0 RXINTSTATRAW Receive Interrupt Status (Unmasked) Register 0x01E2 30A4 RXINTSTATMASKED 0x01E2 30A8 RXINTMASKSET 0x01E2 30AC RXINTMASKCLEAR Receive Interrupt Mask Clear Register 0x01E2 30B0 MACINTSTATRAW MAC Interrupt Status (Unmasked) Register 0x01E2 30B4 MACINTSTATMASKED 0x01E2 30B8 MACINTMASKSET 0x01E2 30BC MACINTMASKCLEAR Receive Interrupt Status (Masked) Register Receive Interrupt Mask Set Register MAC Interrupt Status (Masked) Register MAC Interrupt Mask Set Register MAC Interrupt Mask Clear Register 0x01E2 3100 RXMBPENABLE Receive Multicast/Broadcast/Promiscuous Channel Enable Register 0x01E2 3104 RXUNICASTSET Receive Unicast Enable Set Register 0x01E2 3108 RXUNICASTCLEAR Receive Unicast Clear Register 0x01E2 310C RXMAXLEN 0x01E2 3110 RXBUFFEROFFSET 0x01E2 3114 RXFILTERLOWTHRESH Receive Filter Low Priority Frame Threshold Register 0x01E2 3120 RX0FLOWTHRESH Receive Channel 0 Flow Control Threshold Register 0x01E2 3124 RX1FLOWTHRESH Receive Channel 1 Flow Control Threshold Register 0x01E2 3128 RX2FLOWTHRESH Receive Channel 2 Flow Control Threshold Register 0x01E2 312C RX3FLOWTHRESH Receive Channel 3 Flow Control Threshold Register 0x01E2 3130 RX4FLOWTHRESH Receive Channel 4 Flow Control Threshold Register 0x01E2 3134 RX5FLOWTHRESH Receive Channel 5 Flow Control Threshold Register 0x01E2 3138 RX6FLOWTHRESH Receive Channel 6 Flow Control Threshold Register 0x01E2 313C RX7FLOWTHRESH Receive Channel 7 Flow Control Threshold Register Copyright © 2010–2014, Texas Instruments Incorporated Receive Maximum Length Register Receive Buffer Offset Register Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 89 AM1707 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 www.ti.com Table 6-34. Ethernet Media Access Controller (EMAC) Registers (continued) BYTE ADDRESS ACRONYM 0x01E2 3140 RX0FREEBUFFER Receive Channel 0 Free Buffer Count Register REGISTER DESCRIPTION 0x01E2 3144 RX1FREEBUFFER Receive Channel 1 Free Buffer Count Register 0x01E2 3148 RX2FREEBUFFER Receive Channel 2 Free Buffer Count Register 0x01E2 314C RX3FREEBUFFER Receive Channel 3 Free Buffer Count Register 0x01E2 3150 RX4FREEBUFFER Receive Channel 4 Free Buffer Count Register 0x01E2 3154 RX5FREEBUFFER Receive Channel 5 Free Buffer Count Register 0x01E2 3158 RX6FREEBUFFER Receive Channel 6 Free Buffer Count Register 0x01E2 315C RX7FREEBUFFER Receive Channel 7 Free Buffer Count Register 0x01E2 3160 MACCONTROL MAC Control Register 0x01E2 3164 MACSTATUS MAC Status Register 0x01E2 3168 EMCONTROL Emulation Control Register 0x01E2 316C FIFOCONTROL 0x01E2 3170 MACCONFIG MAC Configuration Register 0x01E2 3174 SOFTRESET Soft Reset Register 0x01E2 31D0 MACSRCADDRLO MAC Source Address Low Bytes Register 0x01E2 31D4 MACSRCADDRHI MAC Source Address High Bytes Register 0x01E2 31D8 MACHASH1 MAC Hash Address Register 1 0x01E2 31DC MACHASH2 MAC Hash Address Register 2 0x01E2 31E0 BOFFTEST Back Off Test Register 0x01E2 31E4 TPACETEST 0x01E2 31E8 RXPAUSE Receive Pause Timer Register Transmit Pause Timer Register FIFO Control Register Transmit Pacing Algorithm Test Register 0x01E2 31EC TXPAUSE 0x01E2 3200 - 0x01E2 32FC (see Table 6-35) 0x01E2 3500 MACADDRLO MAC Address Low Bytes Register, Used in Receive Address Matching 0x01E2 3504 MACADDRHI MAC Address High Bytes Register, Used in Receive Address Matching 0x01E2 3508 MACINDEX 0x01E2 3600 TX0HDP Transmit Channel 0 DMA Head Descriptor Pointer Register 0x01E2 3604 TX1HDP Transmit Channel 1 DMA Head Descriptor Pointer Register 0x01E2 3608 TX2HDP Transmit Channel 2 DMA Head Descriptor Pointer Register 0x01E2 360C TX3HDP Transmit Channel 3 DMA Head Descriptor Pointer Register 0x01E2 3610 TX4HDP Transmit Channel 4 DMA Head Descriptor Pointer Register 0x01E2 3614 TX5HDP Transmit Channel 5 DMA Head Descriptor Pointer Register 0x01E2 3618 TX6HDP Transmit Channel 6 DMA Head Descriptor Pointer Register 0x01E2 361C TX7HDP Transmit Channel 7 DMA Head Descriptor Pointer Register 0x01E2 3620 RX0HDP Receive Channel 0 DMA Head Descriptor Pointer Register 0x01E2 3624 RX1HDP Receive Channel 1 DMA Head Descriptor Pointer Register 0x01E2 3628 RX2HDP Receive Channel 2 DMA Head Descriptor Pointer Register 0x01E2 362C RX3HDP Receive Channel 3 DMA Head Descriptor Pointer Register 0x01E2 3630 RX4HDP Receive Channel 4 DMA Head Descriptor Pointer Register 0x01E2 3634 RX5HDP Receive Channel 5 DMA Head Descriptor Pointer Register 0x01E2 3638 RX6HDP Receive Channel 6 DMA Head Descriptor Pointer Register 0x01E2 363C RX7HDP Receive Channel 7 DMA Head Descriptor Pointer Register 0x01E2 3640 TX0CP Transmit Channel 0 Completion Pointer Register 0x01E2 3644 TX1CP Transmit Channel 1 Completion Pointer Register 90 EMAC Statistics Registers MAC Index Register 0x01E2 3648 TX2CP Transmit Channel 2 Completion Pointer Register 0x01E2 364C TX3CP Transmit Channel 3 Completion Pointer Register 0x01E2 3650 TX4CP Transmit Channel 4 Completion Pointer Register Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 Copyright © 2010–2014, Texas Instruments Incorporated AM1707 www.ti.com SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 Table 6-34. Ethernet Media Access Controller (EMAC) Registers (continued) BYTE ADDRESS ACRONYM 0x01E2 3654 TX5CP Transmit Channel 5 Completion Pointer Register REGISTER DESCRIPTION 0x01E2 3658 TX6CP Transmit Channel 6 Completion Pointer Register 0x01E2 365C TX7CP Transmit Channel 7 Completion Pointer Register 0x01E2 3660 RX0CP Receive Channel 0 Completion Pointer Register 0x01E2 3664 RX1CP Receive Channel 1 Completion Pointer Register 0x01E2 3668 RX2CP Receive Channel 2 Completion Pointer Register 0x01E2 366C RX3CP Receive Channel 3 Completion Pointer Register 0x01E2 3670 RX4CP Receive Channel 4 Completion Pointer Register 0x01E2 3674 RX5CP Receive Channel 5 Completion Pointer Register 0x01E2 3678 RX6CP Receive Channel 6 Completion Pointer Register 0x01E2 367C RX7CP Receive Channel 7 Completion Pointer Register Table 6-35. EMAC Statistics Registers BYTE ADDRESS ACRONYM REGISTER DESCRIPTION 0x01E2 3200 RXGOODFRAMES Good Receive Frames Register 0x01E2 3204 RXBCASTFRAMES Broadcast Receive Frames Register (Total number of good broadcast frames received) 0x01E2 3208 RXMCASTFRAMES Multicast Receive Frames Register (Total number of good multicast frames received) 0x01E2 320C RXPAUSEFRAMES Pause Receive Frames Register 0x01E2 3210 RXCRCERRORS 0x01E2 3214 RXALIGNCODEERRORS 0x01E2 3218 RXOVERSIZED 0x01E2 321C RXJABBER 0x01E2 3220 RXUNDERSIZED Receive Undersized Frames Register (Total number of undersized frames received) 0x01E2 3224 RXFRAGMENTS Receive Frame Fragments Register 0x01E2 3228 RXFILTERED 0x01E2 322C RXQOSFILTERED 0x01E2 3230 RXOCTETS 0x01E2 3234 TXGOODFRAMES Good Transmit Frames Register (Total number of good frames transmitted) Receive CRC Errors Register (Total number of frames received with CRC errors) Receive Alignment/Code Errors Register (Total number of frames received with alignment/code errors) Receive Oversized Frames Register (Total number of oversized frames received) Receive Jabber Frames Register (Total number of jabber frames received) Filtered Receive Frames Register Received QOS Filtered Frames Register Receive Octet Frames Register (Total number of received bytes in good frames) 0x01E2 3238 TXBCASTFRAMES Broadcast Transmit Frames Register 0x01E2 323C TXMCASTFRAMES Multicast Transmit Frames Register 0x01E2 3240 TXPAUSEFRAMES Pause Transmit Frames Register 0x01E2 3244 TXDEFERRED Deferred Transmit Frames Register 0x01E2 3248 TXCOLLISION Transmit Collision Frames Register 0x01E2 324C TXSINGLECOLL 0x01E2 3250 TXMULTICOLL 0x01E2 3254 TXEXCESSIVECOLL 0x01E2 3258 TXLATECOLL 0x01E2 325C TXUNDERRUN 0x01E2 3260 TXCARRIERSENSE 0x01E2 3264 TXOCTETS 0x01E2 3268 FRAME64 Copyright © 2010–2014, Texas Instruments Incorporated Transmit Single Collision Frames Register Transmit Multiple Collision Frames Register Transmit Excessive Collision Frames Register Transmit Late Collision Frames Register Transmit Underrun Error Register Transmit Carrier Sense Errors Register Transmit Octet Frames Register Transmit and Receive 64 Octet Frames Register Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 91 AM1707 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 www.ti.com Table 6-35. EMAC Statistics Registers (continued) BYTE ADDRESS ACRONYM 0x01E2 326C FRAME65T127 REGISTER DESCRIPTION Transmit and Receive 65 to 127 Octet Frames Register 0x01E2 3270 FRAME128T255 Transmit and Receive 128 to 255 Octet Frames Register 0x01E2 3274 FRAME256T511 Transmit and Receive 256 to 511 Octet Frames Register 0x01E2 3278 FRAME512T1023 Transmit and Receive 512 to 1023 Octet Frames Register 0x01E2 327C FRAME1024TUP Transmit and Receive 1024 to 1518 Octet Frames Register 0x01E2 3280 NETOCTETS 0x01E2 3284 RXSOFOVERRUNS Receive FIFO or DMA Start of Frame Overruns Register 0x01E2 3288 RXMOFOVERRUNS Receive FIFO or DMA Middle of Frame Overruns Register 0x01E2 328C RXDMAOVERRUNS Receive DMA Start of Frame and Middle of Frame Overruns Register Network Octet Frames Register Table 6-36. EMAC Control Module Registers 92 BYTE ADDRESS ACRONYM 0x01E2 2000 REV REGISTER DESCRIPTION 0x01E2 2004 SOFTRESET EMAC Control Module Software Reset Register 0x01E2 200C INTCONTROL EMAC Control Module Interrupt Control Register 0x01E2 2010 C0RXTHRESHEN 0x01E2 2014 C0RXEN EMAC Control Module Interrupt Core 0 Receive Interrupt Enable Register EMAC Control Module Interrupt Core 0 Transmit Interrupt Enable Register EMAC Control Module Revision Register EMAC Control Module Interrupt Core 0 Receive Threshold Interrupt Enable Register 0x01E2 2018 C0TXEN 0x01E2 201C C0MISCEN 0x01E2 2020 C1RXTHRESHEN 0x01E2 2024 C1RXEN EMAC Control Module Interrupt Core 1 Receive Interrupt Enable Register EMAC Control Module Interrupt Core 1 Transmit Interrupt Enable Register EMAC Control Module Interrupt Core 0 Miscellaneous Interrupt Enable Register EMAC Control Module Interrupt Core 1 Receive Threshold Interrupt Enable Register 0x01E2 2028 C1TXEN 0x01E2 202C C1MISCEN 0x01E2 2030 C2RXTHRESHEN 0x01E2 2034 C2RXEN EMAC Control Module Interrupt Core 2 Receive Interrupt Enable Register 0x01E2 2038 C2TXEN EMAC Control Module Interrupt Core 2 Transmit Interrupt Enable Register 0x01E2 203C C2MISCEN 0x01E2 2040 C0RXTHRESHSTAT 0x01E2 2044 C0RXSTAT EMAC Control Module Interrupt Core 0 Receive Interrupt Status Register 0x01E2 2048 C0TXSTAT EMAC Control Module Interrupt Core 0 Transmit Interrupt Status Register 0x01E2 204C C0MISCSTAT 0x01E2 2050 C1RXTHRESHSTAT 0x01E2 2054 C1RXSTAT EMAC Control Module Interrupt Core 1 Receive Interrupt Status Register 0x01E2 2058 C1TXSTAT EMAC Control Module Interrupt Core 1 Transmit Interrupt Status Register EMAC Control Module Interrupt Core 1 Miscellaneous Interrupt Enable Register EMAC Control Module Interrupt Core 2 Receive Threshold Interrupt Enable Register EMAC Control Module Interrupt Core 2 Miscellaneous Interrupt Enable Register EMAC Control Module Interrupt Core 0 Receive Threshold Interrupt Status Register EMAC Control Module Interrupt Core 0 Miscellaneous Interrupt Status Register EMAC Control Module Interrupt Core 1 Receive Threshold Interrupt Status Register 0x01E2 205C C1MISCSTAT 0x01E2 2060 C2RXTHRESHSTAT EMAC Control Module Interrupt Core 1 Miscellaneous Interrupt Status Register 0x01E2 2064 C2RXSTAT EMAC Control Module Interrupt Core 2 Receive Interrupt Status Register EMAC Control Module Interrupt Core 2 Transmit Interrupt Status Register EMAC Control Module Interrupt Core 2 Receive Threshold Interrupt Status Register 0x01E2 2068 C2TXSTAT 0x01E2 206C C2MISCSTAT 0x01E2 2070 C0RXIMAX EMAC Control Module Interrupt Core 0 Receive Interrupts Per Millisecond Register 0x01E2 2074 C0TXIMAX EMAC Control Module Interrupt Core 0 Transmit Interrupts Per Millisecond Register EMAC Control Module Interrupt Core 2 Miscellaneous Interrupt Status Register 0x01E2 2078 C1RXIMAX EMAC Control Module Interrupt Core 1 Receive Interrupts Per Millisecond Register 0x01E2 207C C1TXIMAX EMAC Control Module Interrupt Core 1 Transmit Interrupts Per Millisecond Register 0x01E2 2080 C2RXIMAX EMAC Control Module Interrupt Core 2 Receive Interrupts Per Millisecond Register 0x01E2 2084 C2TXIMAX EMAC Control Module Interrupt Core 2 Transmit Interrupts Per Millisecond Register Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 Copyright © 2010–2014, Texas Instruments Incorporated AM1707 www.ti.com SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 Table 6-37. EMAC Control Module RAM HEX ADDRESS RANGE 0x01E2 0000 - 0x01E2 1FFF EMAC Local Buffer Descriptor Memory Table 6-38. RMII Timing Requirements No. PARAMETER MIN TYP MAX UNIT 1 tc(REFCLK) Cycle Time, RMII_MHZ_50_CLK (1) 2 tw(REFCLKH) Pulse Width, RMII_MHZ_50_CLK High 7 13 ns 3 tw(REFCLKL) Pulse Width, RMII_MHZ_50_CLK Low 7 13 ns 6 tsu(RXD-REFCLK) Input Setup Time, RXD Valid before RMII_MHZ_50_CLK High 4 ns 7 th(REFCLK-RXD) Input Hold Time, RXD Valid after RMII_MHZ_50_CLK High 2 ns 8 tsu(CRSDV-REFCLK) Input Setup Time, CRSDV Valid before RMII_MHZ_50_CLK High 4 ns 9 th(REFCLK-CRSDV) Input Hold Time, CRSDV Valid after RMII_MHZ_50_CLK High 2 ns 10 tsu(RXER-REFCLK) Input Setup Time, RXER Valid before RMII_MHZ_50_CLK High 4 ns 11 th(REFCLKR-RXER) Input Hold Time, RXER Valid after RMII_MHZ_50_CLK High 2 ns (1) 20 ns Per the RMII industry specification, the RMII reference clock (RMII_MHZ_50_CLK) must have jitter tolerance of 50 ppm or less. Table 6-39. RMII Switching Characteristics No. MAX UNIT 4 td(REFCLK-TXD) Output Delay Time, RMII_MHZ_50_CLK High to TXD Valid PARAMETER MIN 2.5 TYP 13 ns 5 td(REFCLK-TXEN) Output Delay Time, RMII_MHZ_50_CLK High to TXEN Valid 2.5 13 ns 1 2 3 RMII_MHz_50_CLK 5 5 RMII_TXEN 4 RMII_TXD[1:0] 6 7 RMII_RXD[1:0] 8 9 RMII_CRS_DV 10 11 RMII_RXER Figure 6-30. RMII Timing Diagram Copyright © 2010–2014, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 93 AM1707 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 www.ti.com 6.15 Management Data Input/Output (MDIO) The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. The Management Data Input/Output (MDIO) module implements the 802.3 serial management interface to interrogate and control Ethernet PHY(s) using a shared two-wire bus. Host software uses the MDIO module to configure the auto-negotiation parameters of each PHY attached to the EMAC, retrieve the negotiation results, and configure required parameters in the EMAC module for correct operation. The module is designed to allow almost transparent operation of the MDIO interface, with very little maintenance from the core processor. Only one PHY may be connected at any given time. 6.15.1 MDIO Registers For a list of supported MDIO registers see Table 6-40 [MDIO Registers]. Table 6-40. MDIO Register Memory Map BYTE ADDRESS 94 ACRONYM REGISTER DESCRIPTION 0x01E2 4000 REV 0x01E2 4004 CONTROL Revision Identification Register 0x01E2 4008 ALIVE MDIO PHY Alive Status Register 0x01E2 400C LINK MDIO PHY Link Status Register 0x01E2 4010 LINKINTRAW 0x01E2 4014 LINKINTMASKED MDIO Control Register MDIO Link Status Change Interrupt (Unmasked) Register MDIO Link Status Change Interrupt (Masked) Register 0x01E2 4018 – 0x01E2 4020 USERINTRAW Reserved 0x01E2 4024 USERINTMASKED MDIO User Command Complete Interrupt (Masked) Register 0x01E2 4028 USERINTMASKSET MDIO User Command Complete Interrupt Mask Set Register MDIO User Command Complete Interrupt (Unmasked) Register 0x01E2 402C USERINTMASKCLEAR 0x01E2 4030 - 0x01E2 407C – MDIO User Command Complete Interrupt Mask Clear Register 0x01E2 4080 USERACCESS0 MDIO User Access Register 0 0x01E2 4084 USERPHYSEL0 MDIO User PHY Select Register 0 0x01E2 4088 USERACCESS1 MDIO User Access Register 1 0x01E2 408C USERPHYSEL1 MDIO User PHY Select Register 1 0x01E2 4090 - 0x01E2 47FF – Reserved Reserved Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 Copyright © 2010–2014, Texas Instruments Incorporated AM1707 www.ti.com SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 6.15.2 Management Data Input/Output (MDIO) Electrical Data/Timing Table 6-41. Timing Requirements for MDIO Input (see Figure 6-31 and Figure 6-32) No. PARAMETER MIN MAX UNIT 1 tc(MDIO_CLK) Cycle time, MDIO_CLK 400 2 tw(MDIO_CLK) Pulse duration, MDIO_CLK high/low 180 ns 3 tt(MDIO_CLK) Transition time, MDIO_CLK 4 tsu(MDIO-MDIO_CLKH) Setup time, MDIO_D data input valid before MDIO_CLK high 10 ns 5 th(MDIO_CLKH-MDIO) 0 ns ns 5 Hold time, MDIO_D data input valid after MDIO_CLK high ns 1 3 3 MDIO_CLK 4 5 MDIO_D (input) Figure 6-31. MDIO Input Timing Table 6-42. Switching Characteristics Over Recommended Operating Conditions for MDIO Output (see Figure 6-32) No. 7 PARAMETER td(MDIO_CLKL-MDIO) Delay time, MDIO_CLK low to MDIO_D data output valid MIN MAX UNIT 0 100 ns 1 MDIO_CLK 7 MDIO_D (output) Figure 6-32. MDIO Output Timing Copyright © 2010–2014, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 95 AM1707 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 www.ti.com 6.16 Multichannel Audio Serial Ports (McASP0, McASP1, and McASP2) The McASP serial port is specifically designed for multichannel audio applications. Its key features are: • Flexible clock and frame sync generation logic and on-chip dividers • Up to sixteen transmit or receive data pins and serializers • Large number of serial data format options, including: – TDM Frames with 2 to 32 time slots per frame (periodic) or 1 slot per frame (burst) – Time slots of 8,12,16, 20, 24, 28, and 32 bits – First bit delay 0, 1, or 2 clocks – MSB or LSB first bit order – Left- or right-aligned data words within time slots • DIT Mode (optional) with 384-bit Channel Status and 384-bit User Data registers • Extensive error checking and mute generation logic • All unused pins GPIO-capable • Transmit & Receive FIFO Buffers for each McASP. Allows the McASP to operate at a higher sample rate by making it more tolerant to DMA latency. • Dynamic Adjustment of Clock Dividers – Clock Divider Value may be changed without resetting the McASP The McASPs on the device are configured with the following options: Table 6-43. McASP Configurations (1) Module Serializers AFIFO DIT Pins McASP0 16 64 Word RX 64 Word TX N AXR0[15:0], AHCLKR0, ACLKR0, AFSR0, AHCLKX0, ACLKX0, AFSX0, AMUTE0 McASP1 12 64 Word RX 64 Word TX N AXR1[11:10], AHCLKR1, ACLKR1, AFSR1, AHCLKX1, ACLKX1, AFSX1, AMUTE1 McASP2 4 16 Word RX 16 Word TX Y AXR2[3:0], AHCLKR2, ACLKR2, AFSR2, AHCLKX2, ACLKX2, AFSX2, AMUTE2 (1) Pins available are the maximum number of pins that may be configured for a particular McASP; not including pin multiplexing. Pins Peripheral Configuration Bus GIO Control DIT RAM 384 C 384 U Optional McASP DMA Bus (Dedicated) Transmit Formatter Receive Formatter Function Receive Logic Clock/Frame Generator State Machine AHCLKRx ACLKRx AFSRx Receive Master Clock Receive Bit Clock Receive Left/Right Clock or Frame Sync Clock Check and Error Detection AMUTEINx AMUTEx The McASPs DO NOT have dedicated AMUTEINx pins. Transmit Logic Clock/Frame Generator State Machine AFSXx ACLKXx AHCLKXx Transmit Left/Right Clock or Frame Sync Transmit Bit Clock Transmit Master Clock Serializer 0 AXRx[0] Transmit/Receive Serial Data Pin Serializer 1 AXRx[1] Transmit/Receive Serial Data Pin Serializer y AXRx[y] Transmit/Receive Serial Data Pin McASPx (x = 0, 1, 2) Figure 6-33. McASP Block Diagram 96 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 Copyright © 2010–2014, Texas Instruments Incorporated AM1707 www.ti.com SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 6.16.1 McASP Peripheral Registers Description(s) Registers for the McASP are summarized in Table 6-44. The registers are accessed through the peripheral configuration port. The receive buffer registers (RBUF) and transmit buffer registers (XBUF) can also be accessed through the DMA port, as listed in Table 6-45 Registers for the McASP Audio FIFO (AFIFO) are summarized in Table 6-46. Note that the AFIFO Write FIFO (WFIFO) and Read FIFO (RFIFO) have independent control and status registers. The AFIFO control registers are accessed through the peripheral configuration port. Table 6-44. McASP Registers Accessed Through Peripheral Configuration Port McASP0 BYTE ADDRESS McASP1 BYTE ADDRESS McASP2 BYTE ADDRESS ACRONYM 0x01D0 0000 0x01D0 4000 0x01D0 8000 REV 0x01D0 0010 0x01D0 4010 0x01D0 8010 PFUNC Pin function register 0x01D0 0014 0x01D0 4014 0x01D0 8014 PDIR Pin direction register 0x01D0 0018 0x01D0 4018 0x01D0 8018 PDOUT 0x01D0 001C 0x01D0 401C 0x01D0 801C PDIN REGISTER DESCRIPTION Revision identification register Pin data output register Read returns: Pin data input register 0x01D0 001C 0x01D0 401C 0x01D0 801C PDSET Writes affect: Pin data set register (alternate write address: PDOUT) 0x01D0 0020 0x01D0 4020 0x01D0 8020 PDCLR Pin data clear register (alternate write address: PDOUT) 0x01D0 0044 0x01D0 4044 0x01D0 8044 GBLCTL Global control register 0x01D0 0048 0x01D0 4048 0x01D0 8048 AMUTE Audio mute control register 0x01D0 004C 0x01D0 404C 0x01D0 804C DLBCTL Digital loopback control register 0x01D0 0050 0x01D0 4050 0x01D0 8050 DITCTL DIT mode control register 0x01D0 0060 0x01D0 4060 0x01D0 8060 RGBLCTL 0x01D0 0064 0x01D0 4064 0x01D0 8064 RMASK 0x01D0 0068 0x01D0 4068 0x01D0 8068 RFMT 0x01D0 006C 0x01D0 406C 0x01D0 806C 0x01D0 0070 0x01D0 4070 0x01D0 8070 0x01D0 0074 0x01D0 4074 0x01D0 8074 0x01D0 0078 0x01D0 4078 0x01D0 8078 AFSRCTL ACLKRCTL Receiver global control register: Alias of GBLCTL, only receive bits are affected - allows receiver to be reset independently from transmitter Receive format unit bit mask register Receive bit stream format register Receive frame sync control register Receive clock control register AHCLKRCTL Receive high-frequency clock control register RTDM 0x01D0 007C 0x01D0 407C 0x01D0 807C RINTCTL Receive TDM time slot 0-31 register Receiver interrupt control register 0x01D0 0080 0x01D0 4080 0x01D0 8080 RSTAT Receiver status register 0x01D0 0084 0x01D0 4084 0x01D0 8084 RSLOT Current receive TDM time slot register 0x01D0 0088 0x01D0 4088 0x01D0 8088 RCLKCHK Receive clock check control register 0x01D0 008C 0x01D0 408C 0x01D0 808C REVTCTL Receiver DMA event control register 0x01D0 00A0 0x01D0 40A0 0x01D0 80A0 XGBLCTL Transmitter global control register. Alias of GBLCTL, only transmit bits are affected - allows transmitter to be reset independently from receiver 0x01D0 00A4 0x01D0 40A4 0x01D0 80A4 XMASK 0x01D0 00A8 0x01D0 40A8 0x01D0 80A8 XFMT 0x01D0 00AC 0x01D0 40AC 0x01D0 80AC 0x01D0 00B0 0x01D0 40B0 0x01D0 80B0 0x01D0 00B4 0x01D0 40B4 0x01D0 80B4 0x01D0 00B8 0x01D0 40B8 0x01D0 80B8 AFSXCTL ACLKXCTL Transmit format unit bit mask register Transmit bit stream format register Transmit frame sync control register Transmit clock control register AHCLKXCTL Transmit high-frequency clock control register XTDM Transmit TDM time slot 0-31 register 0x01D0 00BC 0x01D0 40BC 0x01D0 80BC XINTCTL Transmitter interrupt control register 0x01D0 00C0 0x01D0 40C0 0x01D0 80C0 XSTAT Transmitter status register 0x01D0 00C4 0x01D0 40C4 0x01D0 80C4 XSLOT Current transmit TDM time slot register 0x01D0 00C8 0x01D0 40C8 0x01D0 80C8 XCLKCHK Transmit clock check control register 0x01D0 00CC 0x01D0 40CC 0x01D0 80CC XEVTCTL Transmitter DMA event control register 0x01D0 0100 DITCSRA0 Left (even TDM time slot) channel status register (DIT mode) 0 0x01D0 4100 0x01D0 8100 Copyright © 2010–2014, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 97 AM1707 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 www.ti.com Table 6-44. McASP Registers Accessed Through Peripheral Configuration Port (continued) McASP0 BYTE ADDRESS McASP1 BYTE ADDRESS McASP2 BYTE ADDRESS ACRONYM REGISTER DESCRIPTION 0x01D0 0104 0x01D0 4104 0x01D0 8104 DITCSRA1 Left (even TDM time slot) channel status register (DIT mode) 1 0x01D0 0108 0x01D0 4108 0x01D0 8108 DITCSRA2 Left (even TDM time slot) channel status register (DIT mode) 2 0x01D0 010C 0x01D0 410C 0x01D0 810C DITCSRA3 Left (even TDM time slot) channel status register (DIT mode) 3 0x01D0 0110 0x01D0 4110 0x01D0 8110 DITCSRA4 Left (even TDM time slot) channel status register (DIT mode) 4 0x01D0 0114 0x01D0 4114 0x01D0 8114 DITCSRA5 Left (even TDM time slot) channel status register (DIT mode) 5 0x01D0 0118 0x01D0 4118 0x01D0 8118 DITCSRB0 Right (odd TDM time slot) channel status register (DIT mode) 0 0x01D0 011C 0x01D0 411C 0x01D0 811C DITCSRB1 Right (odd TDM time slot) channel status register (DIT mode) 1 0x01D0 0120 0x01D0 4120 0x01D0 8120 DITCSRB2 Right (odd TDM time slot) channel status register (DIT mode) 2 0x01D0 0124 0x01D0 4124 0x01D0 8124 DITCSRB3 Right (odd TDM time slot) channel status register (DIT mode) 3 0x01D0 0128 0x01D0 4128 0x01D0 8128 DITCSRB4 Right (odd TDM time slot) channel status register (DIT mode) 4 0x01D0 012C 0x01D0 412C 0x01D0 812C DITCSRB5 Right (odd TDM time slot) channel status register (DIT mode) 5 0x01D0 0130 0x01D0 4130 0x01D0 8130 DITUDRA0 Left (even TDM time slot) channel user data register (DIT mode) 0 0x01D0 0134 0x01D0 4134 0x01D0 8134 DITUDRA1 Left (even TDM time slot) channel user data register (DIT mode) 1 0x01D0 0138 0x01D0 4138 0x01D0 8138 DITUDRA2 Left (even TDM time slot) channel user data register (DIT mode) 2 0x01D0 013C 0x01D0 413C 0x01D0 813C DITUDRA3 Left (even TDM time slot) channel user data register (DIT mode) 3 0x01D0 0140 0x01D0 4140 0x01D0 8140 DITUDRA4 Left (even TDM time slot) channel user data register (DIT mode) 4 0x01D0 0144 0x01D0 4144 0x01D0 8144 DITUDRA5 Left (even TDM time slot) channel user data register (DIT mode) 5 0x01D0 0148 0x01D0 4148 0x01D0 8148 DITUDRB0 Right (odd TDM time slot) channel user data register (DIT mode) 0 0x01D0 014C 0x01D0 414C 0x01D0 814C DITUDRB1 Right (odd TDM time slot) channel user data register (DIT mode) 1 0x01D0 0150 0x01D0 4150 0x01D0 8150 DITUDRB2 Right (odd TDM time slot) channel user data register (DIT mode) 2 0x01D0 0154 0x01D0 4154 0x01D0 8154 DITUDRB3 Right (odd TDM time slot) channel user data register (DIT mode) 3 0x01D0 0158 0x01D0 4158 0x01D0 8158 DITUDRB4 Right (odd TDM time slot) channel user data register (DIT mode) 4 0x01D0 015C 0x01D0 415C 0x01D0 815C DITUDRB5 Right (odd TDM time slot) channel user data register (DIT mode) 5 0x01D0 0180 0x01D0 4180 0x01D0 8180 SRCTL0 Serializer control register 0 0x01D0 0184 0x01D0 4184 0x01D0 8184 SRCTL1 Serializer control register 1 0x01D0 0188 0x01D0 4188 0x01D0 8188 SRCTL2 Serializer control register 2 0x01D0 018C 0x01D0 418C 0x01D0 818C SRCTL3 Serializer control register 3 0x01D0 0190 0x01D0 4190 0x01D0 8190 SRCTL4 Serializer control register 4 0x01D0 0194 0x01D0 4194 0x01D0 8194 SRCTL5 Serializer control register 5 0x01D0 0198 0x01D0 4198 0x01D0 8198 SRCTL6 Serializer control register 6 0x01D0 019C 0x01D0 419C 0x01D0 819C SRCTL7 Serializer control register 7 0x01D0 01A0 0x01D0 41A0 0x01D0 81A0 SRCTL8 Serializer control register 8 0x01D0 01A4 0x01D0 41A4 0x01D0 81A4 SRCTL9 Serializer control register 9 0x01D0 01A8 0x01D0 41A8 0x01D0 81A8 SRCTL10 Serializer control register 10 0x01D0 01AC 0x01D0 41AC 0x01D0 81AC SRCTL11 Serializer control register 11 0x01D0 01B0 0x01D0 41B0 0x01D0 81B0 SRCTL12 Serializer control register 12 0x01D0 01B4 0x01D0 41B4 0x01D0 81B4 SRCTL13 Serializer control register 13 0x01D0 01B8 0x01D0 41B8 0x01D0 81B8 SRCTL14 Serializer control register 14 0x01D0 01BC 0x01D0 41BC 0x01D0 81BC SRCTL15 Serializer control register 15 (1) Transmit buffer register for serializer 0 0x01D0 0200 0x01D0 4200 0x01D0 8200 XBUF0 0x01D0 0204 0x01D0 4204 0x01D0 8204 XBUF1 (1) Transmit buffer register for serializer 1 0x01D0 0208 0x01D0 4208 0x01D0 8208 XBUF2 (1) Transmit buffer register for serializer 2 0x01D0 020C 0x01D0 420C 0x01D0 820C XBUF3 (1) Transmit buffer register for serializer 3 0x01D0 0210 0x01D0 4210 0x01D0 8210 XBUF4 (1) Transmit buffer register for serializer 4 0x01D0 0214 0x01D0 4214 0x01D0 8214 XBUF5 (1) Transmit buffer register for serializer 5 (1) 98 Writes to XRBUF originate from peripheral configuration port only when XBUSEL = 1 in XFMT. Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 Copyright © 2010–2014, Texas Instruments Incorporated AM1707 www.ti.com SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 Table 6-44. McASP Registers Accessed Through Peripheral Configuration Port (continued) McASP0 BYTE ADDRESS McASP1 BYTE ADDRESS McASP2 BYTE ADDRESS ACRONYM REGISTER DESCRIPTION 0x01D0 0218 0x01D0 4218 0x01D0 8218 XBUF6 (1) Transmit buffer register for serializer 6 0x01D0 021C 0x01D0 421C 0x01D0 821C XBUF7 (1) Transmit buffer register for serializer 7 (1) Transmit buffer register for serializer 8 0x01D0 0220 0x01D0 4220 0x01D0 8220 XBUF8 0x01D0 0224 0x01D0 4224 0x01D0 8224 XBUF9 (1) Transmit buffer register for serializer 9 0x01D0 0228 0x01D0 4228 0x01D0 8228 XBUF10 (1) Transmit buffer register for serializer 10 0x01D0 022C 0x01D0 422C 0x01D0 822C XBUF11 (1) Transmit buffer register for serializer 11 (1) Transmit buffer register for serializer 12 0x01D0 0230 0x01D0 4230 0x01D0 8230 XBUF12 0x01D0 0234 0x01D0 4234 0x01D0 8234 XBUF13 (1) Transmit buffer register for serializer 13 0x01D0 0238 0x01D0 4238 0x01D0 8238 XBUF14 (1) Transmit buffer register for serializer 14 0x01D0 023C 0x01D0 423C 0x01D0 823C XBUF15 (1) Transmit buffer register for serializer 15 0x01D0 0280 0x01D0 4280 0x01D0 8280 RBUF0 (2) Receive buffer register for serializer 0 0x01D0 0284 0x01D0 4284 0x01D0 8284 RBUF1 (2) Receive buffer register for serializer 1 0x01D0 8288 (2) Receive buffer register for serializer 2 0x01D0 028C 0x01D0 428C 0x01D0 828C RBUF3 (2) Receive buffer register for serializer 3 0x01D0 0290 0x01D0 4290 0x01D0 8290 RBUF4 (3) Receive buffer register for serializer 4 0x01D0 0294 0x01D0 4294 0x01D0 8294 RBUF5 (3) Receive buffer register for serializer 5 0x01D0 8298 (3) Receive buffer register for serializer 6 0x01D0 029C 0x01D0 429C 0x01D0 829C RBUF7 (3) Receive buffer register for serializer 7 0x01D0 02A0 0x01D0 82A0 RBUF8 (3) Receive buffer register for serializer 8 (3) Receive buffer register for serializer 9 0x01D0 0288 0x01D0 0298 0x01D0 4288 0x01D0 4298 0x01D0 42A0 RBUF2 RBUF6 0x01D0 02A4 0x01D0 42A4 0x01D0 82A4 RBUF9 0x01D0 02A8 0x01D0 42A8 0x01D0 82A8 RBUF10 (3) Receive buffer register for serializer 10 0x01D0 02AC 0x01D0 42AC 0x01D0 82AC RBUF11 (3) Receive buffer register for serializer 11 (3) Receive buffer register for serializer 12 0x01D0 02B0 0x01D0 42B0 0x01D0 82B0 RBUF12 0x01D0 02B4 0x01D0 42B4 0x01D0 82B4 RBUF13 (3) Receive buffer register for serializer 13 0x01D0 02B8 0x01D0 42B8 0x01D0 82BB RBUF14 (3) Receive buffer register for serializer 14 0x01D0 02BC 0x01D0 42BC 0x01D0 82BC RBUF15 (3) Receive buffer register for serializer 15 (2) (3) Reads from XRBUF originate on peripheral configuration port only when RBUSEL = 1 in RFMT. Reads from XRBUF originate on peripheral configuration port only when RBUSEL = 1 in RFMT. Copyright © 2010–2014, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 99 AM1707 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 www.ti.com Table 6-45. McASP Registers Accessed Through DMA Port McASP0 BYTE ADDRESS McASP1 BYTE ADDRESS McASP2 BYTE ADDRESS ACRONYM REGISTER DESCRIPTION Read Accesses 01D0 2000 01D0 6000 01D0 A000 RBUF Receive buffer DMA port address. Cycles through receive serializers, skipping over transmit serializers and inactive serializers. Starts at the lowest serializer at the beginning of each time slot. Reads from DMA port only if RBUSEL = 0 in RFMT. Write Accesses 01D0 2000 01D0 6000 01D0 A000 XBUF Transmit buffer DMA port address. Cycles through transmit serializers, skipping over receive and inactive serializers. Starts at the lowest serializer at the beginning of each time slot. Writes to DMA port only if XBUSEL = 0 in XFMT. Table 6-46. McASP AFIFO Registers Accessed Through Peripheral Configuration Port 100 McASP0 BYTE ADDRESS McASP1 BYTE ADDRESS McASP2 BYTE ADDRESS ACRONYM 0x01D0 1000 0x01D0 5000 0x01D0 9000 AFIFOREV AFIFO revision identification register 0x01D0 1010 0x01D0 5010 0x01D0 9010 WFIFOCTL Write FIFO control register 0x01D0 1014 0x01D0 5014 0x01D0 9014 WFIFOSTS Write FIFO status register 0x01D0 1018 0x01D0 5018 0x01D0 9018 RFIFOCTL Read FIFO control register 0x01D0 101C 0x01D0 501C 0x01D0 901C RFIFOSTS Read FIFO status register Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 REGISTER DESCRIPTION Copyright © 2010–2014, Texas Instruments Incorporated AM1707 www.ti.com SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 6.16.2 McASP Electrical Data/Timing 6.16.2.1 Multichannel Audio Serial Port 0 (McASP0) Timing Table 6-47 and Table 6-48 assume testing over recommended operating conditions (see Figure 6-34 and Figure 6-35). Table 6-47. McASP0 Timing Requirements (1) No. 1 tc(AHCLKRX) 2 tw(AHCLKRX) 3 tc(ACLKRX) 4 tw(ACLKRX) 5 tsu(AFSRX-ACLKRX) PARAMETER MIN Cycle time, AHCLKR0 external, AHCLKR0 input 25 Cycle time, AHCLKX0 external, AHCLKX0 input 25 Pulse duration, AHCLKR0 external, AHCLKR0 input 12.5 Pulse duration, AHCLKX0 external, AHCLKX0 input 12.5 Cycle time, ACLKR0 external, ACLKR0 input greater of 2P or 25 Cycle time, ACLKX0 external, ACLKX0 input greater of 2P or 25 Pulse duration, ACLKR0 external, ACLKR0 input 12.5 Pulse duration, ACLKX0 external, ACLKX0 input 12.5 Setup time, AFSR0 input to ACLKR0 internal (3) 9.4 Setup time, AFSX0 input to ACLKX0 internal 9.4 Setup time, AFSR0 input to ACLKR0 external input (3) 2.9 Setup time, AFSX0 input to ACLKX0 external input 2.9 Setup time, AFSR0 input to ACLKR0 external output (3) 2.9 Setup time, AFSX0 input to ACLKX0 external output 2.9 Hold time, AFSR0 input after ACLKR0 internal (3) -1.2 Hold time, AFSX0 input after ACLKX0 internal 6 th(ACLKRX-AFSRX) tsu(AXR-ACLKRX) Hold time, AFSR0 input after ACLKR0 external input 8 (1) (2) (3) (4) th(ACLKRX-AXR) 0.9 Hold time, AFSX0 input after ACLKX0 external input 0.9 Hold time, AFSR0 input after ACLKR0 external output (3) 0.9 Hold time, AFSX0 input after ACLKX0 external output 0.9 Setup time, AXR0[n] input to ACLKR0 internal (3) 9.4 UNIT ns ns ns ns ns 2.9 Setup time, AXR0[n] input to ACLKX0 external input (4) 2.9 Setup time, AXR0[n] input to ACLKR0 external output (3) 2.9 Setup time, AXR0[n] input to ACLKX0 external output (4) 2.9 Setup time, AXR0[n] input to ACLKR0 external input ns 9.4 (3) (3) -1.3 Hold time, AXR0[n] input after ACLKX0 internal (4) -1.3 Hold time, AXR0[n] input after ACLKR0 internal MAX -1.2 (3) Setup time, AXR0[n] input to ACLKX0 internal (4) 7 (2) Hold time, AXR0[n] input after ACLKR0 external input (3) 0.5 (4) 0.5 Hold time, AXR0[n] input after ACLKX0 external input Hold time, AXR0[n] input after ACLKR0 external output (3) 0.5 Hold time, AXR0[n] input after ACLKX0 external output (4) 0.5 ns ns ACLKX0 internal – McASP0 ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1 ACLKX0 external input – McASP0 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0 ACLKX0 external output – McASP0 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1 ACLKR0 internal – McASP0 ACLKRCTL.CLKRM = 1, PDIR.ACLKR =1 ACLKR0 external input – McASP0 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0 ACLKR0 external output – McASP0 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1 P = SYSCLK2 period McASP0 ACLKXCTL.ASYNC=1: Receiver is clocked by its own ACLKR0 McASP0 ACLKXCTL.ASYNC=0: Receiver is clocked by transmitter's ACLKX0 Copyright © 2010–2014, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 101 AM1707 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 www.ti.com Table 6-48. McASP0 Switching Characteristics (1) No. 9 PARAMETER tc(AHCLKRX) MIN Cycle time, AHCLKR0 internal, AHCLKR0 output 25 Cycle time, AHCLKR0 external, AHCLKR0 output 25 Cycle time, AHCLKX0 internal, AHCLKX0 output 25 Cycle time, AHCLKX0 external, AHCLKX0 output 10 11 12 tw(AHCLKRX) tc(ACLKRX) tw(ACLKRX) (AHR/2) – 2.5 (2) Pulse duration, AHCLKR0 external, AHCLKR0 output (AHR/2) – 2.5 (2) Pulse duration, AHCLKX0 internal, AHCLKX0 output (AHX/2) – 2.5 (3) Pulse duration, AHCLKX0 external, AHCLKX0 output (AHX/2) – 2.5 (3) Cycle time, ACLKR0 internal, ACLKR0 output greater of 2P or 25 ns (4) Cycle time, ACLKR0 external, ACLKR0 output greater of 2P or 25 ns (4) Cycle time, ACLKX0 internal, ACLKX0 output greater of 2P or 25 ns (4) Cycle time, ACLKX0 external, ACLKX0 output greater of 2P or 25 ns (4) Pulse duration, ACLKR0 internal, ACLKR0 output (AR/2) – 2.5 (5) Pulse duration, ACLKR0 external, ACLKR0 output (AR/2) – 2.5 (5) Pulse duration, ACLKX0 internal, ACLKX0 output (AX/2) – 2.5 (6) Pulse duration, ACLKX0 external, ACLKX0 output (AX/2) – 2.5 (6) (7) Delay time, ACLKX0 internal, AFSX output 13 td(ACLKRX-AFSRX) Delay time, ACLKR0 external input, AFSR output (7) 15 (1) (2) (3) (4) (5) (6) (7) 102 td(ACLKX-AXRV) tdis(ACLKX-AXRHZ) ns ns ns ns 0 5.8 0 5.8 2.5 11.6 Delay time, ACLKX0 external input, AFSX output 2.5 11.6 Delay time, ACLKR0 external output, AFSR output (7) 2.5 11.6 Delay time, ACLKX0 external output, AFSX output 2.5 11.6 Delay time, ACLKX0 internal, AXR0[n] output 14 UNIT 25 Pulse duration, AHCLKR0 internal, AHCLKR0 output Delay time, ACLKR0 internal, AFSR output MAX 0 5.8 Delay time, ACLKX0 external input, AXR0[n] output 2.5 11.6 Delay time, ACLKX0 external output, AXR0[n] output 2.5 11.6 Disable time, ACLKX0 internal, AXR0[n] output 0 5.8 Disable time, ACLKX0 external input, AXR0[n] output 3 11.6 Disable time, ACLKX0 external output, AXR0[n] output 3 11.6 ns ns ns McASP0 ACLKX0 internal – ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1 ACLKX0 external input – McASP0 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0 ACLKX0 external output – McASP0ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1 ACLKR0 internal – McASP0 ACLKR0CTL.CLKRM = 1, PDIR.ACLKR =1 ACLKR0 external input – McASP0 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0 ACLKR0 external output – McASP0 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1 AHR - Cycle time, AHCLKR0. AHX - Cycle time, AHCLKX0. P = SYSCLK2 period AR - ACLKR0 period. AX - ACLKX0 period. McASP0 ACLKXCTL.ASYNC=1: Receiver is clocked by its own ACLKR0 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 Copyright © 2010–2014, Texas Instruments Incorporated AM1707 www.ti.com SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 6.16.2.2 Multichannel Audio Serial Port 1 (McASP1) Timing Table 6-49 and Table 6-50 assume testing over recommended operating conditions (see Figure 6-34 and Figure 6-35). Table 6-49. McASP1 Timing Requirements (1) No. PARAMETER 1 tc(AHCLKRX) 2 tw(AHCLKRX) 3 tc(ACLKRX) 4 tw(ACLKRX) 5 6 7 tsu(AFSRX-ACLKRX) th(ACLKRX-AFSRX) tsu(AXR-ACLKRX) MIN Cycle time, AHCLKR1 external, AHCLKR1 input 25 Cycle time, AHCLKX1 external, AHCLKX1 input 25 Pulse duration, AHCLKR1 external, AHCLKR1 input 12.5 Pulse duration, AHCLKX1 external, AHCLKX1 input 12.5 Cycle time, ACLKR1 external, ACLKR1 input greater of 2P or 25 Cycle time, ACLKX1 external, ACLKX1 input greater of 2P or 25 Pulse duration, ACLKR1 external, ACLKR1 input 12.5 Pulse duration, ACLKX1 external, ACLKX1 input 12.5 Setup time, AFSR1 input to ACLKR1 internal (3) 10.4 Setup time, AFSX1 input to ACLKX1 internal 10.4 Setup time, AFSR1 input to ACLKR1 external input (3) 2.6 Setup time, AFSX1 input to ACLKX1 external input 2.6 Setup time, AFSR1 input to ACLKR1 external output (3) 2.6 Setup time, AFSX1 input to ACLKX1 external output 2.6 Hold time, AFSR1 input after ACLKR1 internal (3) -1.9 Hold time, AFSX1 input after ACLKX1 internal -1.9 Hold time, AFSR1 input after ACLKR1 external input (3) 0.7 Hold time, AFSX1 input after ACLKX1 external input 0.7 Hold time, AFSR1 input after ACLKR1 external output (3) 0.7 Hold time, AFSX1 input after ACLKX1 external output 0.7 Setup time, AXR1[n] input to ACLKR1 internal (3) 10.4 Setup time, AXR1[n] input to ACLKX1 internal (4) 10.4 Setup time, AXR1[n] input to ACLKR1 external input (3) 2.6 Setup time, AXR1[n] input to ACLKX1 external input (4) 2.6 Setup time, AXR1[n] input to ACLKR1 external output (3) 2.6 Setup time, AXR1[n] input to ACLKX1 external output (4) Hold time, AXR1[n] input after ACLKR1 internal (3) th(ACLKRX-AXR) (2) (3) (4) ns ns ns ns ns ns ns -1.8 0.5 Hold time, AXR1[n] input after ACLKX1 external input (4) 0.5 Hold time, AXR1[n] input after ACLKR1 external output (3) 0.5 (4) 0.5 Hold time, AXR1[n] input after ACLKX1 external output (1) UNIT 2.6 (3) Hold time, AXR1[n] input after ACLKR1 external input MAX -1.8 Hold time, AXR1[n] input after ACLKX1 internal (4) 8 (2) ns ACLKX1 internal – McASP1 ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1 ACLKX1 external input – McASP1 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0 ACLKX1 external output – McASP1 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1 ACLKR1 internal – McASP1 ACLKRCTL.CLKRM = 1, PDIR.ACLKR =1 ACLKR1 external input – McASP1 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0 ACLKR1 external output – McASP1 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1 P = SYSCLK2 period McASP1 ACLKXCTL.ASYNC=1: Receiver is clocked by its own ACLKR1 McASP1 ACLKXCTL.ASYNC=0: Receiver is clocked by transmitter's ACLKX1 Copyright © 2010–2014, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 103 AM1707 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 www.ti.com Table 6-50. McASP1 Switching Characteristics (1) No. 9 PARAMETER tc(AHCLKRX) MIN Cycle time, AHCLKR1 internal, AHCLKR1 output 25 Cycle time, AHCLKR1 external, AHCLKR1 output 25 Cycle time, AHCLKX1 internal, AHCLKX1 output 25 Cycle time, AHCLKX1 external, AHCLKX1 output 10 11 12 tw(AHCLKRX) tc(ACLKRX) tw(ACLKRX) (AHR/2) – 2.5 (2) Pulse duration, AHCLKR1 external, AHCLKR1 output (AHR/2) – 2.5 (2) Pulse duration, AHCLKX1 internal, AHCLKX1 output (AHX/2) – 2.5 (3) Pulse duration, AHCLKX1 external, AHCLKX1 output (AHX/2) – 2.5 (3) Cycle time, ACLKR1 internal, ACLKR1 output greater of 2P or 25 ns (4) Cycle time, ACLKR1 external, ACLKR1 output greater of 2P or 25 ns (4) Cycle time, ACLKX1 internal, ACLKX1 output greater of 2P or 25 ns (4) Cycle time, ACLKX1 external, ACLKX1 output greater of 2P or 25 ns (4) Pulse duration, ACLKR1 internal, ACLKR1 output (AR/2) – 2.5 (5) Pulse duration, ACLKR1 external, ACLKR1 output (AR/2) – 2.5 (5) Pulse duration, ACLKX1 internal, ACLKX1 output (AX/2) – 2.5 (6) Pulse duration, ACLKX1 external, ACLKX1 output (AX/2) – 2.5 (6) (7) Delay time, ACLKX1 internal, AFSX output 13 14 15 (1) (2) (3) (4) (5) (6) (7) 104 td(ACLKRX-AFSRX) td(ACLKX-AXRV) tdis(ACLKX-AXRHZ) Delay time, ACLKR1 external input, AFSR output UNIT ns 25 Pulse duration, AHCLKR1 internal, AHCLKR1 output Delay time, ACLKR1 internal, AFSR output MAX (7) ns ns ns 0.5 6.7 0.5 6.7 3.4 13.8 Delay time, ACLKX1 external input, AFSX output 3.4 13.8 Delay time, ACLKR1 external output, AFSR output (7) 3.4 13.8 Delay time, ACLKX1 external output, AFSX output 3.4 13.8 Delay time, ACLKX1 internal, AXR1[n] output 0.5 6.7 Delay time, ACLKX1 external input, AXR1[n] output 3.4 13.8 Delay time, ACLKX1 external output, AXR1[n] output 3.4 13.8 Disable time, ACLKX1 internal, AXR1[n] output 0.5 6.7 Disable time, ACLKX1 external input, AXR1[n] output 3.9 13.8 Disable time, ACLKX1 external output, AXR1[n] output 3.9 13.8 ns ns ns McASP1 ACLKX1 internal – ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1 McASP1 ACLKX1 external input – ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0 McASP1 ACLKX1 external output – ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1 McASP1 ACLKR1 internal – ACLKR1CTL.CLKRM = 1, PDIR.ACLKR =1 McASP1 ACLKR1 external input – ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0 McASP1 ACLKR1 external output – ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1 AHR - Cycle time, AHCLKR1. AHX - Cycle time, AHCLKX1. P = SYSCLK2 period AR - ACLKR1 period. AX - ACLKX1 period. McASP1 ACLKXCTL.ASYNC=1: Receiver is clocked by its own ACLKR1 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 Copyright © 2010–2014, Texas Instruments Incorporated AM1707 www.ti.com SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 2 1 2 AHCLKR/X (Falling Edge Polarity) AHCLKR/X (Rising Edge Polarity) 4 3 4 ACLKR/X (CLKRP = CLKXP = 0)(A) ACLKR/X (CLKRP = CLKXP = 1)(B) 6 5 AFSR/X (Bit Width, 0 Bit Delay) AFSR/X (Bit Width, 1 Bit Delay) AFSR/X (Bit Width, 2 Bit Delay) AFSR/X (Slot Width, 0 Bit Delay) AFSR/X (Slot Width, 1 Bit Delay) AFSR/X (Slot Width, 2 Bit Delay) 8 7 AXR[n] (Data In/Receive) A. B. For CLKRP = CLKXP = receiver is configured for For CLKRP = CLKXP = receiver is configured for A0 A1 A30 A31 B0 B1 B30 B31 C0 C1 C2 C3 C31 0, the McASP transmitter is configured for rising edge (to shift data out) and the McASP falling edge (to shift data in). 1, the McASP transmitter is configured for falling edge (to shift data out) and the McASP rising edge (to shift data in). Figure 6-34. McASP Input Timings Copyright © 2010–2014, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 105 AM1707 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 www.ti.com 10 10 9 AHCLKR/X (Falling Edge Polarity) AHCLKR/X (Rising Edge Polarity) 12 11 12 ACLKR/X (CLKRP = CLKXP = 1)(A) ACLKR/X (CLKRP = CLKXP = 0)(B) 13 13 13 13 AFSR/X (Bit Width, 0 Bit Delay) AFSR/X (Bit Width, 1 Bit Delay) AFSR/X (Bit Width, 2 Bit Delay) 13 13 13 AFSR/X (Slot Width, 0 Bit Delay) AFSR/X (Slot Width, 1 Bit Delay) AFSR/X (Slot Width, 2 Bit Delay) 14 15 AXR[n] (Data Out/Transmit) A0 A. B. For CLKRP = CLKXP = receiver is configured for For CLKRP = CLKXP = receiver is configured for A1 A30 A31 B0 B1 B30 B31 C0 C1 C2 C3 C31 1, the McASP transmitter is configured for falling edge (to shift data out) and the McASP rising edge (to shift data in). 0, the McASP transmitter is configured for rising edge (to shift data out) and the McASP falling edge (to shift data in). Figure 6-35. McASP Output Timings 106 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 Copyright © 2010–2014, Texas Instruments Incorporated AM1707 www.ti.com SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 6.16.2.3 Multichannel Audio Serial Port 2 (McASP2) Timing Table 6-51 and Table 6-52 assume testing over recommended operating conditions (see Figure 6-34 and Figure 6-35). Table 6-51. McASP2 Timing Requirements (1) No. PARAMETER 1 tc(AHCLKRX) 2 tw(AHCLKRX) 3 tc(ACLKRX) 4 tw(ACLKRX) 5 6 tsu(AFSRX-ACLKRX) th(ACLKRX-AFSRX) tsu(AXR-ACLKRX) MIN Cycle time, AHCLKR2 external, AHCLKR2 input 15 Cycle time, AHCLKX2 external, AHCLKX2 input 15 Pulse duration, AHCLKR2 external, AHCLKR2 input 7.5 Pulse duration, AHCLKX2 external, AHCLKX2 input 7.5 Cycle time, ACLKR2 external, ACLKR2 input greater of 2P or 15 Cycle time, ACLKX2 external, ACLKX2 input greater of 2P or 15 Pulse duration, ACLKR2 external, ACLKR2 input 7.5 Pulse duration, ACLKX2 external, ACLKX2 input 7.5 Setup time, AFSR2 input to ACLKR2 internal (3) 10 Setup time, AFSX2 input to ACLKX2 internal 10 Setup time, AFSR2 input to ACLKR2 external input (3) 1.6 Setup time, AFSX2 input to ACLKX2 external input 1.6 Setup time, AFSR2 input to ACLKR2 external output (3) 1.6 Setup time, AFSX2 input to ACLKX2 external output 1.6 Hold time, AFSR2 input after ACLKR2 internal (3) -1.7 Hold time, AFSX2 input after ACLKX2 internal -1.7 Hold time, AFSR2 input after ACLKR2 external input (3) 1.3 Hold time, AFSX2 input after ACLKX2 external input 1.3 Hold time, AFSR2 input after ACLKR2 external output (3) 1.3 Hold time, AFSX2 input after ACLKX2 external output 1.3 Setup time, AXR2[n] input to ACLKR2 internal (3) 10 Setup time, AXR2[n] input to ACLKX2 internal 7 (4) 1.6 Setup time, AXR2[n] input to ACLKX2 external input (4) 1.6 Setup time, AXR2[n] input to ACLKR2 external output (3) 1.6 (4) Hold time, AXR2[n] input after ACLKR2 internal (3) (2) (3) (4) ns ns ns ns ns ns -1.7 1.3 Hold time, AXR2[n] input after ACLKX2 external input (4) 1.3 Hold time, AXR2[n] input after ACLKR2 external output (3) 1.3 (4) 1.3 Hold time, AXR2[n] input after ACLKX2 external output (1) ns 1.6 (3) Hold time, AXR2[n] input after ACLKR2 external input UNIT -1.7 Hold time, AXR2[n] input after ACLKX2 internal (4) th(ACLKRX-AXR) MAX 10 Setup time, AXR2[n] input to ACLKR2 external input (3) Setup time, AXR2[n] input to ACLKX2 external output 8 (2) ns ACLKX2 internal – McASP2 ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1 ACLKX2 external input – McASP2 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0 ACLKX2 external output – McASP2 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1 ACLKR2 internal – McASP2 ACLKRCTL.CLKRM = 1, PDIR.ACLKR =1 ACLKR2 external input – McASP2 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0 ACLKR2 external output – McASP2 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1 P = SYSCLK2 period McASP2 ACLKXCTL.ASYNC=1: Receiver is clocked by its own ACLKR2 McASP2 ACLKXCTL.ASYNC=0: Receiver is clocked by transmitter's ACLKX2 Copyright © 2010–2014, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 107 AM1707 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 www.ti.com Table 6-52. McASP2 Switching Characteristics (1) No. 9 PARAMETER tc(AHCLKRX) MIN Cycle time, AHCLKR2 internal, AHCLKR2 output 15 Cycle time, AHCLKR2 external, AHCLKR2 output 15 Cycle time, AHCLKX2 internal, AHCLKX2 output 15 Cycle time, AHCLKX2 external, AHCLKX2 output 10 11 12 tw(AHCLKRX) tc(ACLKRX) tw(ACLKRX) (AHR/2) – 2.5 (2) Pulse duration, AHCLKR2 external, AHCLKR2 output (AHR/2) – 2.5 (2) Pulse duration, AHCLKX2 internal, AHCLKX2 output (AHX/2) – 2.5 (3) Pulse duration, AHCLKX2 external, AHCLKX2 output (AHX/2) – 2.5 (3) Cycle time, ACLKR2 internal, ACLKR2 output greater of 2P or 15 ns (4) Cycle time, ACLKR2 external, ACLKR2 output greater of 2P or 15 ns (4) Cycle time, ACLKX2 internal, ACLKX2 output greater of 2P or 15 ns (4) Cycle time, ACLKX2 external, ACLKX2 output greater of 2P or 15 ns (4) Pulse duration, ACLKR2 internal, ACLKR2 output (AR/2) – 2.5 (5) Pulse duration, ACLKR2 external, ACLKR2 output (AR/2) – 2.5 (5) Pulse duration, ACLKX2 internal, ACLKX2 output (AX/2) – 2.5 (6) Pulse duration, ACLKX2 external, ACLKX2 output (AX/2) – 2.5 (6) (7) Delay time, ACLKX2 internal, AFSX output 13 14 15 (1) (2) (3) (4) (5) (6) (7) 108 td(ACLKRX-AFSRX) td(ACLKX-AXRV) tdis(ACLKX-AXRHZ) Delay time, ACLKR2 external input, AFSR output UNIT ns 15 Pulse duration, AHCLKR2 internal, AHCLKR2 output Delay time, ACLKR2 internal, AFSR output MAX (7) ns ns ns -1.4 2.8 -1.4 2.8 2.1 10 Delay time, ACLKX2 external input, AFSX output 2.1 10 Delay time, ACLKR2 external output, AFSR output (7) 2.1 10 Delay time, ACLKX2 external output, AFSX output 2.1 10 Delay time, ACLKX2 internal, AXR2[n] output -1.4 2.8 Delay time, ACLKX2 external input, AXR2[n] output 2.1 10 Delay time, ACLKX2 external output, AXR2[n] output 2.1 10 Disable time, ACLKX2 internal, AXR2[n] output -1.4 2.8 Disable time, ACLKX2 external input, AXR2[n] output 2.9 10 Disable time, ACLKX2 external output, AXR2[n] output 2.9 10 ns ns ns McASP2 ACLKX2 internal – ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1 McASP2 ACLKX2 external input – ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0 McASP2 ACLKX2 external output – ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1 McASP2 ACLKR2 internal – ACLKR2CTL.CLKRM = 1, PDIR.ACLKR =1 McASP2 ACLKR2 external input – ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0 McASP2 ACLKR2 external output – ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1 AHR - Cycle time, AHCLKR2. AHX - Cycle time, AHCLKX2. P = SYSCLK2 period AR - ACLKR2 period. AX - ACLKX2 period. McASP2 ACLKXCTL.ASYNC=1: Receiver is clocked by its own ACLKR2 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 Copyright © 2010–2014, Texas Instruments Incorporated AM1707 www.ti.com SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 6.17 Serial Peripheral Interface Ports (SPI0, SPI1) Figure 6-36 is a block diagram of the SPI module, which is a simple shift register and buffer plus control logic. Data is written to the shift register before transmission occurs and is read from the buffer at the end of transmission. The SPI can operate either as a master, in which case, it initiates a transfer and drives the SPIx_CLK pin, or as a slave. Four clock phase and polarity options are supported as well as many data formatting options. SPIx_SIMO SPIx_SOMI Peripheral Configuration Bus Interrupt and DMA Requests 16-Bit Shift Register 16-Bit Buffer SPIx_ENA GPIO Control (all pins) State Machine SPIx_SCS Clock Control SPIx_CLK Figure 6-36. Block Diagram of SPI Module The SPI supports 3-, 4-, and 5-pin operation with three basic pins (SPIx_CLK, SPIx_SIMO, and SPIx_SOMI) and two optional pins (SPIx_SCS, SPIx_ENA). The optional SPIx_SCS (Slave Chip Select) pin is most useful to enable in slave mode when there are other slave devices on the same SPI port. The device will only shift data and drive the SPIx_SOMI pin when SPIx_SCS is held low. In slave mode, SPIx_ENA is an optional output. The SPIx_ENA output provides the status of the internal transmit buffer (SPIDAT0/1 registers). In four-pin mode with the enable option, SPIx_ENA is asserted only when the transmit buffer is full, indicating that the slave is ready to begin another transfer. In five-pin mode, the SPIx_ENA is additionally qualified by SPIx_SCS being asserted. This allows a single handshake line to be shared by multiple slaves on the same SPI bus. In master mode, the SPIx_ENA pin is an optional input and the master can be configured to delay the start of the next transfer until the slave asserts SPIx_ENA. The addition of this handshake signal simplifies SPI communications and, on average, increases SPI bus throughput since the master does not need to delay each transfer long enough to allow for the worst-case latency of the slave device. Instead, each transfer can begin as soon as both the master and slave have actually serviced the previous SPI transfer. Although the SPI module supports two interrupt outputs, SPIx_INT1 is the only interrupt connected on this device. Copyright © 2010–2014, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 109 AM1707 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 www.ti.com Optional − Slave Chip Select SPIx_SCS SPIx_SCS Optional Enable (Ready) SPIx_ENA SPIx_ENA SPIx_CLK SPIx_CLK SPIx_SOMI SPIx_SOMI SPIx_SIMO SPIx_SIMO MASTER SPI SLAVE SPI Figure 6-37. Illustration of SPI Master-to-SPI Slave Connection 110 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 Copyright © 2010–2014, Texas Instruments Incorporated AM1707 www.ti.com SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 6.17.1 SPI Peripheral Registers Description(s) Table 6-53 is a list of the SPI registers. Table 6-53. SPIx Configuration Registers SPI0 BYTE ADDRESS SPI1 BYTE ADDRESS ACRONYM 0x01C4 1000 0x01E1 2000 SPIGCR0 Global Control Register 0 0x01C4 1004 0x01E1 2004 SPIGCR1 Global Control Register 1 0x01C4 1008 0x01E1 2008 SPIINT0 Interrupt Register 0x01C4 100C 0x01E1 200C SPILVL Interrupt Level Register 0x01C4 1010 0x01E1 2010 SPIFLG Flag Register 0x01C4 1014 0x01E1 2014 SPIPC0 Pin Control Register 0 (Pin Function) 0x01C4 1018 0x01E1 2018 SPIPC1 Pin Control Register 1 (Pin Direction) 0x01C4 101C 0x01E1 201C SPIPC2 Pin Control Register 2 (Pin Data In) 0x01C4 1020 0x01E1 2020 SPIPC3 Pin Control Register 3 (Pin Data Out) 0x01C4 1024 0x01E1 2024 SPIPC4 Pin Control Register 4 (Pin Data Set) 0x01C4 1028 0x01E1 2028 SPIPC5 Pin Control Register 5 (Pin Data Clear) 0x01C4 102C 0x01E1 202C Reserved Reserved - Do not write to this register 0x01C4 1030 0x01E1 2030 Reserved Reserved - Do not write to this register 0x01C4 1034 0x01E1 2034 Reserved Reserved - Do not write to this register REGISTER DESCRIPTION 0x01C4 1038 0x01E1 2038 SPIDAT0 Shift Register 0 (without format select) 0x01C4 103C 0x01E1 203C SPIDAT1 Shift Register 1 (with format select) 0x01C4 1040 0x01E1 2040 SPIBUF Buffer Register 0x01C4 1044 0x01E1 2044 SPIEMU Emulation Register 0x01C4 1048 0x01E1 2048 SPIDELAY 0x01C4 104C 0x01E1 204C SPIDEF Default Chip Select Register 0x01C4 1050 0x01E1 2050 SPIFMT0 Format Register 0 0x01C4 1054 0x01E1 2054 SPIFMT1 Format Register 1 0x01C4 1058 0x01E1 2058 SPIFMT2 Format Register 2 0x01C4 105C 0x01E1 205C SPIFMT3 Format Register 3 0x01C4 1060 0x01E1 2060 Reserved Reserved - Do not write to this register 0x01C4 1064 0x01E1 2064 INTVEC1 Interrupt Vector for SPI INT1 Copyright © 2010–2014, Texas Instruments Incorporated Delay Register Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 111 AM1707 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 www.ti.com 6.17.2 SPI Electrical Data/Timing 6.17.2.1 Serial Peripheral Interface (SPI) Timing Table 6-54 through Table 6-69 assume testing over recommended operating conditions (see Figure 6-38 through Figure 6-41). Table 6-54. General Timing Requirements for SPI0 Master Modes (1) No. PARAMETER MIN UNIT tc(SPC)M Cycle Time, SPI0_CLK, All Master Modes 2 tw(SPCH)M Pulse Width High, SPI0_CLK, All Master Modes 0.5tc(SPC)M - 1 ns 3 tw(SPCL)M Pulse Width Low, SPI0_CLK, All Master Modes 0.5tc(SPC)M - 1 ns 4 5 6 td(SIMO_SPC)M td(SPC_SIMO)M toh(SPC_SIMO)M Delay, initial data bit valid on SPI0_SIMO after initial edge on SPI0_CLK (2) Delay, subsequent bits valid on SPI0_SIMO after transmit edge of SPI0_CLK Output hold time, SPI0_SIMO valid afterreceive edge of SPI0_CLK 8 (1) (2) 112 tsu(SOMI_SPC)M 5 Polarity = 0, Phase = 1, to SPI0_CLK rising - 0.5tc(SPC)M + 5 Polarity = 1, Phase = 0, to SPI0_CLK falling 5 Polarity = 1, Phase = 1, to SPI0_CLK falling - 0.5tc(SPC)M + 5 Polarity = 0, Phase = 0, from SPI0_CLK rising 5 Polarity = 0, Phase = 1, from SPI0_CLK falling 5 Polarity = 1, Phase = 0, from SPI0_CLK falling 5 Polarity = 1, Phase = 1, from SPI0_CLK rising 5 tih(SPC_SOMI)M ns ns ns Polarity = 0, Phase = 0, from SPI0_CLK falling 0.5tc(SPC)M - 3 Polarity = 0, Phase = 1, from SPI0_CLK rising 0.5tc(SPC)M - 3 Polarity = 1, Phase = 0, from SPI0_CLK rising 0.5tc(SPC)M - 3 Polarity = 1, Phase = 1, from SPI0_CLK falling 0.5tc(SPC)M - 3 Polarity = 0, Phase = 1, Input Setup Time, SPI0_SOMI to SPI0_CLK rising valid beforereceive edge of Polarity = 1, Phase = 0, SPI0_CLK to SPI0_CLK rising Input Hold Time, SPI0_SOMI valid after receive edge of SPI0_CLK 256P Polarity = 0, Phase = 0, to SPI0_CLK rising Polarity = 0, Phase = 0, to SPI0_CLK falling 7 greater of 3P or 20 MAX 1 ns 0 0 ns 0 Polarity = 1, Phase = 1, to SPI0_CLK falling 0 Polarity = 0, Phase = 0, from SPI0_CLK falling 5 Polarity = 0, Phase = 1, from SPI0_CLK rising 5 Polarity = 1, Phase = 0, from SPI0_CLK rising 5 Polarity = 1, Phase = 1, from SPI0_CLK falling 5 ns P = SYSCLK2 period First bit may be MSB or LSB depending upon SPI configuration. MO(0) refers to first bit and MO(n) refers to last bit output on SPI0_SIMO. MI(0) refers to the first bit input and MI(n) refers to the last bit input on SPI0_SOMI. Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 Copyright © 2010–2014, Texas Instruments Incorporated AM1707 www.ti.com SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 Table 6-55. General Timing Requirements for SPI0 Slave Modes (1) No. MAX 10 tw(SPCH)S Pulse Width High, SPI0_CLK, All Slave Modes 18 ns 11 tw(SPCL)S Pulse Width Low, SPI0_CLK, All Slave Modes 18 ns 14 15 16 tsu(SOMI_SPC)S td(SPC_SOMI)S toh(SPC_SOMI)S tsu(SIMO_SPC)S tih(SPC_SIMO)S Setup time, transmit data written to SPI before initial clock edge from master. (2) (3) Delay, subsequent bits valid on SPI0_SOMI after transmit edge of SPI0_CLK Output hold time, SPI0_SOMI valid afte receive edge of SPI0_CLK Input Setup Time, SPI0_SIMO valid before receive edge of SPI0_CLK Input Hold Time, SPI0_SIMO valid after receive edge of SPI0_CLK greater of 3P or 40 UNIT Cycle Time, SPI0_CLK, All Slave Modes 13 (3) MIN tc(SPC)S 12 (1) (2) PARAMETER 9 Polarity = 0, Phase = 0, to SPI0_CLK rising 2P Polarity = 0, Phase = 1, to SPI0_CLK rising 2P Polarity = 1, Phase = 0, to SPI0_CLK falling 2P Polarity = 1, Phase = 1, to SPI0_CLK falling 2P ns ns Polarity = 0, Phase = 0, from SPI0_CLK rising 18.5 Polarity = 0, Phase = 1, from SPI0_CLK falling 18.5 Polarity = 1, Phase = 0, from SPI0_CLK falling 18.5 Polarity = 1, Phase = 1, from SPI0_CLK rising 18.5 ns Polarity = 0, Phase = 0, from SPI0_CLK falling 0.5tc(SPC)S - 3 Polarity = 0, Phase = 1, from SPI0_CLK rising 0.5tc(SPC)S - 3 Polarity = 1, Phase = 0, from SPI0_CLK rising 0.5tc(SPC)S - 3 Polarity = 1, Phase = 1, from SPI0_CLK falling 0.5tc(SPC)S - 3 Polarity = 0, Phase = 0, to SPI0_CLK falling 0 Polarity = 0, Phase = 1, to SPI0_CLK rising 0 Polarity = 1, Phase = 0, to SPI0_CLK rising 0 Polarity = 1, Phase = 1, to SPI0_CLK falling 0 Polarity = 0, Phase = 0, from SPI0_CLK falling 5 Polarity = 0, Phase = 1, from SPI0_CLK rising 5 Polarity = 1, Phase = 0, from SPI0_CLK rising 5 Polarity = 1, Phase = 1, from SPI0_CLK falling 5 ns ns ns P = SYSCLK2 period First bit may be MSB or LSB depending upon SPI configuration. SO(0) refers to first bit and SO(n) refers to last bit output on SPI0_SOMI. SI(0) refers to the first bit input and SI(n) refers to the last bit input on SPI0_SIMO. Measured from the termination of the write of new data to the SPI module, In analyzing throughput requirements, additional internal bus cycles must be accounted for to allow data to be written to the SPI module by the CPU. Copyright © 2010–2014, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 113 AM1707 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 www.ti.com Table 6-56. Additional (1) SPI0 Master Timings, 4-Pin Enable Option (2) No. 17 18 (1) (2) (3) (4) (5) PARAMETER td(ENA_SPC)M td(SPC_ENA)M Delay from slave assertion of SPI0_ENA active to first SPI0_CLK from master. (4) Max delay for slave to deassert SPI0_ENA after final SPI0_CLK edge to ensure master does not begin the next transfer. (5) MIN (3) MAX UNIT Polarity = 0, Phase = 0, to SPI0_CLK rising 3P + 3.6 Polarity = 0, Phase = 1, to SPI0_CLK rising 0.5tc(SPC)M + 3P + 3.6 Polarity = 1, Phase = 0, to SPI0_CLK falling 3P + 3.6 Polarity = 1, Phase = 1, to SPI0_CLK falling 0.5tc(SPC)M + 3P + 3.6 Polarity = 0, Phase = 0, from SPI0_CLK falling 0.5tc(SPC)M + P + 5 Polarity = 0, Phase = 1, from SPI0_CLK falling P+5 Polarity = 1, Phase = 0, from SPI0_CLK rising 0.5tc(SPC)M + P + 5 Polarity = 1, Phase = 1, from SPI0_CLK rising P+5 ns ns These parameters are in addition to the general timings for SPI master modes (Table 6-54). P = SYSCLK2 period Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four master clocking modes. In the case where the master SPI is ready with new data before SPI0_ENA assertion. In the case where the master SPI is ready with new data before SPI0_EN A deassertion. Table 6-57. Additional (1) SPI0 Master Timings, 4-Pin Chip Select Option (2) No. 19 20 (1) (2) (3) (4) (5) (6) (7) 114 PARAMETER td(SCS_SPC)M td(SPC_SCS)M Delay from SPI0_SCS active to first SPI0_CLK (4) (5) Delay from final SPI0_CLK edge to master deasserting SPI0_SCS (6) (7) (3) MIN MAX Polarity = 0, Phase = 0, to SPI0_CLK rising 2P - 5 Polarity = 0, Phase = 1, to SPI0_CLK rising 0.5tc(SPC)M + 2P - 5 Polarity = 1, Phase = 0, to SPI0_CLK falling 2P - 5 Polarity = 1, Phase = 1, to SPI0_CLK falling 0.5tc(SPC)M + 2P - 5 Polarity = 0, Phase = 0, from SPI0_CLK falling 0.5tc(SPC)M + P - 3 Polarity = 0, Phase = 1, from SPI0_CLK falling P-3 Polarity = 1, Phase = 0, from SPI0_CLK rising 0.5tc(SPC)M + P - 3 Polarity = 1, Phase = 1, from SPI0_CLK rising P-3 UNIT ns ns These parameters are in addition to the general timings for SPI master modes (Table 6-54). P = SYSCLK2 period Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four master clocking modes. In the case where the master SPI is ready with new data before SPI0_SCS assertion. This delay can be increased under software control by the register bit field SPIDELAY.C2TDELAY[4:0]. Except for modes when SPIDAT1.CSHOLD is enabled and there is additional data to transmit. In this case, SPI0_SCS will remain asserted. This delay can be increased under software control by the register bit field SPIDELAY.T2CDELAY[4:0]. Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 Copyright © 2010–2014, Texas Instruments Incorporated AM1707 www.ti.com SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 Table 6-58. Additional (1) SPI0 Master Timings, 5-Pin Option (2) No. 18 20 21 PARAMETER td(SPC_ENA)M td(SPC_SCS)M td(SCSL_ENAL)M MIN Max delay for slave to deassert SPI0_ENA after final SPI0_CLK edge to ensure master does not begin the next transfer. (4) Delay from final SPI0_CLK edge to master deasserting SPI0_SCS (5) (6) td(SCS_SPC)M Polarity = 0, Phase = 1, from SPI0_CLK falling P+5 Polarity = 1, Phase = 0, from SPI0_CLK rising 0.5tc(SPC)M + P + 5 Polarity = 1, Phase = 1, from SPI0_CLK rising P+5 td(ENA_SPC)M ns Polarity = 0, Phase = 0, from SPI0_CLK falling 0.5tc(SPC)M + P - 3 Polarity = 0, Phase = 1, from SPI0_CLK falling P-3 Polarity = 1, Phase = 0, from SPI0_CLK rising 0.5tc(SPC)M + P - 3 Polarity = 1, Phase = 1, from SPI0_CLK rising P-3 ns Max delay for slave SPI to drive SPI0_ENA valid after master asserts SPI0_SCS to delay the master from beginning the next transfer, Polarity = 0, Phase = 1, Delay from SPI0_SCS active to SPI0_CLK rising to first SPI0_CLK (7) (8) (9) Polarity = 1, Phase = 0, to SPI0_CLK falling Delay from assertion of SPI0_ENA low to first SPI0_CLK edge. (10) UNIT 0.5tc(SPC)M + P + 5 Polarity = 1, Phase = 1, to SPI0_CLK falling 23 MAX Polarity = 0, Phase = 0, from SPI0_CLK falling Polarity = 0, Phase = 0, to SPI0_CLK rising 22 (3) C2TDELAY + P ns 2P - 5 0.5tc(SPC)M + 2P - 5 ns 2P - 5 0.5tc(SPC)M + 2P - 5 Polarity = 0, Phase = 0, to SPI0_CLK rising 3P + 3.6 Polarity = 0, Phase = 1, to SPI0_CLK rising 0.5tc(SPC)M + 3P + 3.6 Polarity = 1, Phase = 0, to SPI0_CLK falling 3P + 3.6 Polarity = 1, Phase = 1, to SPI0_CLK falling 0.5tc(SPC)M + 3P + 3.6 ns (1) (2) (3) (4) (5) These parameters are in addition to the general timings for SPI master modes (Table 6-55). P = SYSCLK2 period Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four master clocking modes. In the case where the master SPI is ready with new data before SPI0_ENA deassertion. Except for modes when SPIDAT1.CSHOLD is enabled and there is additional data to transmit. In this case, SPI0_SCS will remain asserted. (6) This delay can be increased under software control by the register bit field SPIDELAY.T2CDELAY[4:0]. (7) If SPI0_ENA is asserted immediately such that the transmission is not delayed by SPI0_ENA. (8) In the case where the master SPI is ready with new data before SPI0_SCS assertion. (9) This delay can be increased under software control by the register bit field SPIDELAY.C2TDELAY[4:0]. (10) If SPI0_ENA was initially deasserted high and SPI0_CLK is delayed. Copyright © 2010–2014, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 115 AM1707 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 www.ti.com Table 6-59. Additional (1) SPI0 Slave Timings, 4-Pin Enable Option (2) No. 24 (1) (2) (3) PARAMETER td(SPC_ENAH)S Delay from final SPI0_CLK edge to slave deasserting SPI0_ENA. MIN (3) MAX UNIT Polarity = 0, Phase = 0, from SPI0_CLK falling 1.5 P - 3 2.5 P + 18.5 Polarity = 0, Phase = 1, from SPI0_CLK falling – 0.5tc(SPC)M + 1.5 P - 3 – 0.5tc(SPC)M + 2.5 P + 18.5 Polarity = 1, Phase = 0, from SPI0_CLK rising 1.5 P - 3 2.5 P + 18.5 Polarity = 1, Phase = 1, from SPI0_CLK rising – 0.5tc(SPC)M + 1.5 P - 3 – 0.5tc(SPC)M + 2.5 P + 18.5 ns These parameters are in addition to the general timings for SPI slave modes (Table 6-55). P = SYSCLK2 period Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four slave clocking modes. Table 6-60. Additional (1) SPI0 Slave Timings, 4-Pin Chip Select Option (2) No. 25 26 PARAMETER td(SCSL_SPC)S td(SPC_SCSH)S MIN Required delay from SPI0_SCS asserted at slave to first SPI0_CLK edge at slave. Required delay from final SPI0_CLK edge before SPI0_SCS is deasserted. (3) MAX 2P Polarity = 0, Phase = 0, from SPI0_CLK falling 0.5tc(SPC)M + P + 5 Polarity = 0, Phase = 1, from SPI0_CLK falling P+5 Polarity = 1, Phase = 0, from SPI0_CLK rising 0.5tc(SPC)M + P + 5 Polarity = 1, Phase = 1, from SPI0_CLK rising P+5 UNIT ns ns 27 tena(SCSL_SOMI)S Delay from master asserting SPI0_SCS to slave driving SPI0_SOMI valid P + 18.5 ns 28 tdis(SCSH_SOMI)S Delay from master deasserting SPI0_SCS to slave 3-stating SPI0_SOMI P + 18.5 ns (1) (2) (3) 116 These parameters are in addition to the general timings for SPI slave modes (Table 6-55). P = SYSCLK2 period Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four slave clocking modes. Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 Copyright © 2010–2014, Texas Instruments Incorporated AM1707 www.ti.com SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 Table 6-61. Additional (1) SPI0 Slave Timings, 5-Pin Option (2) No. 25 26 PARAMETER td(SCSL_SPC)S td(SPC_SCSH)S (3) MIN Required delay from SPI0_SCS asserted at slave to first SPI0_CLK edge at slave. Required delay from final SPI0_CLK edge before SPI0_SCS is deasserted. MAX UNIT 2P Polarity = 0, Phase = 0, from SPI0_CLK falling 0.5tc(SPC)M + P + 5 Polarity = 0, Phase = 1, from SPI0_CLK falling P+5 Polarity = 1, Phase = 0, from SPI0_CLK rising 0.5tc(SPC)M + P + 5 Polarity = 1, Phase = 1, from SPI0_CLK rising P+5 ns ns 27 tena(SCSL_SOMI)S Delay from master asserting SPI0_SCS to slave driving SPI0_SOMI valid P + 18.5 ns 28 tdis(SCSH_SOMI)S Delay from master deasserting SPI0_SCS to slave 3-stating SPI0_SOMI P + 18.5 ns 29 tena(SCSL_ENA)S Delay from master deasserting SPI0_SCS to slave driving SPI0_ENA valid 18.5 ns 30 (1) (2) (3) (4) tdis(SPC_ENA)S Delay from final clock receive edge on SPI0_CLK to slave 3-stating or driving high SPI0_ENA. (4) Polarity = 0, Phase = 0, from SPI0_CLK falling 2.5 P + 18.5 Polarity = 0, Phase = 1, from SPI0_CLK rising 2.5 P + 18.5 Polarity = 1, Phase = 0, from SPI0_CLK rising 2.5 P + 18.5 Polarity = 1, Phase = 1, from SPI0_CLK falling 2.5 P + 18.5 ns These parameters are in addition to the general timings for SPI slave modes (Table 6-55). P = SYSCLK2 period Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four slave clocking modes. SPI0_ENA is driven low after the transmission completes if the SPIINT0.ENABLE_HIGHZ bit is programmed to 0. Otherwise it is 3stated. If 3-stated, an external pullup resistor should be used to provide a valid level to the master. This option is useful when tying several SPI slave devices to a single master. Table 6-62. General Timing Requirements for SPI1 Master Modes (1) No. MIN UNIT Cycle Time, SPI1_CLK, All Master Modes 2 tw(SPCH)M Pulse Width High, SPI1_CLK, All Master Modes 0.5tc(SPC)M - 1 ns 3 tw(SPCL)M Pulse Width Low, SPI1_CLK, All Master Modes 0.5tc(SPC)M - 1 ns 5 td(SIMO_SPC)M td(SPC_SIMO)M Delay, initial data bit valid on SPI1_SIMO to initial edge on SPI1_CLK (2) Delay, subsequent bits valid on SPI1_SIMO after transmit edge of SPI1_CLK greater of 3P or 20 MAX tc(SPC)M 4 (1) (2) PARAMETER 1 256P Polarity = 0, Phase = 0, to SPI1_CLK rising 5 Polarity = 0, Phase = 1, to SPI1_CLK rising - 0.5tc(SPC)M + 5 Polarity = 1, Phase = 0, to SPI1_CLK falling 5 Polarity = 1, Phase = 1, to SPI1_CLK falling - 0.5tc(SPC)M + 5 Polarity = 0, Phase = 0, from SPI1_CLK rising 5 Polarity = 0, Phase = 1, from SPI1_CLK falling 5 Polarity = 1, Phase = 0, from SPI1_CLK falling 5 Polarity = 1, Phase = 1, from SPI1_CLK rising 5 ns ns ns P = SYSCLK2 period First bit may be MSB or LSB depending upon SPI configuration. MO(0) refers to first bit and MO(n) refers to last bit output on SPI1_SIMO. MI(0) refers to the first bit input and MI(n) refers to the last bit input on SPI1_SOMI. Copyright © 2010–2014, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 117 AM1707 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 www.ti.com Table 6-62. General Timing Requirements for SPI1 Master Modes(1) (continued) No. 6 PARAMETER toh(SPC_SIMO)M 7 tsu(SOMI_SPC)M 8 tih(SPC_SOMI)M Output hold time, SPI1_SIMO valid after receive edge of SPI1_CLK MIN 0.5tc(SPC)M - 3 Polarity = 0, Phase = 1, from SPI1_CLK rising 0.5tc(SPC)M - 3 Polarity = 1, Phase = 0, from SPI1_CLK rising 0.5tc(SPC)M - 3 Polarity = 1, Phase = 1, from SPI1_CLK falling 0.5tc(SPC)M - 3 Polarity = 0, Phase = 0, to SPI1_CLK falling 0 UNIT ns Polarity = 0, Phase = 1, Input Setup Time, SPI1_SOMI to SPI1_CLK rising valid before receive edge of Polarity = 1, Phase = 0, SPI1_CLK to SPI1_CLK rising Input Hold Time, SPI1_SOMI valid after receive edge of SPI1_CLK MAX Polarity = 0, Phase = 0, from SPI1_CLK falling 0 ns 0 Polarity = 1, Phase = 1, to SPI1_CLK falling 0 Polarity = 0, Phase = 0, from SPI1_CLK falling 5 Polarity = 0, Phase = 1, from SPI1_CLK rising 5 Polarity = 1, Phase = 0, from SPI1_CLK rising 5 Polarity = 1, Phase = 1, from SPI1_CLK falling 5 ns Table 6-63. General Timing Requirements for SPI1 Slave Modes (1) No. PARAMETER MIN 9 tc(SPC)S Cycle Time, SPI1_CLK, All Slave Modes 10 tw(SPCH)S 11 tw(SPCL)S 12 13 (1) (2) (3) 118 tsu(SOMI_SPC)S td(SPC_SOMI)S MAX UNIT greater of 3P or 40 ns Pulse Width High, SPI1_CLK, All Slave Modes 18 ns Pulse Width Low, SPI1_CLK, All Slave Modes 18 ns Setup time, transmit data written to SPI before initial clock edge from master. (2) (3) Delay, subsequent bits valid on SPI1_SOMI after transmit edge of SPI1_CLK Polarity = 0, Phase = 0, to SPI1_CLK rising 2P Polarity = 0, Phase = 1, to SPI1_CLK rising 2P Polarity = 1, Phase = 0, to SPI1_CLK falling 2P Polarity = 1, Phase = 1, to SPI1_CLK falling 2P ns Polarity = 0, Phase = 0, from SPI1_CLK rising 19 Polarity = 0, Phase = 1, from SPI1_CLK falling 19 Polarity = 1, Phase = 0, from SPI1_CLK falling 19 Polarity = 1, Phase = 1, from SPI1_CLK rising 19 ns P = SYSCLK2 period First bit may be MSB or LSB depending upon SPI configuration. SO(0) refers to first bit and SO(n) refers to last bit output on SPI1_SOMI. SI(0) refers to the first bit input and SI(n) refers to the last bit input on SPI1_SIMO. Measured from the termination of the write of new data to the SPI module, In analyzing throughput requirements, additional internal bus cycles must be accounted for to allow data to be written to the SPI module by the CPU. Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 Copyright © 2010–2014, Texas Instruments Incorporated AM1707 www.ti.com SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 Table 6-63. General Timing Requirements for SPI1 Slave Modes(1) (continued) No. 14 15 16 PARAMETER toh(SPC_SOMI)S tsu(SIMO_SPC)S tih(SPC_SIMO)S Output hold time, SPI1_SOMI valid after receive edge of SPI1_CLK Input Setup Time, SPI1_SIMO valid before receive edge of SPI1_CLK Input Hold Time, SPI1_SIMO valid after receive edge of SPI1_CLK MIN MAX Polarity = 0, Phase = 0, from SPI1_CLK falling 0.5tc(SPC)S - 3 Polarity = 0, Phase = 1, from SPI1_CLK rising 0.5tc(SPC)S - 3 Polarity = 1, Phase = 0, from SPI1_CLK rising 0.5tc(SPC)S - 3 Polarity = 1, Phase = 1, from SPI1_CLK falling 0.5tc(SPC)S - 3 Polarity = 0, Phase = 0, to SPI1_CLK falling 0 Polarity = 0, Phase = 1, to SPI1_CLK rising 0 Polarity = 1, Phase = 0, to SPI1_CLK rising 0 Polarity = 1, Phase = 1, to SPI1_CLK falling 0 Polarity = 0, Phase = 0, from SPI1_CLK falling 5 Polarity = 0, Phase = 1, from SPI1_CLK rising 5 Polarity = 1, Phase = 0, from SPI1_CLK rising 5 Polarity = 1, Phase = 1, from SPI1_CLK falling 5 ns ns ns Table 6-64. Additional (1) SPI1 Master Timings, 4-Pin Enable Option (2) No. 17 18 (1) (2) (3) (4) (5) PARAMETER td(EN A_SPC)M td(SPC_ENA)M Delay from slave assertion of SPI1_ENA active to first SPI1_CLK from master. (4) Max delay for slave to deassert SPI1_ENA after final SPI1_CLK edge to ensure master does not begin the next transfer. (5) UNIT MIN (3) MAX UNIT Polarity = 0, Phase = 0, to SPI1_CLK rising 3P + 3 Polarity = 0, Phase = 1, to SPI1_CLK rising 0.5tc(SPC)M + 3P + 3 Polarity = 1, Phase = 0, to SPI1_CLK falling 3P + 3 Polarity = 1, Phase = 1, to SPI1_CLK falling 0.5tc(SPC)M + 3P + 3 Polarity = 0, Phase = 0, from SPI1_CLK falling 0.5tc(SPC)M + P + 5 Polarity = 0, Phase = 1, from SPI1_CLK falling P+5 Polarity = 1, Phase = 0, from SPI1_CLK rising 0.5tc(SPC)M + P + 5 Polarity = 1, Phase = 1, from SPI1_CLK rising P+5 ns ns These parameters are in addition to the general timings for SPI master modes (Table 6-62). P = SYSCLK2 period Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four master clocking modes. In the case where the master SPI is ready with new data before SPI1_ENA assertion. In the case where the master SPI is ready with new data before SPI1_ENA deassertion. Copyright © 2010–2014, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 119 AM1707 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 www.ti.com Table 6-65. Additional (1) SPI1 Master Timings, 4-Pin Chip Select Option (2) No. 19 20 (1) (2) (3) (4) (5) (6) PARAMETER td(SCS_SPC)M td(SPC_SCS)M (3) MIN Delay from SPI1_SCS active to first SPI1_CLK (4) (5) Delay from final SPI1_CLK edge to master deasserting SPI1_SCS (6) (7) MAX Polarity = 0, Phase = 0, to SPI1_CLK rising 2P - 5 Polarity = 0, Phase = 1, to SPI1_CLK rising 0.5tc(SPC)M + 2P - 5 Polarity = 1, Phase = 0, to SPI1_CLK falling 2P - 5 Polarity = 1, Phase = 1, to SPI1_CLK falling 0.5tc(SPC)M + 2P - 5 Polarity = 0, Phase = 0, from SPI1_CLK falling 0.5tc(SPC)M + P - 3 Polarity = 0, Phase = 1, from SPI1_CLK falling P-3 Polarity = 1, Phase = 0, from SPI1_CLK rising 0.5tc(SPC)M + P -3 Polarity = 1, Phase = 1, from SPI1_CLK rising P-3 UNIT ns ns These parameters are in addition to the general timings for SPI master modes (Table 6-62). P = SYSCLK2 period Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four master clocking modes. In the case where the master SPI is ready with new data before SPI1_SCS assertion. This delay can be increased under software control by the register bit field SPIDELAY.C2TDELAY[4:0]. Except for modes when SPIDAT1.CSHOLD is enabled and there is additional data to transmit. In this case, SPI1_SCS will remain asserted. This delay can be increased under software control by the register bit field SPIDELAY.T2CDELAY[4:0]. (7) Table 6-66. Additional (1) SPI1 Master Timings, 5-Pin Option (2) No. 18 20 21 (1) (2) (3) (4) (5) (6) 120 PARAMETER td(SPC_ENA)M td(SPC_SCS)M td(SCSL_ENAL)M Max delay for slave to deassert SPI1_ENA after final SPI1_CLK edge to ensure master does not begin the next transfer. (4) Delay from final SPI1_CLK edge to master deasserting SPI1_SCS (5) (6) MIN (3) MAX UNIT Polarity = 0, Phase = 0, from SPI1_CLK falling 0.5tc(SPC)M + P + 5 Polarity = 0, Phase = 1, from SPI1_CLK falling P+5 Polarity = 1, Phase = 0, from SPI1_CLK rising 0.5tc(SPC)M + P + 5 Polarity = 1, Phase = 1, from SPI1_CLK rising P+5 ns Polarity = 0, Phase = 0, from SPI1_CLK falling 0.5tc(SPC)M + P - 3 Polarity = 0, Phase = 1, from SPI1_CLK falling P-3 Polarity = 1, Phase = 0, from SPI1_CLK rising 0.5tc(SPC)M + P - 3 Polarity = 1, Phase = 1, from SPI1_CLK rising P-3 Max delay for slave SPI to drive SPI1_ENA valid after master asserts SPI1_SCS to delay the master from beginning the next transfer. ns C2TDELAY + P ns These parameters are in addition to the general timings for SPI master modes (Table 6-63). P = SYSCLK2 period Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four master clocking modes. In the case where the master SPI is ready with new data before SPI1_ENA deassertion. Except for modes when SPIDAT1.CSHOLD is enabled and there is additional data to transmit. In this case, SPI1_SCS will remain asserted. This delay can be increased under software control by the register bit field SPIDELAY.T2CDELAY[4:0]. Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 Copyright © 2010–2014, Texas Instruments Incorporated AM1707 www.ti.com SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 Table 6-66. Additional(1) SPI1 Master Timings, 5-Pin Option(2) No. 22 23 (7) (8) (9) (10) PARAMETER Delay from SPI1_SCS active to first SPI1_CLK (7) (8) (9) td(SCS_SPC)M Delay from assertion of SPI1_ENA low to first SPI1_CLK edge. (10) td(ENA_SPC)M (3) (continued) MIN MAX Polarity = 0, Phase = 0, to SPI1_CLK rising 2P - 5 Polarity = 0, Phase = 1, to SPI1_CLK rising 0.5tc(SPC)M + 2P - 5 Polarity = 1, Phase = 0, to SPI1_CLK falling 2P - 5 Polarity = 1, Phase = 1, to SPI1_CLK falling 0.5tc(SPC)M + 2P - 5 ns Polarity = 0, Phase = 0, to SPI1_CLK rising 3P + 3 Polarity = 0, Phase = 1, to SPI1_CLK rising 0.5tc(SPC)M + 3P + 3 Polarity = 1, Phase = 0, to SPI1_CLK falling 3P + 3 Polarity = 1, Phase = 1, to SPI1_CLK falling 0.5tc(SPC)M + 3P + 3 ns If SPI1_ENA is asserted immediately such that the transmission is not delayed by SPI1_ENA. In the case where the master SPI is ready with new data before SPI1_SCS assertion. This delay can be increased under software control by the register bit field SPIDELAY.C2TDELAY[4:0]. If SPI1_ENA was initially deasserted high and SPI1_CLK is delayed. Table 6-67. Additional (1) SPI1 Slave Timings, 4-Pin Enable Option (2) No. 24 (1) (2) (3) PARAMETER td(SPC_ENAH)S Delay from final SPI1_CLK edge to slave deasserting SPI1_ENA. MIN (3) MAX UNIT Polarity = 0, Phase = 0, from SPI1_CLK falling 1.5 P - 3 2.5 P + 19 Polarity = 0, Phase = 1, from SPI1_CLK falling – 0.5tc(SPC)M + 1.5 P - 3 – 0.5tc(SPC)M + 2.5 P + 19 Polarity = 1, Phase = 0, from SPI1_CLK rising 1.5 P - 3 2.5 P + 19 Polarity = 1, Phase = 1, from SPI1_CLK rising – 0.5tc(SPC)M + 1.5 P - 3 – 0.5tc(SPC)M + 2.5 P + 19 ns These parameters are in addition to the general timings for SPI slave modes (Table 6-63). P = SYSCLK2 period Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four slave clocking modes. Table 6-68. Additional (1) SPI1 Slave Timings, 4-Pin Chip Select Option (2) No. 25 26 (1) (2) (3) UNIT PARAMETER td(SCSL_SPC)S td(SPC_SCSH)S MIN Required delay from SPI1_SCS asserted at slave to first SPI1_CLK edge at slave. Required delay from final SPI1_CLK edge before SPI1_SCS is deasserted. (3) MAX 2P Polarity = 0, Phase = 0, from SPI1_CLK falling 0.5tc(SPC)M + P + 5 Polarity = 0, Phase = 1, from SPI1_CLK falling P+5 Polarity = 1, Phase = 0, from SPI1_CLK rising 0.5tc(SPC)M + P + 5 Polarity = 1, Phase = 1, from SPI1_CLK rising P+5 UNIT ns ns 27 tena(SCSL_SOMI)S Delay from master asserting SPI1_SCS to slave driving SPI1_SOMI valid P + 19 ns 28 tdis(SCSH_SOMI)S Delay from master deasserting SPI1_SCS to slave 3-stating SPI1_SOMI P + 19 ns These parameters are in addition to the general timings for SPI slave modes (Table 6-63). P = SYSCLK2 period Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four slave clocking modes. Copyright © 2010–2014, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 121 AM1707 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 www.ti.com Table 6-69. Additional (1) SPI1 Slave Timings, 5-Pin Option (2) No. 25 26 PARAMETER td(SCSL_SPC)S td(SPC_SCSH)S MIN Required delay from SPI1_SCS asserted at slave to first SPI1_CLK edge at slave. Required delay from final SPI1_CLK edge before SPI1_SCS is deasserted. (3) MAX UNIT 2P Polarity = 0, Phase = 0, from SPI1_CLK falling 0.5tc(SPC)M + P + 5 Polarity = 0, Phase = 1, from SPI1_CLK falling P+5 Polarity = 1, Phase = 0, from SPI1_CLK rising 0.5tc(SPC)M + P + 5 Polarity = 1, Phase = 1, from SPI1_CLK rising P+5 ns ns 27 tena(SCSL_SOMI)S Delay from master asserting SPI1_SCS to slave driving SPI1_SOMI valid P + 19 ns 28 tdis(SCSH_SOMI)S Delay from master deasserting SPI1_SCS to slave 3-stating SPI1_SOMI P + 19 ns 29 tena(SCSL_ENA)S Delay from master deasserting SPI1_SCS to slave driving SPI1_ENA valid 19 ns 30 (1) (2) (3) (4) 122 tdis(SPC_ENA)S Delay from final clock receive edge on SPI1_CLK to slave 3-stating or driving high SPI1_ENA. (4) Polarity = 0, Phase = 0, from SPI1_CLK falling 2.5 P + 19 Polarity = 0, Phase = 1, from SPI1_CLK rising 2.5 P + 19 Polarity = 1, Phase = 0, from SPI1_CLK rising 2.5 P + 19 Polarity = 1, Phase = 1, from SPI1_CLK falling 2.5 P + 19 ns These parameters are in addition to the general timings for SPI slave modes (Table 6-63). P = SYSCLK2 period Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four slave clocking modes. SPI1_ENA is driven low after the transmission completes if the SPIINT0.ENABLE_HIGHZ bit is programmed to 0. Otherwise it is 3stated. If 3-stated, an external pullup resistor should be used to provide a valid level to the master. This option is useful when tying several SPI slave devices to a single master. Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 Copyright © 2010–2014, Texas Instruments Incorporated AM1707 www.ti.com SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 1 2 MASTER MODE POLARITY = 0 PHASE = 0 3 SPIx_CLK 5 4 SPIx_SIMO MO(0) 7 SPIx_SOMI 6 MO(1) MO(n−1) MO(n) 8 MI(0) MI(1) MI(n−1) MI(n) MASTER MODE POLARITY = 0 PHASE = 1 4 SPIx_CLK 6 5 SPIx_SIMO MO(0) 7 SPIx_SOMI MO(1) MO(n−1) MI(1) MI(n−1) MO(n) 8 MI(0) MI(n) 4 MASTER MODE POLARITY = 1 PHASE = 0 SPIx_CLK 5 SPIx_SIMO 6 MO(0) 7 SPIx_SOMI MO(1) MO(n−1) MO(n) 8 MI(0) MI(1) MI(n−1) MI(n) MASTER MODE POLARITY = 1 PHASE = 1 SPIx_CLK 5 4 SPIx_SIMO MO(0) 7 SPIx_SOMI MI(0) 6 MO(1) MO(n−1) MI(1) MI(n−1) MO(n) 8 MI(n) Figure 6-38. SPI Timings—Master Mode Copyright © 2010–2014, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 123 AM1707 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 www.ti.com 9 12 10 SLAVE MODE POLARITY = 0 PHASE = 0 11 SPIx_CLK 15 SPIx_SIMO 16 SI(0) SI(1) SI(n−1) 13 SPIx_SOMI SO(0) SI(n) 14 SO(1) SO(n−1) 12 SO(n) SLAVE MODE POLARITY = 0 PHASE = 1 SPIx_CLK 15 SPIx_SIMO 16 SI(0) SI(1) 13 SPIx_SOMI SO(0) SI(n−1) SI(n) SO(n−1) SO(n) 14 SO(1) SLAVE MODE POLARITY = 1 PHASE = 0 12 SPIx_CLK 15 SPIx_SIMO 16 SI(0) SI(1) SI(n−1) 13 SPIx_SOMI SO(0) SO(1) SI(n) 14 SO(n−1) SO(n) SLAVE MODE POLARITY = 1 PHASE = 1 12 SPIx_CLK 15 SPIx_SIMO 16 SI(0) SI(1) 13 SPIx_SOMI SO(0) SI(n−1) SI(n) 14 SO(1) SO(n−1) SO(n) Figure 6-39. SPI Timings—Slave Mode 124 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 Copyright © 2010–2014, Texas Instruments Incorporated AM1707 www.ti.com SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 MASTER MODE 4 PIN WITH ENABLE 17 18 SPIx_CLK SPIx_SIMO MO(0) SPIx_SOMI MI(0) MO(1) MO(n−1) MI(1) MI(n−1) MO(n) MI(n) SPIx_ENA MASTER MODE 4 PIN WITH CHIP SELECT 19 20 SPIx_CLK SPIx_SIMO MO(0) SPIx_SOMI MI(0) MO(1) MO(n−1) MO(n) MI(1) MI(n−1) MI(n) SPIx_SCS MASTER MODE 5 PIN 22 20 MO(1) 23 18 SPIx_CLK SPIx_SIMO MO(0) MO(n−1) MO(n) SPIx_SOMI 21 SPIx_ENA MI(0) MI(1) MI(n−1) MI(n) DESEL(A) DESEL(A) SPIx_SCS A. DESELECTED IS PROGRAMMABLE EITHER HIGH OR 3−STATE (REQUIRES EXTERNAL PULLUP) Figure 6-40. SPI Timings—Master Mode (4-Pin and 5-Pin) Copyright © 2010–2014, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 125 AM1707 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 www.ti.com SLAVE MODE 4 PIN WITH ENABLE 24 SPIx_CLK SPIx_SOMI SO(0) SO(1) SO(n−1) SO(n) SPIx_SIMO SI(0) SPIx_ENA SI(1) SI(n−1) SI(n) SLAVE MODE 4 PIN WITH CHIP SELECT 26 25 SPIx_CLK 27 SPIx_SOMI 28 SO(n−1) SO(0) SO(1) SO(n) SPIx_SIMO SI(0) SPIx_SCS SI(1) SI(n−1) SI(n) SLAVE MODE 5 PIN 26 30 25 SPIx_CLK 27 SPIx_SOMI 28 SO(1) SO(0) SO(n−1) SO(n) SPIx_SIMO 29 SPIx_ENA SI(0) SI(1) SI(n−1) SI(n) DESEL(A) DESEL(A) SPIx_SCS A. DESELECTED IS PROGRAMMABLE EITHER HIGH OR 3−STATE (REQUIRES EXTERNAL PULLUP) Figure 6-41. SPI Timings—Slave Mode (4-Pin and 5-Pin) 126 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 Copyright © 2010–2014, Texas Instruments Incorporated AM1707 www.ti.com SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 6.18 Enhanced Capture (eCAP) Peripheral The device contains up to three enhanced capture (eCAP) modules. Figure 6-42 shows a functional block diagram of a module. Uses for ECAP include: • Speed measurements of rotating machinery (e.g. toothed sprockets sensed via Hall sensors) • Elapsed time measurements between position sensor triggers • Period and duty cycle measurements of Pulse train signals • Decoding current or voltage amplitude derived from cuty cycle encoded current/voltage sensors The ECAP module described in this specification includes the following features: • 32 bit time base • 4 event time-stamp registers (each 32 bits) • Edge polarity selection for up to 4 sequenced time-stamp capture events • Interrupt on either of the 4 events • Single shot capture of up to 4 event time-stamps • Continuous mode capture of time-stamps in a 4 deep circular buffer • Absolute time-stamp capture • Difference mode time-stamp capture • All the above resources are dedicated to a single input pin The eCAP modules are clocked at the SYSCLK2 rate. Copyright © 2010–2014, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 127 AM1707 SYNC SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 SYNCIn SYNCOut www.ti.com CTRPHS (phase register−32 bit) TSCTR (counter−32 bit) APWM mode OVF RST CTR_OVF Delta−mode CTR [0−31] PWM compare logic PRD [0−31] CMP [0−31] 32 CTR=PRD CTR [0−31] CTR=CMP 32 32 CAP1 (APRD active) APRD shadow 32 32 LD LD1 MODE SELECT PRD [0−31] Polarity select 32 CMP [0−31] CAP2 (ACMP active) 32 LD LD2 32 CAP3 (APRD shadow) LD 32 CAP4 (ACMP shadow) LD Polarity select Event qualifier ACMP shadow eCAPx Event Pre-scale Polarity select LD3 LD4 4 Capture events Polarity select 4 CEVT[1:4] to Interrupt Controller Interrupt Trigger and Flag control CTR_OVF Continuous / Oneshot Capture Control CTR=PRD CTR=CMP Figure 6-42. eCAP Functional Block Diagram Table 6-70 is the list of the ECAP registers. 128 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 Copyright © 2010–2014, Texas Instruments Incorporated AM1707 www.ti.com SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 Table 6-70. ECAPx Configuration Registers ECAP0 BYTE ADDRESS ECAP1 BYTE ADDRESS ECAP2 BYTE ADDRESS 0x01F0 6000 0x01F0 7000 0x01F0 8000 TSCTR 0x01F0 6004 0x01F0 7004 0x01F0 8004 CTRPHS ACRONYM REGISTER DESCRIPTION Time-Stamp Counter Counter Phase Offset Value Register 0x01F0 6008 0x01F0 7008 0x01F0 8008 CAP1 Capture 1 Register 0x01F0 600C 0x01F0 700C 0x01F0 800C CAP2 Capture 2 Register 0x01F0 6010 0x01F0 7010 0x01F0 8010 CAP3 Capture 3 Register 0x01F0 6014 0x01F0 7014 0x01F0 8014 CAP4 Capture 4 Register 0x01F0 6028 0x01F0 7028 0x01F0 8028 ECCTL1 Capture Control Register 1 0x01F0 602A 0x01F0 702A 0x01F0 802A ECCTL2 Capture Control Register 2 0x01F0 602C 0x01F0 702C 0x01F0 802C ECEINT Capture Interrupt Enable Register 0x01F0 602E 0x01F0 702E 0x01F0 802E ECFLG Capture Interrupt Flag Register 0x01F0 6030 0x01F0 7030 0x01F0 8030 ECCLR Capture Interrupt Clear Register 0x01F0 6032 0x01F0 7032 0x01F0 8032 ECFRC Capture Interrupt Force Register 0x01F0 605C 0x01F0 705C 0x01F0 805C REVID Revision ID Table 6-71 shows the eCAP timing requirement and Table 6-72 shows the eCAP switching characteristics. Table 6-71. Enhanced Capture (eCAP) Timing Requirement PARAMETER tw(CAP) TEST CONDITIONS Capture input pulse width MIN MAX UNIT Asynchronous 2tc(SCO) cycles Synchronous 2tc(SCO) cycles Table 6-72. eCAP Switching Characteristics PARAMETER tw(APWM) MIN Pulse duration, APWMx output high/low Copyright © 2010–2014, Texas Instruments Incorporated 20 MAX UNIT ns Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 129 AM1707 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 www.ti.com 6.19 Enhanced Quadrature Encoder (eQEP) Peripheral The device contains up to two enhanced quadrature encoder (eQEP) modules. System control registers To CPU EQEPxENCLK Data bus SYSCLK2 QCPRD QCTMR QCAPCTL 16 16 16 Quadrature capture unit (QCAP) QCTMRLAT QCPRDLAT Registers used by multiple units QUTMR QWDTMR QUPRD QWDPRD 32 16 QEPCTL QEPSTS UTIME Interrupt Controller QFLG UTOUT QWDOG QDECCTL 16 WDTOUT EQEPxAIN QCLK EQEPxINT 16 QPOSLAT EQEPxIIN QI Position counter/ control unit (PCCU) EQEPxIOUT QS Quadrature decoder PHE (QDU) QPOSSLAT PCSOUT EQEPxIOE EQEPxSIN EQEPxSOE 32 QPOSCNT QPOSINIT QPOSMAX QPOSCMP EQEPxB/XDIR GPIO MUX EQEPxI EQEPxSOUT QPOSILAT 32 EQEPxA/XCLK EQEPxBIN QDIR EQEPxS 16 QEINT QFRC QCLR QPOSCTL Enhanced QEP (eQEP) Peripheral Figure 6-43. eQEP Functional Block Diagram 130 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 Copyright © 2010–2014, Texas Instruments Incorporated AM1707 www.ti.com SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 Table 6-73 is the list of the EQEP registers. Table 6-74 shows the eQEP timing requirement and Table 6-75 shows the eQEP switching characteristics. Table 6-73. EQEP Registers EQEP0 BYTE ADDRESS EQEP1 BYTE ADDRESS ACRONYM 0x01F0 9000 0x01F0 A000 QPOSCNT eQEP Position Counter 0x01F0 9004 0x01F0 A004 QPOSINIT eQEP Initialization Position Count 0x01F0 9008 0x01F0 A008 QPOSMAX eQEP Maximum Position Count 0x01F0 900C 0x01F0 A00C QPOSCMP eQEP Position-compare 0x01F0 9010 0x01F0 A010 QPOSILAT eQEP Index Position Latch 0x01F0 9014 0x01F0 A014 QPOSSLAT eQEP Strobe Position Latch 0x01F0 9018 0x01F0 A018 QPOSLAT 0x01F0 901C 0x01F0 A01C QUTMR eQEP Unit Timer 0x01F0 9020 0x01F0 A020 QUPRD eQEP Unit Period Register 0x01F0 9024 0x01F0 A024 QWDTMR eQEP Watchdog Timer 0x01F0 9026 0x01F0 A026 QWDPRD eQEP Watchdog Period Register 0x01F0 9028 0x01F0 A028 QDECCTL eQEP Decoder Control Register 0x01F0 902A 0x01F0 A02A QEPCTL 0x01F0 902C 0x01F0 A02C QCAPCTL eQEP Capture Control Register 0x01F0 902E 0x01F0 A02E QPOSCTL eQEP Position-compare Control Register 0x01F0 9030 0x01F0 A030 QEINT eQEP Interrupt Enable Register 0x01F0 9032 0x01F0 A032 QFLG eQEP Interrupt Flag Register 0x01F0 9034 0x01F0 A034 QCLR eQEP Interrupt Clear Register 0x01F0 9036 0x01F0 A036 QFRC eQEP Interrupt Force Register 0x01F0 9038 0x01F0 A038 QEPSTS eQEP Status Register REGISTER DESCRIPTION eQEP Position Latch eQEP Control Register 0x01F0 903A 0x01F0 A03A QCTMR eQEP Capture Timer 0x01F0 903C 0x01F0 A03C QCPRD eQEP Capture Period Register 0x01F0 903E 0x01F0 A03E QCTMRLAT eQEP Capture Timer Latch 0x01F0 9040 0x01F0 A040 QCPRDLAT eQEP Capture Period Latch 0x01F0 905C 0x01F0 A05C REVID eQEP Revision ID Table 6-74. Enhanced Quadrature Encoder Pulse (eQEP) Timing Requirements PARAMETER TEST CONDITIONS tw(QEPP) QEP input period Asynchronous/synchronous 2tc(SCO) MIN MAX cycles UNIT tw(INDEXH) QEP Index Input High time Asynchronous/synchronous 2tc(SCO) cycles tw(INDEXL) QEP Index Input Low time Asynchronous/synchronous 2tc(SCO) cycles tw(STROBH) QEP Strobe High time Asynchronous/synchronous 2tc(SCO) cycles tw(STROBL) QEP Strobe Input Low time Asynchronous/synchronous 2tc(SCO) cycles Table 6-75. eQEP Switching Characteristics MAX UNIT td(CNTR)xin Delay time, external clock to counter increment PARAMETER 4tc(SCO) cycles td(PCS-OUT)QEP Delay time, QEP input edge to position compare sync output 6tc(SCO) cycles Copyright © 2010–2014, Texas Instruments Incorporated MIN Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 131 AM1707 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 www.ti.com 6.20 Enhanced High-Resolution Pulse-Width Modulator (eHRPWM) The device contains up to three enhanced PWM Modules (eHRPWM). Figure 6-44 shows a block diagram of multiple eHRPWM modules. Figure 4-4 shows the signal interconnections with the eHRPWM. EPWMSYNCI EPWM0INT EPWM0SYNCI EPWM0A eHRPWM0 module EPWM0B EPWMTZ EPWM0SYNCO EPWM1SYNCI Interrupt Controllers EPWM1INT EPWM1A eHRPWM1 module EPWM1SYNCO EPWM1B GPIO MUX EPWMTZ EPWM2SYNCI EPWM2INT EPWM2A eHRPWM2 module EPWM2SYNCO To eCAP0 module (sync in) EPWM2B EPWMTZ EPWMSYNCO Peripheral Bus Figure 6-44. Multiple PWM Modules in the System 132 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 Copyright © 2010–2014, Texas Instruments Incorporated AM1707 www.ti.com SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 Time−base (TB) Sync in/out control Mux CTR=ZERO CTR=CMPB Disabled TBPRD shadow (16) TBPRD active (16) CTR=PRD EPWMSYNCO TBCTL[SYNCOSEL] TBCTL[CNTLDE] EPWMSYNCI Counter up/down (16 bit) CTR=ZERO CTR_Dir TBCNT active (16) TBPHSHR (8) 16 8 TBPHS active (24) CTR = PRD CTR = ZERO CTR = CMPA CTR = CMPB CTR_Dir Phase control Counter compare (CC) CTR=CMPA CMPAHR (8) 16 TBCTL[SWFSYNC] (software forced sync) Action qualifier (AQ) 8 Event trigger and interrupt (ET) EPWMxINT HiRes PWM (HRPWM) CMPA active (24) EPWMA EPWMxA CMPA shadow (24) CTR=CMPB Dead band (DB) 16 PWM chopper (PC) Trip zone (TZ) EPWMB EPWMxB CMPB active (16) EPWMxTZINT CMPB shadow (16) CTR = ZERO TZ Figure 6-45. eHRPWM Sub-Modules Showing Critical Internal Signal Interconnections Table 6-76. eHRPWM Module Control and Status Registers Grouped by Submodule eHRPWM0 BYTE ADDRESS eHRPWM1 BYTE ADDRESS eHRPWM2 BYTE ADDRESS 0x01F0 0000 0x01F0 2000 0x01F0 4000 0x01F0 0002 0x01F0 2002 0x01F0 0004 0x01F0 2004 0x01F0 0006 0x01F0 2006 ACRONYM SIZE SHADOW (×16) REGISTER DESCRIPTION TIME-BASE SUBMODULE REGISTERS TBCTL 1 No Time-Base Control Register 0x01F0 4002 TBSTS 1 No Time-Base Status Register 0x01F0 4004 TBPHSHR 1 No Extension for HRPWM Phase Register 0x01F0 4006 TBPHS 1 No Time-Base Phase Register 0x01F0 0008 0x01F0 2008 0x01F0 4008 TBCNT 1 No Time-Base Counter Register 0x01F0 000A 0x01F0 200A 0x01F0 400A TBPRD 1 Yes Time-Base Period Register (1) COUNTER-COMPARE SUBMODULE REGISTER 0x01F0 000E 0x01F0 200E 0x01F0 400E CMPCTL 1 No Counter-Compare Control Register 0x01F0 0010 0x01F0 2010 0x01F0 4010 CMPAHR 1 No Extension for HRPWM Counter-Compare A Register 0x01F0 0012 0x01F0 2012 0x01F0 4012 CMPA 1 Yes Counter-Compare A Register 0x01F0 0014 0x01F0 2014 0x01F0 4014 CMPB 1 Yes Counter-Compare B Register (1) ACTION-QUALIFIER SUBMODULE REGISTER (1) These registers are only available on eHRPWM instances that include the high-resolution PWM (HRPWM) extension; otherwise, these locations are reserved. Copyright © 2010–2014, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 133 AM1707 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 www.ti.com Table 6-76. eHRPWM Module Control and Status Registers Grouped by Submodule (continued) eHRPWM0 BYTE ADDRESS eHRPWM1 BYTE ADDRESS eHRPWM2 BYTE ADDRESS 0x01F0 0016 0x01F0 2016 0x01F0 4016 0x01F0 0018 0x01F0 2018 0x01F0 4018 ACRONYM SIZE SHADOW (×16) REGISTER DESCRIPTION AQCTLA 1 No Action-Qualifier Control Register for Output A (eHRPWMxA) AQCTLB 1 No Action-Qualifier Control Register for Output B (eHRPWMxB) 0x01F0 001A 0x01F0 201A 0x01F0 401A AQSFRC 1 No Action-Qualifier Software Force Register 0x01F0 001C 0x01F0 201C 0x01F0 401C AQCSFRC 1 Yes Action-Qualifier Continuous S/W Force Register Set 0x01F0 001E 0x01F0 201E 0x01F0 401E DEAD-BAND GENERATOR SUBMODULE REGISTER 0x01F0 0020 0x01F0 2020 0x01F0 4020 0x01F0 0022 0x01F0 2022 0x01F0 4022 DBCTL 1 No Dead-Band Generator Control Register DBRED 1 No Dead-Band Generator Rising Edge Delay Count Register DBFED 1 No Dead-Band Generator Falling Edge Delay Count Register PWM-CHOPPER SUBMODULE REGISTER 0x01F0 003C 0x01F0 203C 0x01F0 403C PCCTL 1 No PWM-Chopper Control Register TRIP-ZONE SUBMODULE REGISTER 0x01F0 0024 0x01F0 2024 0x01F0 4024 TZSEL 1 No Trip-Zone Select Register 0x01F0 0028 0x01F0 2028 0x01F0 4028 TZCTL 1 No Trip-Zone Control Register 0x01F0 002A 0x01F0 202A 0x01F0 402A TZEINT 1 No Trip-Zone Enable Interrupt Register 0x01F0 002C 0x01F0 202C 0x01F0 402C TZFLG 1 No Trip-Zone Flag Register 0x01F0 002E 0x01F0 202E 0x01F0 402E TZCLR 1 No Trip-Zone Clear Register 0x01F0 0030 0x01F0 2030 0x01F0 4030 TZFRC 1 No Trip-Zone Force Register EVENT-TRIGGER SUBMODULE REGISTER 0x01F0 0032 0x01F0 2032 0x01F0 4032 ETSEL 1 No Event-Trigger Selection Register 0x01F0 0034 0x01F0 2034 0x01F0 0036 0x01F0 2036 0x01F0 4034 ETPS 1 No Event-Trigger Pre-Scale Register 0x01F0 4036 ETFLG 1 No 0x01F0 0038 Event-Trigger Flag Register 0x01F0 2038 0x01F0 4038 ETCLR 1 No Event-Trigger Clear Register 0x01F0 003A 0x01F0 203A 0x01F0 403A ETFRC 1 No Event-Trigger Force Register HIGH-RESOLUTION PWM (HRPWM) SUBMODULE 0x01F0 1040 (2) 134 0x01F0 3040 0x01F0 5040 HRCNFG 1 No HRPWM Configuration Register (2) These registers are only available on eHRPWM instances that include the high-resolution PWM (HRPWM) extension; otherwise, these locations are reserved. Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 Copyright © 2010–2014, Texas Instruments Incorporated AM1707 www.ti.com SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 6.20.1 Enhanced Pulse Width Modulator (eHRPWM) Timing PWM refers to PWM outputs on eHRPWM1-6. Table 6-77 shows the PWM timing requirements and Table 6-78, switching characteristics. Table 6-77. eHRPWM Timing Requirements PARAMETER tw(SYNCIN) TEST CONDITIONS Sync input pulse width MIN MAX UNIT Asynchronous 2tc(SCO) cycles Synchronous 2tc(SCO) cycles Table 6-78. eHRPWM Switching Characteristics PARAMETER TEST CONDITIONS MIN MAX tw(PWM) Pulse duration, PWMx output high/low tw(SYNCOUT) Sync output pulse width td(PWM)TZA Delay time, trip input active to PWM forced high Delay time, trip input active to PWM forced low no pin load; no additional programmable delay 25 Delay time, trip input active to PWM Hi-Z no additional programmable delay 20 td(TZ-PWM)HZ UNIT 20 ns 8tc(SCO) cycles ns ns 6.20.2 Trip-Zone Input Timing tw(TZ) TZ td(TZ_PWM)HZ PWM (A) A. PWM refers to all the PWM pins in the device. The state of the PWM pins after TZ is taken high depends on the PWM recovery software. Figure 6-46. PWM Hi-Z Characteristics Table 6-79. Trip-Zone input Timing Requirements PARAMETER tw(TZ) MIN Pulse duration, TZx input low MAX UNIT Asynchronous 1tc(SCO) cycles Synchronous 2tc(SCO) cycles Table 6-80 shows the high-resolution PWM switching characteristics. Table 6-80. High Resolution PWM Characteristics at SYSCLKOUT = (60 - 100 MHz) PARAMETER Micro Edge Positioning (MEP) step size (1) MIN (1) TYP MAX 200 UNIT ps MEP step size will increase with low voltage and high temperature and decrease with high voltage and cold temperature. Copyright © 2010–2014, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 135 AM1707 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 www.ti.com 6.21 LCD Controller The LCD controller consists of two independent controllers, the Raster Controller and the LCD Interface Display Driver (LIDD) controller. Each controller operates independently from the other and only one of them is active at any given time. • The Raster Controller handles the synchronous LCD interface. It provides timing and data for constant graphics refresh to a passive display. It supports a wide variety of monochrome and full-color display types and sizes by use of programmable timing controls, a built-in palette, and a gray-scale/serializer. Graphics data is processed and stored in frame buffers. A frame buffer is a contiguous memory block in the system. A built-in DMA engine supplies the graphics data to the Raster engine which, in turn, outputs to the external LCD device. • The LIDD Controller supports the asynchronous LCD interface. It provides full-timing programmability of control signals (CS, WE, OE, ALE) and output data. The maximum resolution for the LCD controller is 1024 x 1024 pixels. The maximum frame rate is determined by the image size in combination with the pixel clock rate. OMAP-L1x/C674x/AM1x SOC Architecture and Throughput Overview (SPRAB93). Table 6-81 lists the LCD Controller registers. Table 6-81. LCD Controller (LCDC) Registers BYTE ADDRESS ACRONYM REGISTER DESCRIPTION 0x01E1 3000 REVID 0x01E1 3004 LCD_CTRL LCD Revision Identification Register LCD Control Register 0x01E1 3008 LCD_STAT LCD Status Register 0x01E1 300C LIDD_CTRL LCD LIDD Control Register 0x01E1 3010 LIDD_CS0_CONF LCD LIDD CS0 Configuration Register 0x01E1 3014 LIDD_CS0_ADDR LCD LIDD CS0 Address Read/Write Register 0x01E1 3018 LIDD_CS0_DATA LCD LIDD CS0 Data Read/Write Register 0x01E1 301C LIDD_CS1_CONF LCD LIDD CS1 Configuration Register 0x01E1 3020 LIDD_CS1_ADDR LCD LIDD CS1 Address Read/Write Register 0x01E1 3024 LIDD_CS1_DATA LCD LIDD CS1 Data Read/Write Register 0x01E1 3028 RASTER_CTRL 0x01E1 302C RASTER_TIMING_0 LCD Raster Timing 0 Register 0x01E1 3030 RASTER_TIMING_1 LCD Raster Timing 1 Register 0x01E1 3034 RASTER_TIMING_2 LCD Raster Timing 2 Register 0x01E1 3038 RASTER_SUBPANEL 0x01E1 3040 LCDDMA_CTRL 0x01E1 3044 LCDDMA_FB0_BASE 0x01E1 3048 LCDDMA_FB0_CEILING 0x01E1 304C LCDDMA_FB1_BASE 0x01E1 3050 LCDDMA_FB1_CEILING 136 LCD Raster Control Register LCD Raster Subpanel Display Register LCD DMA Control Register LCD DMA Frame Buffer 0 Base Address Register LCD DMA Frame Buffer 0 Ceiling Address Register LCD DMA Frame Buffer 1 Base Address Register LCD DMA Frame Buffer 1 Ceiling Address Register Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 Copyright © 2010–2014, Texas Instruments Incorporated AM1707 www.ti.com SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 6.21.1 LCD Interface Display Driver (LIDD Mode) Table 6-82. LCD LIDD Mode Timing Requirements No. PARAMETER MIN 16 tsu(LCD_D) Setup time, LCD_D[15:0] valid before LCD_MCLK high 17 th(LCD_D) Hold time, LCD_D[15:0] valid after LCD_MCLK high MAX UNIT 7 ns 0.5 ns Table 6-83. LCD LIDD Mode Timing Characteristics No. MIN MAX UNIT 4 td(LCD_D_V) Delay time, LCD_MCLK high to LCD_D[15:0] valid (write) PARAMETER -0.5 10 ns 5 td(LCD_D_I) Delay time, LCD_MCLK high to LCD_D[15:0] invalid (write) -0.5 10 ns 6 td(LCD_E_A) Delay time, LCD_MCLK high to LCD_AC_ENB_CS low -0.5 7 ns 7 td(LCD_E_I) Delay time, LCD_MCLK high to LCD_AC_ENB_CS high -0.5 7 ns 8 td(LCD_A_A) Delay time, LCD_MCLK high to LCD_VSYNC low -0.5 8 ns 9 td(LCD_A_I) Delay time, LCD_MCLK high to LCD_VSYNC high -0.5 8 ns 10 td(LCD_W_A) Delay time, LCD_MCLK high to LCD_HSYNC low -0.5 8 ns 11 td(LCD_W_I) Delay time, LCD_MCLK high to LCD_HSYNC high -0.5 8 ns 12 td(LCD_STRB_A) Delay time, LCD_MCLK high to LCD_PCLK active -0.5 12 ns 13 td(LCD_STRB_I) Delay time, LCD_MCLK high to LCD_PCLK inactive -0.5 12 ns 14 td(LCD_D_Z) Delay time, LCD_MCLK high to LCD_D[15:0] in 3-state -0.5 12 ns 15 td(Z_LCD_D) Delay time, LCD_MCLK high to LCD_D[15:0] (valid from 3-state) -0.5 12 ns CS_DELA Y 1 W_SU (0 to 31) 2 3 W_STROBE (1 to 63) R_SU (0 to 31) R_HOLD (1 to 15) R_STROBE (1 to 63) W_HOLD (1 to 15) CS_DELA Y LCD_MCLK 4 5 14 17 16 LCD_D[15:0] 15 Data[7:0] Write Data Read Status LCD_PCLK Not Used 8 9 LCD_VSYNC RS 10 11 LCD_HSYNC R/W 12 12 13 13 E0 E1 LCD_AC_ENB_CS Figure 6-47. Character Display HD44780 Write Copyright © 2010–2014, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 137 AM1707 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 www.ti.com W_HOLD (1–15) R_SU (0–31) 1 2 R_STROBE R_HOLD (1–63) (1–5) CS_DELAY W_SU W_STROBE (0–31) CS_DELAY (1–63) Not Used 3 LCD_MCLK 14 16 17 15 4 LCD_D[7:0] 5 Data[7:0] Write Instruction Read Data LCD_PCLK Not Used 8 9 RS LCD_VSYNC 10 11 LCD_HSYNC R/W 12 12 13 LCD_AC_ENB_CS 13 E0 E1 Figure 6-48. Character Display HD44780 Read 138 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 Copyright © 2010–2014, Texas Instruments Incorporated AM1707 www.ti.com SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 W_HOLD (1−15) W_HOLD (1−15) 1 2 W_SU W_STROBE (0−31) (1−63) CS_DELAY W_SU W_STROBE (0−31) (1−63) CS_DELAY 3 Clock LCD_MCLK 4 LCD_D[15:0] LCD_AC_ENB_CS (async mode) 5 5 4 Write Address Write Data 7 6 Data[15:0] 6 7 CS0 CS1 9 8 A0 LCD_VSYNC 10 11 11 10 R/W LCD_HSYNC 12 13 12 13 E LCD_PCLK Figure 6-49. Micro-Interface Graphic Display 6800 Write Copyright © 2010–2014, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 139 AM1707 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 www.ti.com W_HOLD (1−15) 1 2 W_SU W_STROBE (0−31) (1−63) R_SU (0−31) CS_DELAY R_STROBE R_HOLD (1−63 CS_DELAY (1−15) 3 Clock LCD_MCLK 4 LCD_D[15:0] 5 14 16 17 15 Write Address Data[15:0] 6 7 Read Data 6 LCD_AC_ENB_CS (async mode) 7 CS0 CS1 9 8 LCD_VSYNC A0 11 10 LCD_HSYNC R/W 12 13 12 LCD_PCLK 13 E Figure 6-50. Micro-Interface Graphic Display 6800 Read 140 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 Copyright © 2010–2014, Texas Instruments Incorporated AM1707 www.ti.com SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 R_SU (0−31) R_SU (0−31) R_STROBE R_HOLD CS_DELAY R_STROBE R_HOLD CS_DELAY 1 2 (1−63) 3 (1−15) (1−63) (1−15) Clock LCD_MCLK 14 16 17 15 14 17 16 15 LCD_D[15:0] Data[15:0] Read Data 6 LCD_AC_ENB_CS (async mode) 7 Read Status 6 7 CS0 CS1 8 9 LCD_VSYNC A0 R/W LCD_HSYNC 12 13 12 13 E LCD_PCLK Figure 6-51. Micro-Interface Graphic Display 6800 Status Copyright © 2010–2014, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 141 AM1707 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 www.ti.com W_HOLD (1−15) W_HOLD (1−15) 1 2 W_SU W_STROBE (0−31) 3 (1−63) CS_DELAY W_SU W_STROBE (0−31) (1−63) CS_DELAY Clock LCD_MCLK 4 LCD_D[15:0] LCD_AC_ENB_CS (async mode) 5 4 Write Address 5 DATA[15:0] Write Data 7 6 6 7 CS0 CS1 8 9 LCD_VSYNC A0 10 11 10 LCD_HSYNC 11 WR RD LCD_PCLK Figure 6-52. Micro-Interface Graphic Display 8080 Write 142 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 Copyright © 2010–2014, Texas Instruments Incorporated AM1707 www.ti.com SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 W_HOLD (1−15) W_SU W_STROBE R_SU (0−31) CS_DELAY R_STROBE R_HOLD CS_DELAY 1 2 3 (0−31) (1−63) (1−63) (1−15) 16 17 Clock LCD_MCLK 4 LCD_D[15:0] 5 14 15 Data[15:0] Write Address 6 7 LCD_AC_ENB_CS (async mode) 6 Read Data 7 CS0 CS1 9 8 LCD_VSYNC A0 10 11 WR LCD_HSYNC 12 13 RD LCD_PCLK Figure 6-53. Micro-Interface Graphic Display 8080 Read Copyright © 2010–2014, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 143 AM1707 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 www.ti.com R_SU (0−31) R_SU (0−31) R_STROBE 1 2 (1−63) R_HOLD CS_DELAY R_STROBE R_HOLD (1−15) (1−63) CS_DELAY (1−15) 3 Clock LCD_MCLK 14 16 17 15 14 16 17 15 Data[15:0] LCD_D[15:0] Read Data Read Status 7 6 6 7 LCD_AC_ENB_CS CS0 CS1 8 9 A0 LCD_VSYNC WR LCD_HSYNC 12 13 12 13 RD LCD_PCLK Figure 6-54. Micro-Interface Graphic Display 8080 Status 144 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 Copyright © 2010–2014, Texas Instruments Incorporated AM1707 www.ti.com SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 6.21.2 LCD Raster Mode Table 6-84. LCD Raster Mode Timing See Figure 6-55 through Figure 6-59 No. (1) (2) PARAMETER MIN MAX 1 tc(PIXEL_CLK) Cycle time, pixel clock 2 tw(PIXEL_CLK_H) Pulse duration, pixel clock high 3 tw(PIXEL_CLK_L) Pulse duration, pixel clock low 4 td(LCD_D_V) Delay time, LCD_PCLK high to LCD_D[15:0] valid (write) -0.5 9 5 td(LCD_D_IV) Delay time, LCD_PCLK high to LCD_D[15:0] invalid (write) -0.5 9 UNIT 26.6 ns 10 ns 10 ns (1) ns (1) ns 6 td(LCD_AC_ENB_CS_A) Delay time, LCD_PCLK low to LCD_AC_ENB_CS high S2 - 0.5 7 td(LCD_AC_ENB_CS_I) Delay time, LCD_PCLK low to LCD_AC_ENB_CS low S2 - 0.5 (1) S2 + 9 (1) ns 8 td(LCD_VSYNC_A) Delay time, LCD_PCLK low to LCD_VSYNC high (2) -0.5 12 ns 9 td(LCD_VSYNC_I) Delay time, LCD_PCLK low to LCD_VSYNC low (2) -0.5 12 ns --0.5 12 ns -0.5 12 ns (2) 10 td(LCD_HSYNC_A) Delay time, LCD_PCLK high to LCD_HSYNC high 11 td(LCD_HSYNC_I) Delay time, LCD_PCLK high to LCD_HSYNC low (2) S2 + 9 ns S2 = SYSCLK2 cycle time in ns The activation edge of the control signals LCD_VSYNC and LCD_HSYNC may be programmed to either the rising or falling edge of the pixel clock through the LCD (RASTER_TIMING_2) register. In Figure 6-56 through Figure 6-59, all signal polarity and activation edges are based on the default LCD (RASTER_TIMING_2) register settings. Frame-to-frame timing is derived through the following parameters in the LCD (RASTER_TIMING_1) register: • Vertical front porch (VFP) • Vertical sync pulse width (VSW) • Vertical back porch (VBP) • Lines per panel (LPP) Line-to-line timing is derived through the following parameters in the LCD (RASTER_TIMING_0) register: • Horizontal front porch (HFP) • Horizontal sync pulse width (HSW) • Horizontal back porch (HBP) • Pixels per panel (PPL) .LCD_AC_ENB_CS timing is derived through the following parameter in the LCD (RASTER_TIMING_2) register: • AC bias frequency (ACB) The display format produced in raster mode is shown in Figure 6-55. An entire frame is delivered one line at a time. The first line delivered starts at data pixel (1, 1) and ends at data pixel (P, 1). The last line delivered starts at data pixel (1, L) and ends at data pixel (P, L). The beginning of each new frame is denoted by the activation of I/O signal LCD_VSYNC. The beginning of each new line is denoted by the activation of I/O signal LCD_HSYNC. Copyright © 2010–2014, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 145 AM1707 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 www.ti.com Data Pixels (From 1 to P) 1, 1 2, 1 1, 2 2, 2 P−2, 1 3, 1 P−1, 1 P, 1 P−1, 2 P, 2 P, 3 Data Lines (From 1 to L) 1, 3 LCD P, L−2 1, L−2 1, L−1 2, L−1 1, L 2, L P−2, L 3, L P−1, L−1 P, L−1 P−1, L P, L Figure 6-55. LCD Raster-Mode Display Format 146 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 Copyright © 2010–2014, Texas Instruments Incorporated AM1707 www.ti.com SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 Frame Time ~ 70Hz Active TFT VSW (1 to 64) VBP (0 to 255) Line Time LPP VFP (1 to 1024) (0 to 255) VSW (1 to 64) Hsync LCD_HSYNC LCD_VSYNC Vsync Data LCD_D[15:0] 1, 1 P, 1 1, L−1 P, L−1 1, 2 P, 2 1, L P, L Enable LCD_AC_ENB_CS ACB ACB (0 to 255) (0 to 255) 10 11 Hsync LCD_HSYNC CLK LCD_PCLK Data LCD_D[15:0] 1, 1 2, 1 PLL 16 1, 2 P, 1 (1 to 1024) HFP HSW HBP (1 to 256) (1 to 64) (1 to 256) Line 1 2, 2 P, 2 PLL 16 (1 to 1024) Line 2 Figure 6-56. LCD Raster-Mode Active Copyright © 2010–2014, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 147 AM1707 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 www.ti.com Frame Time ~ 70Hz VBP = 0 VFP = 0 VBP = 0 VFP = 0 Passive STN VSW = 1 (1 to 64) VSW = 1 (1 to 64) LPP (1 to 1024) Line Time LCD_HSYNC LP LCD_VSYNC FP 1, L Data LCD_D[7:0] 1, 1: P, 1 1, L: P, L 1, 2: P, 2 1, 3: P, 3 1, 4: P, 4 1, 5: P, 5 1, L P, L 1, 6: P, 6 1, L−1 P, L−1 1, L−4 P, L−4 1, 1 P, 1 1, 2 P, 2 1, L−3 1, L−2 1, L−1 P, L−3 P, L−2 P, L−1 M LCD_AC_ENB_CS ACB ACB (0 to 255) (0 to 255) 11 10 LCD_HSYNC LP LCD_PCLK CP Data LCD_D[7:0] 1, 5 2, 5 P, 5 PPL 16 1, 6 (1 to 1024) HFP HSW HBP (1 to 256) (1 to 64) (1 to 256) 2, 6 P, 6 PPL 16 (1 to 2024) Line 6 Line 5 Figure 6-57. LCD Raster-Mode Passive 148 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 Copyright © 2010–2014, Texas Instruments Incorporated AM1707 www.ti.com SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 6 LCD_AC_ENB_CS 8 LCD_VSYNC 10 11 LCD_HSYNC 1 2 3 LCD_PCLK (passive mode) 5 4 LCD_D[7:0] (passive mode) 1, L 2, L P, L 1, 1 2, 1 P, 1 1 2 3 LCD_PCLK (active mode) 4 LCD_D[15:0] (active mode) VBP = 0 VFP = 0 VSW = 1 1, L 2, L PPL 16 × (1 to 1024) Line L 5 P, L HFP (1 to 256 HSW (1 to 64) HBP (1 to 256) PPL 16 ×(1 to 1024) Line 1 (Passive Only) Figure 6-58. LCD Raster-Mode Control Signal Activation Copyright © 2010–2014, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 149 AM1707 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 www.ti.com 7 LCD_AC_ENB_CS 9 LCD_VSYNC 10 11 LCD_HSYNC 1 3 4 LCD_PCLK (passive mode) 5 4 LCD_D[7:0] (passive mode) 1, 1 2, 1 P, 1 1, 2 2, 2 P, 2 1 2 3 LCD_PCLK (active mode) 4 LCD_D[15:0] (active mode) VBP = 0 VFP = 0 VSW = 1 5 1, 1 PPL 16 × (1 to 1024) HFP (1 to 256 HSW (1 to 64) HBP (1 to 256) Line 1 for passive 2, 1 P, 1 PPL 16 ×(1 to 1024) Line 1 for active Line 2 for passive Figure 6-59. LCD Raster-Mode Control Signal Deactivation 150 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 Copyright © 2010–2014, Texas Instruments Incorporated AM1707 www.ti.com SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 6.22 Timers The timers support the following features: • Configurable as single 64-bit timer or two 32-bit timers • Period timeouts generate interrupts, DMA events or external pin events • 8 32-bit compare registers • Compare matches generate interrupt events • Capture capability • 64-bit Watchdog capability (Timer64P1 only) Table 6-85 lists the timer registers. Table 6-85. Timer Registers Timer64P 0 Timer64P 1 0x01C2 0000 0x01C2 1000 REV 0x01C2 0004 0x01C2 1004 EMUMGT 0x01C2 0008 0x01C2 1008 GPINTGPEN 0x01C2 000C 0x01C2 100C GPDATGPDIR 0x01C2 0010 0x01C2 1010 TIM12 Timer Counter Register 12 0x01C2 0014 0x01C2 1014 TIM34 Timer Counter Register 34 0x01C2 0018 0x01C2 1018 PRD12 Timer Period Register 12 0x01C2 001C 0x01C2 101C PRD34 Timer Period Register 34 0x01C2 0020 0x01C2 1020 TCR 0x01C2 0024 0x01C2 1024 TGCR 0x01C2 0028 0x01C2 1028 WDTCR 0x01C2 0034 0x01C2 1034 REL12 Timer Reload Register 12 0x01C2 0038 0x01C2 1038 REL34 Timer Reload Register 34 0x01C2 003C 0x01C2 103C CAP12 Timer Capture Register 12 0x01C2 0040 0x01C2 1040 CAP34 Timer Capture Register 34 0x01C2 0044 0x01C2 1044 INTCTLSTAT 0x01C2 0060 0x01C2 1060 CMP0 Compare Register 0 0x01C2 0064 0x01C2 1064 CMP1 Compare Register 1 0x01C2 0068 0x01C2 1068 CMP2 Compare Register 2 0x01C2 006C 0x01C2 106C CMP3 Compare Register 3 0x01C2 0070 0x01C2 1070 CMP4 Compare Register 4 0x01C2 0074 0x01C2 1074 CMP5 Compare Register 5 0x01C2 0078 0x01C2 1078 CMP6 Compare Register 6 0x01C2 007C 0x01C2 107C CMP7 Compare Register 7 Copyright © 2010–2014, Texas Instruments Incorporated ACRONYM REGISTER DESCRIPTION Revision Register Emulation Management Register GPIO Interrupt and GPIO Enable Register GPIO Data and GPIO Direction Register Timer Control Register Timer Global Control Register Watchdog Timer Control Register Timer Interrupt Control and Status Register Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 151 AM1707 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 6.22.1 www.ti.com Timer Electrical Data/Timing Table 6-86. Timing Requirements for Timer Input (1) No. (2) (see Figure 6-60) PARAMETER MIN MAX 1 tc(TM64Px_IN12) Cycle time, TM64Px_IN12 2 tw(TINPH) Pulse duration, TM64Px_IN12 high 0.45C 0.55C 3 tw(TINPL) Pulse duration, TM64Px_IN12 low 0.45C 0.55C 4 (1) (2) (3) tt(TM64Px_IN12) UNIT 4P Transition time, TM64Px_IN12 ns 0.25P or 10 ns ns (3) ns P = OSCIN cycle time in ns. For example, when OSCIN frequency is 27 MHz, use P = 37.037 ns. C = TM64P0_IN12 cycle time in ns. For example, when TM64Px_IN12 frequency is 27 MHz, use C = 37.037 ns Whichever is smaller. P = the period of the applied signal. Maintaining transition times as fast as possible is recommended to improve noise immunity on input signals. 1 2 4 3 4 TM64P0_IN12 Figure 6-60. Timer Timing Table 6-87. Switching Characteristics Over Recommended Operating Conditions for Timer Output No. PARAMETER MIN MAX (1) UNIT 5 tw(TOUTH) Pulse duration, TM64P0_OUT12 high 4P ns 6 tw(TOUTL) Pulse duration, TM64P0_OUT12 low 4P ns (1) P = OSCIN cycle time in ns. For example, when OSCIN frequency is 27 MHz, use P = 37.037 ns. 5 6 TM64P0_OUT12 Figure 6-61. Timer Timing 152 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 Copyright © 2010–2014, Texas Instruments Incorporated AM1707 www.ti.com SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 6.23 Inter-Integrated Circuit Serial Ports (I2C0, I2C1) 6.23.1 I2C Device-Specific Information Having two I2C modules on the device simplifies system architecture. Figure 6-62 is block diagram of the I2C Module. Each I2C port supports: • Compatible with Philips® I2C Specification Revision 2.1 (January 2000) • Fast Mode up to 400 Kbps (no fail-safe I/O buffers) • Noise Filter to Remove Noise 50 ns or less • Seven- and Ten-Bit Device Addressing Modes • Master (Transmit/Receive) and Slave (Transmit/Receive) Functionality • Events: DMA, Interrupt, or Polling • General-Purpose I/O Capability if not used as I2C Clock Prescaler I2CPSCx Control Prescaler Register Bit Clock Generator I2Cx_SCL Noise Filter I2CCOARx Own Address Register I2CSARx Slave Address Register I2CCLKHx Clock Divide High Register I2CCMDRx Mode Register I2CCLKLx Clock Divide Low Register I2CEMDRx Extended Mode Register I2CCNTx Data Count Register I2CPID1 Peripheral ID Register 1 I2CPID2 Peripheral ID Register 2 Transmit I2Cx_SDA Noise Filter I2CXSRx Transmit Shift Register I2CDXRx Transmit Buffer Interrupt/DMA Receive I2CIERx I2CDRRx Receive Buffer I2CRSRx Receive Shift Register I2CSRCx I2CPFUNC Pin Function Register I2CPDOUT I2CSTRx Interrupt Enable Register Interrupt Status Register Interrupt Source Register Peripheral Configuration Bus Interrupt DMA Requests Control I2CPDIR I2CPDIN Pin Direction Register Pin Data In Register I2CPDSET I2CPDCLR Pin Data Out Register Pin Data Set Register Pin Data Clear Register Figure 6-62. I2C Module Block Diagram 6.23.2 I2C Peripheral Registers Description(s) Table 6-88 is the list of the I2C registers. Copyright © 2010–2014, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 153 AM1707 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 www.ti.com Table 6-88. Inter-Integrated Circuit (I2C) Registers 154 I2C0 BYTE ADDRESS I2C1 BYTE ADDRESS ACRONYM REGISTER DESCRIPTION 0x01C2 2000 0x01E2 8000 ICOAR I2C Own Address Register 0x01C2 2004 0x01E2 8004 ICIMR I2C Interrupt Mask Register 0x01C2 2008 0x01E2 8008 ICSTR I2C Interrupt Status Register 0x01C2 200C 0x01E2 800C ICCLKL I2C Clock Low-Time Divider Register 0x01C2 2010 0x01E2 8010 ICCLKH I2C Clock High-Time Divider Register 0x01C2 2014 0x01E2 8014 ICCNT I2C Data Count Register 0x01C2 2018 0x01E2 8018 ICDRR I2C Data Receive Register 0x01C2 201C 0x01E2 801C ICSAR I2C Slave Address Register 0x01C2 2020 0x01E2 8020 ICDXR I2C Data Transmit Register 0x01C2 2024 0x01E2 8024 ICMDR I2C Mode Register 0x01C2 2028 0x01E2 8028 ICIVR I2C Interrupt Vector Register 0x01C2 202C 0x01E2 802C ICEMDR I2C Extended Mode Register 0x01C2 2030 0x01E2 8030 ICPSC I2C Prescaler Register 0x01C2 2034 0x01E2 8034 REVID1 I2C Revision Identification Register 1 0x01C2 2038 0x01E2 8038 REVID2 I2C Revision Identification Register 2 0x01C2 2048 0x01E2 8048 ICPFUNC I2C Pin Function Register 0x01C2 204C 0x01E2 804C ICPDIR I2C Pin Direction Register 0x01C2 2050 0x01E2 8050 ICPDIN I2C Pin Data In Register 0x01C2 2054 0x01E2 8054 ICPDOUT I2C Pin Data Out Register 0x01C2 2058 0x01E2 8058 ICPDSET I2C Pin Data Set Register 0x01C2 205C 0x01E2 805C ICPDCLR I2C Pin Data Clear Register Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 Copyright © 2010–2014, Texas Instruments Incorporated AM1707 www.ti.com SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 6.23.3 I2C Electrical Data/Timing 6.23.3.1 Inter-Integrated Circuit (I2C) Timing Table 6-89 and Table 6-90 assume testing over recommended operating conditions (see Figure 6-63 and Figure 6-64). Table 6-89. I2C Input Timing Requirements No. PARAMETER 1 tc(SCL) Cycle time, I2Cx_SCL 2 tsu(SCLH-SDAL) Setup time, I2Cx_SCL high before I2Cx_SDA low 3 th(SCLL-SDAL) Hold time, I2Cx_SCL low after I2Cx_SDA low 4 tw(SCLL) Pulse duration, I2Cx_SCL low 5 tw(SCLH) Pulse duration, I2Cx_SCL high 6 tsu(SDA-SCLH) Setup time, I2Cx_SDA before I2Cx_SCL high 7 th(SDA-SCLL) Hold time, I2Cx_SDA after I2Cx_SCL low 8 tw(SDAH) Pulse duration, I2Cx_SDA high 9 tr(SDA) Rise time, I2Cx_SDA 10 tr(SCL) Rise time, I2Cx_SCL 11 tf(SDA) Fall time, I2Cx_SDA 12 tf(SCL) Fall time, I2Cx_SCL 13 tsu(SCLH-SDAH) Setup time, I2Cx_SCL high before I2Cx_SDA high 14 tw(SP) Pulse duration, spike (must be suppressed) 15 Cb Capacitive load for each bus line Copyright © 2010–2014, Texas Instruments Incorporated MIN Standard Mode 10 Fast Mode 2.5 Standard Mode 4.7 Fast Mode 0.6 Standard Mode 0.6 Standard Mode 4.7 Fast Mode 1.3 0.6 Standard Mode 250 Fast Mode 100 Standard Mode 0 Fast Mode 0 Standard Mode 4.7 Fast Mode 1.3 Standard Mode Fast Mode 20 + 0.1Cb Standard Mode ns 0.9 300 300 300 300 4 0.6 Standard Mode N/A 0 μs μs 300 20 + 0.1Cb Fast Mode Fast Mode μs 300 20 + 0.1Cb Standard Mode Fast Mode μs 1000 Standard Mode Fast Mode μs 1000 20 + 0.1Cb Standard Mode Fast Mode μs 4 Fast Mode UNIT μs 4 Fast Mode Standard Mode MAX ns ns ns ns μs 50 Standard Mode 400 Fast Mode 400 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 ns pF 155 AM1707 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 www.ti.com Table 6-90. I2C Switching Characteristics (1) No. PARAMETER MIN 16 tc(SCL) Cycle time, I2Cx_SCL 17 tsu(SCLH-SDAL) Setup time, I2Cx_SCL high before I2Cx_SDA low 18 th(SDAL-SCLL) Hold time, I2Cx_SCL low after I2Cx_SDA low 19 tw(SCLL) Pulse duration, I2Cx_SCL low 20 tw(SCLH) Pulse duration, I2Cx_SCL high 21 tsu(SDAV-SCLH) Setup time, I2Cx_SDA valid before I2Cx_SCL high 22 th(SCLL-SDAV) Hold time, I2Cx_SDA valid after I2Cx_SCL low 23 tw(SDAH) Pulse duration, I2Cx_SDA high 28 tsu(SCLH-SDAH) Setup time, I2Cx_SCL high before I2Cx_SDA high (1) Standard Mode 10 Fast Mode 2.5 Standard Mode 4.7 Fast Mode 0.6 Standard Mode MAX UNIT μs μs 4 Fast Mode 0.6 Standard Mode 4.7 Fast Mode 1.3 Standard Mode μs μs 4 Fast Mode 0.6 Standard Mode 250 Fast Mode 100 Standard Mode 0 Fast Mode 0 Standard Mode 4.7 Fast Mode 1.3 Standard Mode μs ns μs 0.9 μs 4 Fast Mode μs 0.6 I2C must be configured correctly to meet the timings in Table 6-90. 11 9 I2Cx_SDA 6 8 14 4 13 5 10 I2Cx_SCL 1 12 3 2 7 3 Stop Start Repeated Start Stop Figure 6-63. I2C Receive Timings 156 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 Copyright © 2010–2014, Texas Instruments Incorporated AM1707 www.ti.com SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 26 24 I2Cx_SDA 21 23 19 28 20 25 I2Cx_SCL 16 27 18 17 22 18 Stop Start Repeated Start Stop Figure 6-64. I2C Transmit Timings Copyright © 2010–2014, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 157 AM1707 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 6.24 www.ti.com Universal Asynchronous Receiver/Transmitter (UART) The device has 3 UART peripherals. Each UART has the following features: • 16-byte storage space for both the transmitter and receiver FIFOs • 1, 4, 8, or 14 byte selectable receiver FIFO trigger level for autoflow control and DMA • Autoflow control signals (CTS, RTS) on UART0 only • DMA signaling capability for both received and transmitted data • Programmable auto-rts and auto-cts for autoflow control • Programmable Baud Rate up to 3MBaud • Programmable Oversampling Options of x13 and x16 • Frequency pre-scale values from 1 to 65,535 to generate appropriate baud rates • Prioritized interrupts • Programmable serial data formats – 5, 6, 7, or 8-bit characters – Even, odd, or no parity bit generation and detection – 1, 1.5, or 2 stop bit generation • False start bit detection • Line break generation and detection • Internal diagnostic capabilities – Loopback controls for communications link fault isolation – Break, parity, overrun, and framing error simulation The UART registers are listed in Section 6.24.1 6.24.1 UART Peripheral Registers Description(s) Table 6-91 is the list of UART registers. Table 6-91. UART Registers UART0 BYTE ADDRESS UART1 BYTE ADDRESS UART2 BYTE ADDRESS ACRONYM 0x01C4 2000 0x01D0 C000 0x01D0 D000 RBR Receiver Buffer Register (read only) 0x01C4 2000 0x01D0 C000 0x01D0 D000 THR Transmitter Holding Register (write only) 0x01C4 2004 0x01D0 C004 0x01D0 D004 IER Interrupt Enable Register 0x01C4 2008 0x01D0 C008 0x01D0 D008 IIR Interrupt Identification Register (read only) 0x01C4 2008 0x01D0 C008 0x01D0 D008 FCR FIFO Control Register (write only) 0x01C4 200C 0x01D0 C00C 0x01D0 D00C LCR Line Control Register 0x01C4 2010 0x01D0 C010 0x01D0 D010 MCR Modem Control Register 0x01C4 2014 0x01D0 C014 0x01D0 D014 LSR Line Status Register 0x01C4 2018 0x01D0 C018 0x01D0 D018 MSR Modem Status Register 0x01C4 201C 0x01D0 C01C 0x01D0 D01C SCR Scratchpad Register 0x01C4 2020 0x01D0 C020 0x01D0 D020 DLL Divisor LSB Latch 0x01C4 2024 0x01D0 C024 0x01D0 D024 DLH Divisor MSB Latch 0x01C4 2028 0x01D0 C028 0x01D0 D028 REVID1 0x01C4 2030 0x01D0 C030 0x01D0 D030 PWREMU_MGMT 0x01C4 2034 0x01D0 C034 0x01D0 D034 MDR 158 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 REGISTER DESCRIPTION Revision Identification Register 1 Power and Emulation Management Register Mode Definition Register Copyright © 2010–2014, Texas Instruments Incorporated AM1707 www.ti.com SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 6.24.2 UART Electrical Data/Timing Table 6-92. Timing Requirements for UARTx Receive (1) (see Figure 6-65) No. 4 5 (1) MIN MAX UNIT tw(URXDB) Pulse duration, receive data bit (RXDn) PARAMETER 0.96U 1.05U ns tw(URXSB) Pulse duration, receive start bit 0.96U 1.05U ns U = UART baud time = 1/programmed baud rate. Table 6-93. Switching Characteristics Over Recommended Operating Conditions for UARTx Transmit (1) (see Figure 6-65) No. (1) (2) (3) (4) PARAMETER MIN MAX D/E (2) (3) UNIT MBaud (4) 1 f(baud) Maximum programmable baud rate 2 tw(UTXDB) Pulse duration, transmit data bit (TXDn) U-2 U+2 ns 3 tw(UTXSB) Pulse duration, transmit start bit U-2 U+2 ns U = UART baud time = 1/programmed baud rate. D = UART input clock in MHz. The UART(s) input clock source is PLL0_SYSCLK2. E = UART divisor x UART sampling rate. The UART divisor is set through the UART divisor latch registers (DLL and DLH). The UART sampling rate is set through the over-sampling mode select bit (OSM_SEL) of the UART mode definition register (MDR). Baud rate is not indicative of data rate. Actual data rate will be limited by system factors such as EDMA loading, EMIF loading, system frequency, etc. 3 2 UART_TXDn Start Bit Data Bits 5 4 UART_RXDn Start Bit Data Bits Figure 6-65. UART Transmit/Receive Timing Copyright © 2010–2014, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 159 AM1707 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 www.ti.com 6.25 USB1 Host Controller Registers (USB1.1 OHCI) All the device USB interfaces are compliant with Universal Serial Bus Specification, Revision 1.1. Table 6-94 is the list of USB1 Host Controller registers. Table 6-94. USB1 Host Controller Registers USB 1 BYTE ADDRESS (1) (2) (3) ACRONYM REGISTER DESCRIPTION 0x01E2 5000 HCREVISION OHCI Revision Number Register 0x01E2 5004 HCCONTROL HC Operating Mode Register 0x01E2 5008 HCCOMMANDSTATUS HC Command and Status Register 0x01E2 500C HCINTERRUPTSTATUS HC Interrupt and Status Register 0x01E2 5010 HCINTERRUPTENABLE HC Interrupt Enable Register 0x01E2 5014 HCINTERRUPTDISABLE HC Interrupt Disable Register 0x01E2 5018 HCHCCA HC HCAA Address Register (1) 0x01E2 501C HCPERIODCURRENTED HC Current Periodic Register (1) 0x01E2 5020 HCCONTROLHEADED 0x01E2 5024 HCCONTROLCURRENTED 0x01E2 5028 HCBULKHEADED 0x01E2 502C HCBULKCURRENTED HC Current Bulk Register (1) 0x01E2 5030 HCDONEHEAD HC Head Done Register (1) 0x01E2 5034 HCFMINTERVAL HC Frame Interval Register 0x01E2 5038 HCFMREMAINING 0x01E2 503C HCFMNUMBER 0x01E2 5040 HCPERIODICSTART 0x01E2 5044 HCLSTHRESHOLD 0x01E2 5048 HCRHDESCRIPTORA HC Root Hub A Register 0x01E2 504C HCRHDESCRIPTORB HC Root Hub B Register 0x01E2 5050 HCRHSTATUS 0x01E2 5054 HCRHPORTSTATUS1 HC Port 1 Status and Control Register (2) 0x01E2 5058 HCRHPORTSTATUS2 HC Port 2 Status and Control Register (3) HC Head Control Register (1) HC Current Control Register (1) HC Head Bulk Register (1) HC Frame Remaining Register HC Frame Number Register HC Periodic Start Register HC Low-Speed Threshold Register HC Root Hub Status Register Restrictions apply to the physical addresses used in these registers. Connected to the integrated USB1.1 phy pins (USB1_DM, USB1_DP). Although the controller implements two ports, the second port cannot be used. Table 6-95. Switching Characteristics Over Recommended Operating Conditions for USB1 No. U1 LOW SPEED PARAMETER tr Rise time, USB1_DP and USB1_DM signals (1) (1) FULL SPEED UNIT MIN MAX MAX MAX 75 (1) 300 (1) 4 (1) 20 (1) ns (1) (1) (1) 20 (1) ns U2 tf Fall time, USB1_DP and USB1_DM signals U3 tRFM Rise/Fall time matching (2) 80 (2) 120 (2) 90 (2) 110 (2) % U4 VCRS Output signal cross-over voltage (1) 1.3 (1) 2 (1) 1.3 (1) 2 (1) V U5 tj Differential propagation jitter U6 fop Operating frequency (4) (1) (2) (3) (4) 160 (3) 75 -25 (3) 300 25 (3) 1.5 4 -2 (3) 2 (3) 12 ns MHz Low Speed: CL = 200 pF. High Speed: CL = 50pF tRFM =( tr/tf ) x 100 t jr = t px(1) - tpx(0) fop = 1/tper Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 Copyright © 2010–2014, Texas Instruments Incorporated AM1707 www.ti.com SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 6.25.1 USB1 Unused Signal Configuration If USB1 is unused, then the USB1 signals should be configured as shown in Section 3.6.22. Copyright © 2010–2014, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 161 AM1707 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 www.ti.com 6.26 USB0 OTG (USB2.0 OTG) The device USB2.0 peripheral supports the following features: • USB 2.0 peripheral at high-speed (HS: 480 Mb/s) and full-speed (FS: 12 Mb/s) • USB 2.0 host at speeds HS, FS, and low speed (LS: 1.5 Mb/s) • All transfer modes (control, bulk, interrupt, and isochronous) • 4 Transmit (TX) and 4 Receive (RX) endpoints in addition to endpoint 0 • FIFO RAM – 4K endpoint – Programmable size • Integrated USB 2.0 High Speed PHY • Connects to a standard Charge Pump for VBUS 5 V generation • RNDIS mode for accelerating RNDIS type protocols using short packet termination over USB Important Notice: On the original device pinout (marked "A" in the lower right corner of the package), pins USB0_VSSA33 (H4) and USB0_VSSA (F3) were connected to ground outside the package. For more robust ESD performance, the USB0 ground references are now connected inside the package on packages marked "B" and the package pins are unconnected. This change will require that any external filter circuits previously referenced to ground at these pins will need to reference the board ground instead. Important Notice: The USB0 controller module clock (PLL0_SYSCLK2) must be greater than 30 MHz for proper operation of the USB controller. A clock rate of 60 MHz or greater is recommended to avoid da`ta throughput reduction. Table 6-96 is the list of USB OTG registers. Table 6-96. Universal Serial Bus OTG (USB0) Registers 162 BYTE ADDRESS ACRONYM 0x01E0 0000 REVID Revision Register REGISTER DESCRIPTION 0x01E0 0004 CTRLR Control Register 0x01E0 0008 STATR Status Register 0x01E0 000C EMUR Emulation Register 0x01E0 0010 MODE Mode Register 0x01E0 0014 AUTOREQ 0x01E0 0018 SRPFIXTIME Autorequest Register SRP Fix Time Register 0x01E0 001C TEARDOWN Teardown Register 0x01E0 0020 INTSRCR USB Interrupt Source Register 0x01E0 0024 INTSETR USB Interrupt Source Set Register 0x01E0 0028 INTCLRR USB Interrupt Source Clear Register 0x01E0 002C INTMSKR USB Interrupt Mask Register 0x01E0 0030 INTMSKSETR USB Interrupt Mask Set Register 0x01E0 0034 INTMSKCLRR USB Interrupt Mask Clear Register 0x01E0 0038 INTMASKEDR USB Interrupt Source Masked Register 0x01E0 003C EOIR 0x01E0 0040 - 0x01E0 0050 GENRNDISSZ1 Generic RNDIS Size EP1 0x01E0 0054 GENRNDISSZ2 Generic RNDIS Size EP2 0x01E0 0058 GENRNDISSZ3 Generic RNDIS Size EP3 0x01E0 005C GENRNDISSZ4 Generic RNDIS Size EP4 0x01E0 0400 FADDR Function Address Register 0x01E0 0401 POWER Power Management Register 0x01E0 0402 INTRTX Interrupt Register for Endpoint 0 plus Transmit Endpoints 1 to 4 USB End of Interrupt Register Reserved Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 Copyright © 2010–2014, Texas Instruments Incorporated AM1707 www.ti.com SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 Table 6-96. Universal Serial Bus OTG (USB0) Registers (continued) BYTE ADDRESS ACRONYM 0x01E0 0404 INTRRX Interrupt Register for Receive Endpoints 1 to 4 REGISTER DESCRIPTION 0x01E0 0406 INTRTXE Interrupt Enable Register for INTRTX 0x01E0 0408 INTRRXE Interrupt Enable Register for INTRRX 0x01E0 040A INTRUSB Interrupt Register for Common USB Interrupts 0x01E0 040B INTRUSBE 0x01E0 040C FRAME Interrupt Enable Register for INTRUSB Frame Number Register 0x01E0 040E INDEX Index Register for Selecting the Endpoint Status and Control Registers 0x01E0 040F TESTMODE Register to Enable the USB 2.0 Test Modes INDEXED REGISTERS These registers operate on the endpoint selected by the INDEX register 0x01E0 0410 TXMAXP Maximum Packet Size for Peripheral/Host Transmit Endpoint (Index register set to select Endpoints 1-4 only) 0x01E0 0412 PERI_CSR0 Control Status Register for Endpoint 0 in Peripheral Mode. (Index register set to select Endpoint 0) HOST_CSR0 Control Status Register for Endpoint 0 in Host Mode. (Index register set to select Endpoint 0) PERI_TXCSR Control Status Register for Peripheral Transmit Endpoint. (Index register set to select Endpoints 1-4) HOST_TXCSR Control Status Register for Host Transmit Endpoint. (Index register set to select Endpoints 1-4) 0x01E0 0414 RXMAXP 0x01E0 0416 PERI_RXCSR Control Status Register for Peripheral Receive Endpoint. (Index register set to select Endpoints 1-4) HOST_RXCSR Control Status Register for Host Receive Endpoint. (Index register set to select Endpoints 1-4) 0x01E0 0418 COUNT0 RXCOUNT 0x01E0 041A HOST_TYPE0 HOST_TXTYPE 0x01E0 041B HOST_NAKLIMIT0 HOST_TXINTERVAL Maximum Packet Size for Peripheral/Host Receive Endpoint (Index register set to select Endpoints 1-4 only) Number of Received Bytes in Endpoint 0 FIFO. (Index register set to select Endpoint 0) Number of Bytes in Host Receive Endpoint FIFO. (Index register set to select Endpoints 1- 4) Defines the speed of Endpoint 0 Sets the operating speed, transaction protocol and peripheral endpoint number for the host Transmit endpoint. (Index register set to select Endpoints 1-4 only) Sets the NAK response timeout on Endpoint 0. (Index register set to select Endpoint 0) Sets the polling interval for Interrupt/ISOC transactions or the NAK response timeout on Bulk transactions for host Transmit endpoint. (Index register set to select Endpoints 1-4 only) 0x01E0 041C HOST_RXTYPE Sets the operating speed, transaction protocol and peripheral endpoint number for the host Receive endpoint. (Index register set to select Endpoints 1-4 only) 0x01E0 041D HOST_RXINTERVAL Sets the polling interval for Interrupt/ISOC transactions or the NAK response timeout on Bulk transactions for host Receive endpoint. (Index register set to select Endpoints 1-4 only) 0x01E0 041F CONFIGDATA Returns details of core configuration. (Index register set to select Endpoint 0) FIFO 0x01E0 0420 FIFO0 Transmit and Receive FIFO Register for Endpoint 0 0x01E0 0424 FIFO1 Transmit and Receive FIFO Register for Endpoint 1 0x01E0 0428 FIFO2 Transmit and Receive FIFO Register for Endpoint 2 0x01E0 042C FIFO3 Transmit and Receive FIFO Register for Endpoint 3 0x01E0 0430 FIFO4 Transmit and Receive FIFO Register for Endpoint 4 Copyright © 2010–2014, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 163 AM1707 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 www.ti.com Table 6-96. Universal Serial Bus OTG (USB0) Registers (continued) BYTE ADDRESS ACRONYM REGISTER DESCRIPTION OTG DEVICE CONTROL 0x01E0 0460 DEVCTL Device Control Register DYNAMIC FIFO CONTROL 0x01E0 0462 TXFIFOSZ Transmit Endpoint FIFO Size (Index register set to select Endpoints 1-4 only) 0x01E0 0463 RXFIFOSZ Receive Endpoint FIFO Size (Index register set to select Endpoints 1-4 only) 0x01E0 0464 TXFIFOADDR Transmit Endpoint FIFO Address (Index register set to select Endpoints 1-4 only) 0x01E0 0466 RXFIFOADDR Receive Endpoint FIFO Address (Index register set to select Endpoints 1-4 only) 0x01E0 046C HWVERS Hardware Version Register TARGET ENDPOINT 0 CONTROL REGISTERS, VALID ONLY IN HOST MODE 0x01E0 0480 TXFUNCADDR Address of the target function that has to be accessed through the associated Transmit Endpoint. 0x01E0 0482 TXHUBADDR Address of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. 0x01E0 0483 TXHUBPORT Port of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. 0x01E0 0484 RXFUNCADDR 0x01E0 0486 RXHUBADDR Address of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. 0x01E0 0487 RXHUBPORT Port of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Address of the target function that has to be accessed through the associated Receive Endpoint. TARGET ENDPOINT 1 CONTROL REGISTERS, VALID ONLY IN HOST MODE 164 0x01E0 0488 TXFUNCADDR Address of the target function that has to be accessed through the associated Transmit Endpoint. 0x01E0 048A TXHUBADDR Address of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. 0x01E0 048B TXHUBPORT Port of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. 0x01E0 048C RXFUNCADDR 0x01E0 048E RXHUBADDR Address of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. 0x01E0 048F RXHUBPORT Port of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Address of the target function that has to be accessed through the associated Receive Endpoint. Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 Copyright © 2010–2014, Texas Instruments Incorporated AM1707 www.ti.com SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 Table 6-96. Universal Serial Bus OTG (USB0) Registers (continued) BYTE ADDRESS ACRONYM REGISTER DESCRIPTION TARGET ENDPOINT 2 CONTROL REGISTERS, VALID ONLY IN HOST MODE 0x01E0 0490 TXFUNCADDR Address of the target function that has to be accessed through the associated Transmit Endpoint. 0x01E0 0492 TXHUBADDR Address of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. 0x01E0 0493 TXHUBPORT Port of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. 0x01E0 0494 RXFUNCADDR 0x01E0 0496 RXHUBADDR Address of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. 0x01E0 0497 RXHUBPORT Port of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Address of the target function that has to be accessed through the associated Receive Endpoint. TARGET ENDPOINT 3 CONTROL REGISTERS, VALID ONLY IN HOST MODE 0x01E0 0498 TXFUNCADDR Address of the target function that has to be accessed through the associated Transmit Endpoint. 0x01E0 049A TXHUBADDR Address of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. 0x01E0 049B TXHUBPORT Port of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. 0x01E0 049C RXFUNCADDR 0x01E0 049E RXHUBADDR Address of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. 0x01E0 049F RXHUBPORT Port of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Address of the target function that has to be accessed through the associated Receive Endpoint. TARGET ENDPOINT 4 CONTROL REGISTERS, VALID ONLY IN HOST MODE 0x01E0 04A0 TXFUNCADDR 0x01E0 04A2 TXHUBADDR Address of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. 0x01E0 04A3 TXHUBPORT Port of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. 0x01E0 04A4 RXFUNCADDR 0x01E0 04A6 RXHUBADDR Address of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. 0x01E0 04A7 RXHUBPORT Port of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Copyright © 2010–2014, Texas Instruments Incorporated Address of the target function that has to be accessed through the associated Transmit Endpoint. Address of the target function that has to be accessed through the associated Receive Endpoint. Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 165 AM1707 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 www.ti.com Table 6-96. Universal Serial Bus OTG (USB0) Registers (continued) BYTE ADDRESS ACRONYM REGISTER DESCRIPTION CONTROL AND STATUS REGISTER FOR ENDPOINT 0 0x01E0 0502 0x01E0 0508 PERI_CSR0 Control Status Register for Endpoint 0 in Peripheral Mode HOST_CSR0 Control Status Register for Endpoint 0 in Host Mode COUNT0 Number of Received Bytes in Endpoint 0 FIFO 0x01E0 050A HOST_TYPE0 0x01E0 050B HOST_NAKLIMIT0 Defines the Speed of Endpoint 0 0x01E0 050F CONFIGDATA 0x01E0 0510 TXMAXP 0x01E0 0512 PERI_TXCSR Control Status Register for Peripheral Transmit Endpoint (peripheral mode) HOST_TXCSR Control Status Register for Host Transmit Endpoint (host mode) Sets the NAK Response Timeout on Endpoint 0 Returns details of core configuration. CONTROL AND STATUS REGISTER FOR ENDPOINT 1 Maximum Packet Size for Peripheral/Host Transmit Endpoint 0x01E0 0514 RXMAXP Maximum Packet Size for Peripheral/Host Receive Endpoint 0x01E0 0516 PERI_RXCSR Control Status Register for Peripheral Receive Endpoint (peripheral mode) HOST_RXCSR Control Status Register for Host Receive Endpoint (host mode) 0x01E0 0518 RXCOUNT 0x01E0 051A HOST_TXTYPE Number of Bytes in Host Receive endpoint FIFO 0x01E0 051B HOST_TXINTERVAL 0x01E0 051C HOST_RXTYPE 0x01E0 051D HOST_RXINTERVAL 0x01E0 0520 TXMAXP 0x01E0 0522 PERI_TXCSR Control Status Register for Peripheral Transmit Endpoint (peripheral mode) HOST_TXCSR Control Status Register for Host Transmit Endpoint (host mode) Sets the operating speed, transaction protocol and peripheral endpoint number for the host Transmit endpoint. Sets the polling interval for Interrupt/ISOC transactions or the NAK response timeout on Bulk transactions for host Transmit endpoint. Sets the operating speed, transaction protocol and peripheral endpoint number for the host Receive endpoint. Sets the polling interval for Interrupt/ISOC transactions or the NAK response timeout on Bulk transactions for host Receive endpoint. CONTROL AND STATUS REGISTER FOR ENDPOINT 2 166 Maximum Packet Size for Peripheral/Host Transmit Endpoint 0x01E0 0524 RXMAXP 0x01E0 0526 PERI_RXCSR Control Status Register for Peripheral Receive Endpoint (peripheral mode) HOST_RXCSR Control Status Register for Host Receive Endpoint (host mode) 0x01E0 0528 RXCOUNT 0x01E0 052A HOST_TXTYPE 0x01E0 052B HOST_TXINTERVAL 0x01E0 052C HOST_RXTYPE 0x01E0 052D HOST_RXINTERVAL Maximum Packet Size for Peripheral/Host Receive Endpoint Number of Bytes in Host Receive endpoint FIFO Sets the operating speed, transaction protocol and peripheral endpoint number for the host Transmit endpoint. Sets the polling interval for Interrupt/ISOC transactions or the NAK response timeout on Bulk transactions for host Transmit endpoint. Sets the operating speed, transaction protocol and peripheral endpoint number for the host Receive endpoint. Sets the polling interval for Interrupt/ISOC transactions or the NAK response timeout on Bulk transactions for host Receive endpoint. Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 Copyright © 2010–2014, Texas Instruments Incorporated AM1707 www.ti.com SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 Table 6-96. Universal Serial Bus OTG (USB0) Registers (continued) BYTE ADDRESS ACRONYM REGISTER DESCRIPTION CONTROL AND STATUS REGISTER FOR ENDPOINT 3 0x01E0 0530 TXMAXP 0x01E0 0532 PERI_TXCSR Maximum Packet Size for Peripheral/Host Transmit Endpoint Control Status Register for Peripheral Transmit Endpoint (peripheral mode) HOST_TXCSR Control Status Register for Host Transmit Endpoint (host mode) 0x01E0 0534 RXMAXP 0x01E0 0536 PERI_RXCSR Maximum Packet Size for Peripheral/Host Receive Endpoint Control Status Register for Peripheral Receive Endpoint (peripheral mode) HOST_RXCSR Control Status Register for Host Receive Endpoint (host mode) 0x01E0 0538 RXCOUNT 0x01E0 053A HOST_TXTYPE Number of Bytes in Host Receive endpoint FIFO 0x01E0 053B HOST_TXINTERVAL 0x01E0 053C HOST_RXTYPE 0x01E0 053D HOST_RXINTERVAL 0x01E0 0540 TXMAXP 0x01E0 0542 PERI_TXCSR Control Status Register for Peripheral Transmit Endpoint (peripheral mode) HOST_TXCSR Control Status Register for Host Transmit Endpoint (host mode) Sets the operating speed, transaction protocol and peripheral endpoint number for the host Transmit endpoint. Sets the polling interval for Interrupt/ISOC transactions or the NAK response timeout on Bulk transactions for host Transmit endpoint. Sets the operating speed, transaction protocol and peripheral endpoint number for the host Receive endpoint. Sets the polling interval for Interrupt/ISOC transactions or the NAK response timeout on Bulk transactions for host Receive endpoint. CONTROL AND STATUS REGISTER FOR ENDPOINT 4 Maximum Packet Size for Peripheral/Host Transmit Endpoint 0x01E0 0544 RXMAXP 0x01E0 0546 PERI_RXCSR Control Status Register for Peripheral Receive Endpoint (peripheral mode) HOST_RXCSR Control Status Register for Host Receive Endpoint (host mode) 0x01E0 0548 RXCOUNT 0x01E0 054A HOST_TXTYPE 0x01E0 054B HOST_TXINTERVAL 0x01E0 054C HOST_RXTYPE 0x01E0 054D HOST_RXINTERVAL 0x01E0 1000 DMAREVID 0x01E0 1004 TDFDQ Maximum Packet Size for Peripheral/Host Receive Endpoint Number of Bytes in Host Receive endpoint FIFO Sets the operating speed, transaction protocol and peripheral endpoint number for the host Transmit endpoint. Sets the polling interval for Interrupt/ISOC transactions or the NAK response timeout on Bulk transactions for host Transmit endpoint. Sets the operating speed, transaction protocol and peripheral endpoint number for the host Receive endpoint. Sets the polling interval for Interrupt/ISOC transactions or the NAK response timeout on Bulk transactions for host Receive endpoint. DMA REGISTERS DMA Revision Register DMA Teardown Free Descriptor Queue Control Register 0x01E0 1008 DMAEMU DMA Emulation Control Register 0x01E0 1800 TXGCR[0] Transmit Channel 0 Global Configuration Register 0x01E0 1808 RXGCR[0] Receive Channel 0 Global Configuration Register 0x01E0 180C RXHPCRA[0] Receive Channel 0 Host Packet Configuration Register A 0x01E0 1810 RXHPCRB[0] Receive Channel 0 Host Packet Configuration Register B 0x01E0 1820 TXGCR[1] Transmit Channel 1 Global Configuration Register 0x01E0 1828 RXGCR[1] Receive Channel 1 Global Configuration Register 0x01E0 182C RXHPCRA[1] Receive Channel 1 Host Packet Configuration Register A 0x01E0 1830 RXHPCRB[1] Receive Channel 1 Host Packet Configuration Register B Copyright © 2010–2014, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 167 AM1707 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 www.ti.com Table 6-96. Universal Serial Bus OTG (USB0) Registers (continued) BYTE ADDRESS ACRONYM 0x01E0 1840 TXGCR[2] Transmit Channel 2 Global Configuration Register REGISTER DESCRIPTION Receive Channel 2 Global Configuration Register 0x01E0 1848 RXGCR[2] 0x01E0 184C RXHPCRA[2] Receive Channel 2 Host Packet Configuration Register A 0x01E0 1850 RXHPCRB[2] Receive Channel 2 Host Packet Configuration Register B 0x01E0 1860 TXGCR[3] Transmit Channel 3 Global Configuration Register 0x01E0 1868 RXGCR[3] Receive Channel 3 Global Configuration Register 0x01E0 186C RXHPCRA[3] Receive Channel 3 Host Packet Configuration Register A 0x01E0 1870 RXHPCRB[3] Receive Channel 3 Host Packet Configuration Register B 0x01E0 2000 DMA_SCHED_CTRL 0x01E0 2800 WORD[0] DMA Scheduler Table Word 0 0x01E0 2804 WORD[1] DMA Scheduler Table Word 1 ... ... 0x01E0 28FC WORD[63] DMA Scheduler Control Register ... DMA Scheduler Table Word 63 QUEUE MANAGER REGISTERS 168 0x01E0 4000 QMGRREVID 0x01E0 4008 DIVERSION Queue Manager Revision Register 0x01E0 4020 FDBSC0 Free Descriptor/Buffer Starvation Count Register 0 0x01E0 4024 FDBSC1 Free Descriptor/Buffer Starvation Count Register 1 0x01E0 4028 FDBSC2 Free Descriptor/Buffer Starvation Count Register 2 0x01E0 402C FDBSC3 Free Descriptor/Buffer Starvation Count Register 3 0x01E0 4080 LRAM0BASE Linking RAM Region 0 Base Address Register 0x01E0 4084 LRAM0SIZE Linking RAM Region 0 Size Register 0x01E0 4088 LRAM1BASE Linking RAM Region 1 Base Address Register 0x01E0 4090 PEND0 Queue Pending Register 0 0x01E0 4094 PEND1 Queue Pending Register 1 0x01E0 5000 QMEMRBASE[0] Memory Region 0 Base Address Register 0x01E0 5004 QMEMRCTRL[0] Memory Region 0 Control Register 0x01E0 5010 QMEMRBASE[1] Memory Region 1 Base Address Register 0x01E0 5014 QMEMRCTRL[1] Memory Region 1 Control Register ... ... 0x01E0 50F0 QMEMRBASE[15] Memory Region 15 Base Address Register Memory Region 15 Control Register Queue Diversion Register ... 0x01E0 50F4 QMEMRCTRL[15] 0x01E0 600C CTRLD[0] Queue Manager Queue 0 Control Register D 0x01E0 601C CTRLD[1] Queue Manager Queue 1 Control Register D ... ... 0x01E0 63FC CTRLD[63] ... Queue Manager Queue 63 Status Register D 0x01E0 6800 QSTATA[0] Queue Manager Queue 0 Status Register A 0x01E0 6804 QSTATB[0] Queue Manager Queue 0 Status Register B 0x01E0 6808 QSTATC[0] Queue Manager Queue 0 Status Register C 0x01E0 6810 QSTATA[1] Queue Manager Queue 1 Status Register A 0x01E0 6814 QSTATB[1] Queue Manager Queue 1 Status Register B 0x01E0 6818 QSTATC[1] Queue Manager Queue 1 Status Register C ... ... 0x01E0 6BF0 QSTATA[63] Queue Manager Queue 63 Status Register A 0x01E0 6BF4 QSTATB[63] Queue Manager Queue 63 Status Register B 0x01E0 6BF8 QSTATC[63] Queue Manager Queue 63 Status Register C ... Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 Copyright © 2010–2014, Texas Instruments Incorporated AM1707 www.ti.com SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 6.26.1 USB2.0 (USB0) Electrical Data/Timing The USB PHY PLL can support input clock of the following frequencies: 12.0 MHz, 13.0 MHz, 19.2 MHz, 20.0 MHz, 24.0 MHz, 26.0 MHz, 38.4 MHz, 40.0 MHz or 48.0 MHz. USB_REFCLKIN jitter tolerance is 50 ppm maximum. Table 6-97. Switching Characteristics Over Recommended Operating Conditions for USB2.0 [USB0] (see Figure 6-66) No. PARAMETER LOW SPEED 1.5 Mbps FULL SPEED 12 Mbps HIGH SPEED 480 Mbps MIN MAX MIN MAX MIN 1 tr(D) Rise time, USB0_DP and USB0_DM signals (1) 75 300 4 20 0.5 2 tf(D) Fall time, USB0_DP and USB0_DM signals (1) 75 300 4 20 0.5 3 trfM Rise/Fall time, matching (2) 80 120 90 111 – – 4 VCRS Output signal cross-over voltage (1) 1.3 2 1.3 2 – – 5 6 ns ns % V (3) tjr(source)NT Source (Host) Driver jitter, next transition 2 2 tjr(FUNC)NT Function Driver jitter, next transition 25 2 (3) ns tjr(source)PT Source (Host) Driver jitter, paired transition (4) 1 1 (3) ns 1 (3) ns – ns tjr(FUNC)PT Function Driver jitter, paired transition 7 tw(EOPT) Pulse duration, EOP transmitter 8 tw(EOPR) Pulse duration, EOP receiver 10 (5) 1250 (5) 1500 670 9 t(DRATE) Data Rate 10 ZDRV Driver Output Resistance – 11 ZINP Receiver Input Impedance 100k (1) (2) (3) (4) (5) UNIT MAX 160 175 82 1.5 – ns – – 12 40.5 49.5 100k ns 480 Mb/s 40.5 49.5 Ω - - Ω Low Speed: CL = 200 pF, Full Speed: CL = 50 pF, High Speed: CL = 50 pF tRFM = (tr/tf) x 100. [Excluding the first transaction from the Idle state.] For more detailed information, see the Universal Serial Bus Specification Revision 2.0, Chapter 7. Electrical. tjr = tpx(1) - tpx(0) Must accept as valid EOP USB0_DM VCRS USB0_DP tper - tjr 90% VOH 10% VOL tr tf Figure 6-66. USB0 Integrated Transceiver Interface Timing 6.26.2 USB0 Unused Signal Configuration If USB0 is unused, then the USB0 signals should be configured as shown in Section 3.6.22. Copyright © 2010–2014, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 169 AM1707 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 www.ti.com 6.27 Host-Port Interface (UHPI) 6.27.1 HPI Device-Specific Information The device includes a user-configurable 16-bit Host-port interface (HPI16). 6.27.2 HPI Peripheral Register Description(s) Table 6-98. HPI Control Registers BYTE ADDRESS ACRONYM 0x01E1 0000 PID 0x01E1 0004 PWREMU_MGMT REGISTER DESCRIPTION Peripheral Identification Register HPI power and emulation management register 0x01E1 0008 - 0x01E1 000C GPIO_EN 0x01E1 0010 GPIO_DIR1 General Purpose IO Direction Register 1 0x01E1 0014 GPIO_DAT1 General Purpose IO Data Register 1 General Purpose IO Enable Register 0x01E1 0018 GPIO_DIR2 General Purpose IO Direction Register 2 GPIO_DAT2 General Purpose IO Data Register 2 0x01E1 0020 GPIO_DIR3 General Purpose IO Direction Register 3 0x01E1 0024 GPIO_DAT3 General Purpose IO Data Register 3 0x01E1 0028 - Reserved 0x01E1 002C - Reserved 0x01E1 0030 HPIC HPI control register 0x01E1 0034 HPIA (HPIAW) (1) HPI address register (Write) 0x01E1 0038 HPIA (HPIAR) (1) HPI address register (Read) 0x01E1 000C0x01E1 07FF - 170 The CPU has read/write access to the PWREMU_MGMT register. Reserved 0x01E1 001C (1) COMMENTS The Host and the CPU both have read/write access to the HPIC register. The Host has read/write access to the HPIA registers. The CPU has only read access to the HPIA registers. Reserved There are two 32-bit HPIA registers: HPIAR for read operations and HPIAW for write operations. The HPI can be configured such that HPIAR and HPIAW act as a single 32-bit HPIA (single-HPIA mode) or as two separate 32-bit HPIAs (dual-HPIA mode) from the perspective of the Host. The CPU can access HPIAW and HPIAR independently. Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 Copyright © 2010–2014, Texas Instruments Incorporated AM1707 www.ti.com SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 6.27.3 HPI Electrical Data/Timing Table 6-99. Timing Requirements for Host-Port Interface Cycles (1) No. 1 (2) PARAMETER tsu(SELV-HSTBL) Setup time, select signals (3) valid before UHPI_HSTROBE low (3) valid after UHPI_HSTROBE low MIN MAX UNIT 5 ns 2 th(HSTBL-SELV) Hold time, select signals 2 ns 3 tw(HSTBL) Pulse duration, UHPI_HSTROBE active low 15 ns 4 tw(HSTBH) Pulse duration, UHPI_HSTROBE inactive high between consecutive accesses 2M ns 9 tsu(SELV-HASL) Setup time, selects signals valid before UHPI_HAS low 5 ns 10 th(HASL-SELV) Hold time, select signals valid after UHPI_HAS low 2 ns 11 tsu(HDV-HSTBH) Setup time, host data valid before UHPI_HSTROBE high 5 ns 12 th(HSTBH-HDV) Hold time, host data valid after UHPI_HSTROBE high 2 ns 13 th(HRDYL-HSTBH) Hold time, UHPI_HSTROBE high after UHPI_HRDY low. UHPI_HSTROBE should not be inactivated until UHPI_HRDY is active (low); otherwise, HPI writes will not complete properly. 2 ns 16 tsu(HASL-HSTBL) Setup time, UHPI_HAS low before UHPI_HSTROBE low 2 ns 17 th(HSTBL-HASH) Hold time, UHPI_HAS low after UHPI_HSTROBE low 2 ns (1) (2) (3) UHPI_HSTROBE refers to the following logical operation on UHPI_HCS, UHPI_HDS1, and UHPI_HDS2: [NOT(UHPI_HDS1 XOR UHPI_HDS2)] OR UHPI_HCS. M=SYSCLK2 period (CPU clock frequency)/2 in ns. For example, when running parts at 300 MHz, use M=6.67 ns. Select signals include: UHPI_HCNTL[1:0], UHPI_HRW and UHPI_HHWIL. Copyright © 2010–2014, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 171 AM1707 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 www.ti.com Table 6-100. Switching Characteristics for Host-Port Interface Cycles (1) No. (2) (3) PARAMETER MIN MAX UNIT 12 ns For HPI Write, UHPI_HRDY can go high (not ready) for these HPI Write conditions; otherwise, UHPI_HRDY stays low (ready): Case 1: Back-to-back HPIA writes (can be either first or second half-word) Case 2: HPIA write following a PREFETCH command (can be either first or second halfword) Case 3: HPID write when FIFO is full or flushing (can be either first or second halfword) Case 4: HPIA write and Write FIFO not empty For HPI Read, UHPI_HRDY can go high (not ready) for these HPI Read conditions: Case 1: HPID read (with auto-increment) and data not in Read FIFO (can only happen to first half-word of HPID access) Case 2: First half-word access of HPID Read without auto-increment For HPI Read, UHPI_HRDY stays low (ready) for these HPI Read conditions: Case 1: HPID read with auto-increment and data is already in Read FIFO (applies to either half-word of HPID access) Case 2: HPID read without auto-increment and data is already in Read FIFO (always applies to second half-word of HPID access) Case 3: HPIC or HPIA read (applies to either half-word access) 5 td(HSTBL-HRDYV) Delay time, UHPI_HSTROBE low to UHPI_HRDY valid 5a td(HASL-HRDYV) Delay time, UHPI_HAS low to UHPI_HRDY valid 6 ten(HSTBL-HDLZ) Enable time, HD driven from UHPI_HSTROBE low 7 td(HRDYL-HDV) Delay time, UHPI_HRDY low to HD valid 8 toh(HSTBH-HDV) Output hold time, HD valid after UHPI_HSTROBE high 14 tdis(HSTBH-HDHZ) Disable time, HD high-impedance from UHPI_ HSTROBE high 15 18 (1) (2) (3) 172 td(HSTBL-HDV) td(HSTBH-HRDYV) 13 2 ns 0 1.5 ns ns 12 ns Delay time, UHPI_HSTROBE low to HD valid For HPI Read. Applies to conditions where data is already residing in HPID/FIFO: Case 1: HPIC or HPIA read Case 2: First half-word of HPID read with auto-increment and data is already in Read FIFO Case 3: Second half-word of HPID read with or without auto-increment 15 ns Delay time, UHPI_HSTROBE high to UHPI_HRDY valid For HPI Write, UHPI_HRDY can go high (not ready) for these HPI Write conditions; otherwise, UHPI_HRDY stays low (ready): Case 1: HPID write when Write FIFO is full (can happen to either half-word) Case 2: HPIA write (can happen to either halfword) Case 3: HPID write without auto-increment (only happens to second half-word) 12 ns M=SYSCLK2 period (CPU clock frequency)/2 in ns. UHPI_HSTROBE refers to the following logical operation on UHPI_HCS, UHPI_HDS1, and UHPI_HDS2: [NOT(UHPI_HDS1 XOR UHPI_HDS2)] OR UHPI_HCS. By design, whenever UHPI_HCS is driven inactive (high), HPI will drive UHPI_HRDY active (low). Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 Copyright © 2010–2014, Texas Instruments Incorporated AM1707 www.ti.com SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 UHPI_HCS UHPI_HAS (D) 2 2 1 1 UHPI_HCNTL[1:0] 2 1 2 1 UHPI_HR/W 2 2 1 1 UHPI_HHWIL 4 3 3 UHPI_HSTROBE (A)(C) 15 15 14 14 6 8 UHPI_HD[15:0] (output) 5 13 7 6 1st Half-Word 8 2nd Half-Word UHPI_HRDY (B) A. B. C. D. UHPI_HSTROBE refers to the following logical operation on UHPI_HCS, UHPI_HDS1, and UHPI_HDS2: [NOT(UHPI_HDS1 XOR UHPI_HDS2)] OR UHPI_HCS. Depending on the type of write or read operation (HPID without auto-incrementing; HPIA, HPIC, or HPID with autoincrementing) and the state of the FIFO, transitions on UHPI_HRDY may or may not occur. UHPI_HCS reflects typical UHPI_HCS behavior when UHPI_HSTROBE assertion is caused by UHPI_HDS1 or UHPI_HDS2. UHPI_HCS timing requirements are reflected by parameters for UHPI_HSTROBE. The diagram above assumes UHPI_HAS has been pulled high. Figure 6-67. UHPI Read Timing (UHPI_HAS Not Used, Tied High) Copyright © 2010–2014, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 173 AM1707 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 www.ti.com UHPI_HAS(A) 17 10 17 9 10 9 UHPI_HCNTL[1:0] 10 10 9 9 UHPI_HR/W 10 10 9 9 UHPI_HHWIL 4 3 UHPI_HSTROBE(B) 16 16 UHPI_HCS 14 UHPI_HD[15:0] 6 (output) 5a 8 1st Half-Word 14 15 7 8 2nd Half-Word UHPI_HRDY A. B. For correct operation, strobe the UHPI_HAS signal only once per UHPI_HSTROBE active cycle. UHPI_HSTROBE refers to the following logical operation on UHPI_HCS, UHPI_HDS1, and UHPI_HDS2: [NOT(UHPI_HDS1 XOR UHPI_HDS2)] OR UHPI_HCS. Figure 6-68. UHPI Read Timing (UHPI_HAS Used) 174 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 Copyright © 2010–2014, Texas Instruments Incorporated AM1707 www.ti.com SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 UHPI_HCS UHPI_HAS (D) 1 1 2 2 UHPI_HCNTL[1:0] 1 1 2 2 UHPI_HR/W 1 1 2 2 UHPI_HHWIL 3 3 4 UHPI_HSTROBE(A)(C) 11 UHPI_HD[15:0] (input) 11 12 12 1st Half-Word 5 13 2nd Half-Word 18 13 18 5 UHPI_HRDY (B) A. B. C. D. UHPI_HSTROBE refers to the following logical operation on UHPI_HCS, UHPI_HDS1, and UHPI_HDS2: [NOT(UHPI_HDS1 XOR UHPI_HDS2)] OR UHPI_HCS. Depending on the type of write or read operation (HPID without auto-incrementing; HPIA, HPIC, or HPID with autoincrementing) and the state of the FIFO, transitions on UHPI_HRDY may or may not occur. UHPI_HCS reflects typical UHPI_HCS behavior when UHPI_HSTROBE assertion is caused by UHPI_HDS1 or UHPI_HDS2. UHPI_HCS timing requirements are reflected by parameters for UHPI_HSTROBE. he diagram above assumes UHPI_HAS has been pulled high. Figure 6-69. UHPI Write Timing (UHPI_HAS Not Used, Tied High) Copyright © 2010–2014, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 175 AM1707 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 www.ti.com 17 17 UHPI_HAS(A) 10 10 9 9 UHPI_HCNTL[1:0] 10 10 9 9 UHPI_HR/W 10 10 9 9 UHPI_HHWIL 3 4 UHPI_HSTROBE(B) 16 16 UHPI_HCS 11 UHPI_HD[15:0] (input) 12 1st Half-Word 5a 11 12 2nd Half-Word 13 UHPI_HRDY A. B. For correct operation, strobe the UHPI_HAS signal only once per UHPI_HSTROBE active cycle. UHPI_HSTROBE refers to the following logical operation on UHPI_HCS, UHPI_HDS1, and UHPI_HDS2: [NOT(UHPI_HDS1 XOR UHPI_HDS2)] OR UHPI_HCS. Figure 6-70. UHPI Write Timing (UHPI_HAS Used) 176 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 Copyright © 2010–2014, Texas Instruments Incorporated AM1707 www.ti.com SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 6.28 Power and Sleep Controller (PSC) The Power and Sleep Controllers (PSC) are responsible for managing transitions of system power on/off, clock on/off, resets (device level and module level). It is used primarily to provide granular power control for on chip modules (peripherals and CPU). A PSC module consists of a Global PSC (GPSC) and a set of Local PSCs (LPSCs). The GPSC contains memory mapped registers, PSC interrupts, a state machine for each peripheral/module it controls. An LPSC is associated with every module that is controlled by the PSC and provides clock and reset control. The PSC includes the following features: • Provides a software interface to: – Control module clock enable/disable – Control module reset – Control CPU local reset • Supports ICEPick TAP Router power, clock and reset features. For details on ICEPick features see http://tiexpressdsp.com/wiki/index.php?title=ICEPick. Table 6-101. Power and Sleep Controller (PSC) Registers PSC0 BYTE ADDRESS PSC1 BYTE ADDRESS ACRONYM 0x01C1 0000 0x01E2 7000 REVID 0x01C1 0018 0x01E2 7018 INTEVAL 0x01C1 0040 0x01E2 7040 MERRPR0 DESCRIPTION Peripheral Revision and Class Information Register Interrupt Evaluation Register Module Error Pending Register 0 (module 0-15) (PSC0) Module Error Pending Register 0 (module 0-31) (PSC1) 0x01C1 0050 0x01E2 7050 MERRCR0 Module Error Clear Register 0 (module 0-15) (PSC0) Module Error Clear Register 0 (module 0-31) (PSC1) 0x01C1 0060 0x01E2 7060 PERRPR Power Error Pending Register 0x01C1 0068 0x01E2 7068 PERRCR Power Error Clear Register 0x01C1 0120 0x01E2 7120 PTCMD Power Domain Transition Command Register 0x01C1 0128 0x01E2 7128 PTSTAT Power Domain Transition Status Register 0x01C1 0200 0x01E2 7200 PDSTAT0 Power Domain 0 Status Register 0x01C1 0204 0x01E2 7204 PDSTAT1 Power Domain 1 Status Register 0x01C1 0300 0x01E2 7300 PDCTL0 Power Domain 0 Control Register 0x01C1 0304 0x01E2 7304 PDCTL1 Power Domain 1 Control Register 0x01C1 0400 0x01E2 7400 PDCFG0 Power Domain 0 Configuration Register 0x01C1 0404 0x01E2 7404 PDCFG1 Power Domain 1 Configuration Register 0x01C1 08000x01C1 083C 0x01E2 78000x01E2 787C 0x01C1 0A000x01C1 0A3C 0x01E2 7A000x01E2 7A7C MDSTAT0-MDSTAT15 Module Status n Register (modules 0-15) (PSC0) MDSTAT0-MDSTAT31 Module Status n Register (modules 0-31) (PSC1) MDCTL0-MDCTL15 Module Control n Register (modules 0-15) (PSC0) MDCTL0-MDCTL31 Module Control n Register (modules 0-31) (PSC1) 6.28.1 Power Domain and Module Topology The device includes two PSC modules. Each PSC module controls clock states for several of the on chip modules, controllers and interconnect components. Table 6-102 and Table 6-103 lists the set of peripherals/modules that are controlled by the PSC, the power domain they are associated with, the LPSC assignment and the default (power-on reset) module states. See the device-specific data manual for the peripherals available on a given device. The module states and terminology are defined in Section 6.28.1.2. Copyright © 2010–2014, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 177 AM1707 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 www.ti.com Table 6-102. PSC0 Default Module Configuration LPSC Number Module Name Power Domain Default Module State Auto Sleep/Wake Only 0 EDMA3 Channel Controller AlwaysON (PD0) SwRstDisable — 1 EDMA3 Transfer Controller 0 AlwaysON (PD0) SwRstDisable — 2 EDMA3 Transfer Controller 1 AlwaysON (PD0) SwRstDisable — 3 EMIFA (BR7) AlwaysON (PD0) SwRstDisable — 4 SPI 0 AlwaysON (PD0) SwRstDisable — 5 MMC/SD 0 AlwaysON (PD0) SwRstDisable — 6 ARM Interrupt Controller AlwaysON (PD0) SwRstDisable — 7 ARM RAM/ROM AlwaysON (PD0) Enable Yes 8 - - - - 9 UART 0 AlwaysON (PD0) SwRstDisable — 10 SCR0 (Br 0, Br 1, Br 2, Br 8) AlwaysON (PD0) Enable Yes 11 SCR1 (Br 4) AlwaysON (PD0) Enable Yes 12 SCR2 (Br 3, Br 5, Br 6) AlwaysON (PD0) Enable Yes 13 PRUSS AlwaysON (PD0) SwRstDisable — 14 ARM AlwaysON (PD0) SwRstDisable — 15 - - - — Table 6-103. PSC1 Default Module Configuration LPSC Number Module Name Power Domain Default Module State Auto Sleep/Wake Only 0 Not Used — — — 1 USB0 (USB2.0) AlwaysON (PD0) SwRstDisable — 2 USB1 (USB1.1) AlwaysON (PD0) SwRstDisable — 3 GPIO AlwaysON (PD0) SwRstDisable — 4 UHPI AlwaysON (PD0) SwRstDisable — 5 EMAC AlwaysON (PD0) SwRstDisable — 6 EMIFB (Br 20) AlwaysON (PD0) SwRstDisable — 7 McASP0 ( + McASP0 FIFO) AlwaysON (PD0) SwRstDisable — 8 McASP1 ( + McASP1 FIFO) AlwaysON (PD0) SwRstDisable — 9 McASP2( + McASP2 FIFO) AlwaysON (PD0) SwRstDisable — 10 SPI 1 AlwaysON (PD0) SwRstDisable — 11 I2C 1 AlwaysON (PD0) SwRstDisable — 12 UART 1 AlwaysON (PD0) SwRstDisable — 13 UART 2 AlwaysON (PD0) SwRstDisable — 14-15 Not Used — — — 16 LCDC AlwaysON (PD0) SwRstDisable — 17 eHRPWM0/1/2 AlwaysON (PD0) SwRstDisable — 18-19 Not Used — — — 20 ECAP0/1/2 AlwaysON (PD0) SwRstDisable — 21 EQEP0/1 AlwaysON (PD0) SwRstDisable — 22-23 Not Used — — — 24 SCR8 (Br 15) AlwaysON (PD0) Enable Yes 25 SCR7 (Br 12) AlwaysON (PD0) Enable Yes 26 SCR12 (Br 18) AlwaysON (PD0) Enable Yes 27-30 Not Used — — — 31 On-chip RAM (Br 13) PD_SHRAM Enable Yes 178 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 Copyright © 2010–2014, Texas Instruments Incorporated AM1707 www.ti.com SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 6.28.1.1 Power Domain States A power domain can only be in one of the two states: ON or OFF, defined as follows: • ON: power to the domain is on • OFF: power to the domain is off In the device, for both PSC0 and PSC1, the Always ON domain, or PD0 power domain, is always in the ON state when the chip is powered-on. This domain is not programmable to OFF state. • On PSC1 PD1/PD_SHRAM Domain: Controls the sleep state for the 128K Shared RAM 6.28.1.2 Module States The PSC defines several possible states for a module. This states are essentially a combination of the module reset asserted or de-asserted and module clock on/enabled or off/disabled. The module states are defined in Table 6-104. Table 6-104. Module States Module State Module Reset Module Clock Module State Definition Enable De-asserted On A module in the enable state has its module reset de-asserted and it has its clock on. This is the normal operational state for a given module Disable De-asserted Off A module in the disabled state has its module reset de-asserted and it has its module clock off. This state is typically used for disabling a module clock to save power. The device is designed in full static CMOS, so when you stop a module clock, it retains the module’s state. When the clock is restarted, the module resumes operating from the stopping point. SyncReset Asserted On A module state in the SyncReset state has its module reset asserted and it has its clock on. Generally, software is not expected to initiate this state SwRstDisable Asserted Off A module in the SwResetDisable state has its module reset asserted and it has its clock disabled. After initial power-on, several modules come up in the SwRstDisable state. Generally, software is not expected to initiate this state Auto Sleep De-asserted Off A module in the Auto Sleep state also has its module reset de-asserted and its module clock disabled, similar to the Disable state. However this is a special state, once a module is configured in this state by software, it can “automatically” transition to “Enable” state whenever there is an internal read/write request made to it, and after servicing the request it will “automatically” transition into the sleep state (with module reset re de-asserted and module clock disabled), without any software intervention. The transition from sleep to enabled and back to sleep state has some cycle latency associated with it. It is not envisioned to use this mode when peripherals are fully operational and moving data. Auto Wake De-asserted Off A module in the Auto Wake state also has its module reset de-asserted and its module clock disabled, similar to the Disable state. However this is a special state, once a module is configured in this state by software, it will “automatically” transition to “Enable” state whenever there is an internal read/write request made to it, and will remain in the “Enabled” state from then on (with module reset re de-asserted and module clock on), without any software intervention. The transition from sleep to enabled state has some cycle latency associated with it. It is not envisioned to use this mode when peripherals are fully operational and moving data. Copyright © 2010–2014, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 179 AM1707 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 www.ti.com 6.29 Programmable Real-Time Unit Subsystem (PRUSS) The Programmable Real-Time Unit Subsystem (PRUSS) consists of • Two Programmable Real-Time Units (PRU0 and PRU1) and their associated memories • An Interrupt Controller (INTC) for handling system interrupt events. The INTC also supports posting events back to the device level host CPU. • A Switched Central Resource (SCR) for connecting the various internal and external masters to the resources inside the PRUSS. The two PRUs can operate completely independently or in coordination with each other. The PRUs can also work in coordination with the device level host CPU. This is determined by the nature of the program which is loaded into the PRUs instruction memory. Several different signaling mechanisms are available between the two PRUs and the device level host CPU. The PRUs are optimized for performing embedded tasks that require manipulation of packed memory mapped data structures, handling of system events that have tight realtime constraints and interfacing with systems external to the device. The PRUSS comprises various distinct addressable regions. Externally the subsystem presents a single 64Kbyte range of addresses. The internal interconnect bus (also called switched central resource, or SCR) of the PRUSS decodes accesses for each of the individual regions. The PRUSS memory map is documented in Table 6-105 and in Table 6-106. Note that these two memory maps are implemented inside the PRUSS and are local to the components of the PRUSS. Table 6-105. Programmable Real-Time Unit Subsystem (PRUSS) Local Instruction Space Memory Map BYTE ADDRESS PRU0 PRU1 0x0000 0000 - 0x0000 0FFF PRU0 Instruction RAM PRU1 Instruction RAM Table 6-106. Programmable Real-Time Unit Subsystem (PRUSS) Local Data Space Memory Map BYTE ADDRESS 0x0000 0000 - 0x0000 01FF (1) PRU0 Data RAM 0 0x0000 0200 - 0x0000 1FFF Reserved 0x0000 2000 - 0x0000 21FF Data RAM 1 0x0000 2200 - 0x0000 3FFF Reserved PRU1 (1) Data RAM 1 (1) Data RAM 0 (1) Reserved (1) Reserved 0x0000 4000 - 0x0000 6FFF INTC Registers INTC Registers 0x0000 7000 - 0x0000 73FF PRU0 Control Registers PRU0 Control Registers 0x0000 7400 - 0x0000 77FF Reserved Reserved 0x0000 7800 - 0x0000 7BFF PRU1 Control Registers PRU1 Control Registers 0x0000 7C00 - 0xFFFF FFFF Reserved Reserved Note that PRU0 accesses Data RAM0 at address 0x0000 0000, also PRU1 accesses Data RAM1 at address 0x0000 0000. Data RAM0 is intended to be the primary data memory for PRU0 and Data RAM1 is intended to be the primary data memory for PRU1. However for passing information between PRUs, each PRU can access the data ram of the ‘other’ PRU through address 0x0000 2000. The global view of the PRUSS internal memories and control ports is documented in Table 6-107. The offset addresses of each region are implemented inside the PRUSS but the global device memory mapping places the PRUSS slave port in the address range 0x01C3 0000-0x01C3 FFFF. The PRU0 and PRU1 can use either the local or global addresses to access their internal memories, but using the local addresses will provide access time several cycles faster than using the global addresses. This is because when accessing via the global address the access needs to be routed through the switch fabric outside PRUSS and back in through the PRUSS slave port. 180 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 Copyright © 2010–2014, Texas Instruments Incorporated AM1707 www.ti.com SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 Table 6-107. Programmable Real-Time Unit Subsystem (PRUSS) Global Memory Map BYTE ADDRESS REGION 0x01C3 0000 - 0x01C3 01FF Data RAM 0 0x01C3 0200 - 0x01C3 1FFF Reserved 0x01C3 2000 - 0x01C3 21FF Data RAM 1 0x01C3 2200 - 0x01C3 3FFF Reserved 0x01C3 4000 - 0x01C3 6FFF INTC Registers 0x01C3 7000 - 0x01C3 73FF PRU0 Control Registers 0x01C3 7400 - 0x01C3 77FF PRU0 Debug Registers 0x01C3 7800 - 0x01C3 7BFF PRU1 Control Registers 0x01C3 7C00 - 0x01C3 7FFF PRU1 Debug Registers 0x01C3 8000 - 0x01C3 8FFF PRU0 Instruction RAM 0x01C3 9000 - 0x01C3 BFFF Reserved 0x01C3 C000 - 0x01C3 CFFF PRU1 Instruction RAM 0x01C3 D000 - 0x01C3 FFFF Reserved Each of the PRUs can access the rest of the device memory (including memory mapped peripheral and configuration registers) using the global memory space addresses. 6.29.1 PRUSS Register Descriptions Table 6-108. Programmable Real-Time Unit Subsystem (PRUSS) Control / Status Registers PRU0 BYTE ADDRESS PRU1 BYTE ADDRESS ACRONYM 0x01C3 7000 0x01C3 7800 CONTROL PRU Control Register 0x01C3 7004 0x01C3 7804 STATUS PRU Status Register 0x01C3 7008 0x01C3 7808 WAKEUP PRU Wakeup Enable Register 0x01C3 700C 0x01C3 780C CYCLCNT PRU Cycle Count 0x01C3 7010 0x01C3 7810 STALLCNT PRU Stall Count 0x01C3 7020 0x01C3 7820 CONTABBLKIDX0 0x01C3 7028 0x01C3 7828 CONTABPROPTR0 PRU Constant Table Programmable Pointer Register 0 0x01C3 702C 0x01C3 782C CONTABPROPTR1 PRU Constant Table Programmable Pointer Register 1 0x01C37400 - 0x01C3747C 0x01C3 7C00 - 0x01C3 7C7C INTGPR0 – INTGPR31 PRU Internal General Purpose Registers (for Debug) 0x01C37480 - 0x01C374FC 0x01C3 7C80 - 0x01C3 7CFC INTCTER0 – INTCTER31 PRU Internal Constants Table Registers (for Debug) Copyright © 2010–2014, Texas Instruments Incorporated REGISTER DESCRIPTION PRU Constant Table Block Index Register 0 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 181 AM1707 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 www.ti.com Table 6-109. Programmable Real-Time Unit Subsystem Interrupt Controller (PRUSS INTC) Registers 182 BYTE ADDRESS ACRONYM 0x01C3 4000 REVID REGISTER DESCRIPTION 0x01C3 4004 CONTROL 0x01C3 4010 GLBLEN 0x01C3 401C GLBLNSTLVL Global Nesting Level Register 0x01C3 4020 STATIDXSET System Interrupt Status Indexed Set Register 0x01C3 4024 STATIDXCLR System Interrupt Status Indexed Clear Register Revision ID Register Control Register Global Enable Register 0x01C3 4028 ENIDXSET System Interrupt Enable Indexed Set Register 0x01C3 402C ENIDXCLR System Interrupt Enable Indexed Clear Register 0x01C3 4034 HSTINTENIDXSET Host Interrupt Enable Indexed Set Register 0x01C3 4038 HSTINTENIDXCLR Host Interrupt Enable Indexed Clear Register 0x01C3 4080 GLBLPRIIDX 0x01C3 4200 STATSETINT0 System Interrupt Status Raw/Set Register 0 0x01C3 4204 STATSETINT1 System Interrupt Status Raw/Set Register 1 0x01C3 4280 STATCLRINT0 System Interrupt Status Enabled/Clear Register 0 0x01C3 4284 STATCLRINT1 System Interrupt Status Enabled/Clear Register 1 0x01C3 4300 ENABLESET0 System Interrupt Enable Set Register 0 0x01C3 4304 ENABLESET1 System Interrupt Enable Set Register 1 0x01C3 4380 ENABLECLR0 System Interrupt Enable Clear Register 0 0x01C3 4384 ENABLECLR1 System Interrupt Enable Clear Register 1 0x01C3 4400 - 0x01C3 4440 CHANMAP0 - CHANMAP15 0x01C3 4800 - 0x01C3 4808 HOSTMAP0 - HOSTMAP2 0x01C3 4900 - 0x01C3 4928 HOSTINTPRIIDX0 HOSTINTPRIIDX9 0x01C3 4D00 POLARITY0 System Interrupt Polarity Register 0 0x01C3 4D04 POLARITY1 System Interrupt Polarity Register 1 0x01C3 4D80 TYPE0 System Interrupt Type Register 0 0x01C3 4D84 TYPE1 System Interrupt Type Register 1 0x01C3 5100 - 0x01C3 5128 HOSTINTNSTLVL0HOSTINTNSTLVL9 0x01C3 5500 HOSTINTEN Global Prioritized Index Register Channel Map Registers 0-15 Host Map Register 0-2 Host Interrupt Prioritized Index Registers 0-9 Host Interrupt Nesting Level Registers 0-9 Host Interrupt Enable Register Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 Copyright © 2010–2014, Texas Instruments Incorporated AM1707 www.ti.com SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 6.30 Emulation Logic This section describes the steps to use a third party debugger. The debug capabilities and features for ARM are as shown below. For TI’s latest debug and emulation information see : http://tiexpressdsp.com/wiki/index.php?title=Category:Emulation ARM: • Basic Debug – Execution Control – System Visibility • Advanced Debug – Global Start – Global Stop • Advanced System Control – Subsystem reset via debug – Peripheral notification of debug events – Cache-coherent debug accesses • Program Trace – Program flow corruption – Code coverage – Path coverage – Thread/interrupt synchronization problems • Data Trace – Memory corruption • Timing Trace – Profiling • Analysis Actions – Stop program execution – Control trace streams – Generate debug interrupt – Benchmarking with counters – External trigger generation – Debug state machine state transition – Combinational and Sequential event generation • Analysis Events – Program event detection – Data event detection – External trigger Detection – System event detection (i.e. cache miss) – Debug state machine state detection • Analysis Configuration – Application access – Debugger access Copyright © 2010–2014, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 183 AM1707 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 www.ti.com Table 6-110. ARM Debug Features Category Hardware Feature Availability Software breakpoint Unlimited Up to 14 HWBPs, including: Basic Debug 2 precise (1) HWBP inside ARM core which are shared with watch points. Hardware breakpoint 8 imprecise (1) HWBPs from ETM’s address comparators, which are shared with trace function, and can be used as watch point too. 4 imprecise (1) HWBPs from ICECrusher. Up to 6 watch points, including: Watch point 2 from ARM core which is shared with HWBPs and can be associated with a data. 8 from ETM’s address comparators, which are shared with trace function, and HWBPs. 2 from ARM core which is shared with HWBPs. Analysis Trace Control On-chip Trace Capture (1) 184 Watch point with Data 8 watch points from ETM can be associated with a data comparator, and ETM has total 4 data comparators. Counters/timers 3x32-bit (1 cycle ; 2 event) External Event Trigger In 1 External Event Trigger Out 1 Address range for trace 4 Data qualification for trace 2 System events for trace control 20 Counters/Timers for trace control 2x16-bit State Machines/Sequencers 1x3-State State Machine Context/Thread ID Comparator 1 Independent trigger control units 12 Capture depth PC 4k bytes ETB Capture depth PC + Timing 4k bytes ETB Application accessible Y Precise hardware breakpoints will halt the processor immediately prior to the execution of the selected instruction. Imprecise breakpoints will halt the processor some number of cycles after the selected instruction depending on device conditions. Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 Copyright © 2010–2014, Texas Instruments Incorporated AM1707 www.ti.com SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 6.30.1 JTAG Port Description The device target debug interface uses the five standard IEEE 1149.1(JTAG) signals (TRST, TCK, TMS, TDI, and TDO), a return clock (RTCK) due to the clocking requirements of the ARM926EJ-S and EMU0 . TRST holds the debug and boundary scan logic in reset when pulled low (its default state). Since TRST has an internal pull-down resistor, this ensures that at power up the device functions in its normal (nontest) operation mode if TRST is not connected. Otherwise, TRST should be driven inactive by the emulator or boundary scan controller. Boundary scan test cannot be performed while the TRST pin is pulled low. Table 6-111. JTAG Port Description PIN TYPE NAME DESCRIPTION TRST I Test Logic Reset When asserted (active low) causes all test and debug logic in the device to be reset along with the IEEE 1149.1 interface TCK I Test Clock RTCK O Returned Test Clock TMS I Test Mode Select TDI I Test Data Input TDO O Test Data Output EMU0 I/O Emulation 0 This is the test clock used to drive an IEEE 1149.1 TAP state machine and logic. Depending on the emulator attached to , this is a free running clock or a gated clock depending on RTCK monitoring. Synchronized TCK. Depending on the emulator attached to, the JTAG signals are clocked from RTCK or RTCK is monitored by the emulator to gate TCK. Directs the next state of the IEEE 1149.1 test access port state machine Scan data input to the device Scan data output of the device Channel 0 trigger + HSRTDX 6.30.2 Scan Chain Configuration Parameters Table 6-112 shows the TAP configuration details required to configure the router/emulator for this device. Table 6-112. JTAG Port Description Router Port ID Default TAP TAP Name Tap IR Length 17 No Reserved 38 18 No ARM926 4 19 No ETB 4 The router is ICEPick revision C and has a 6-bit IR length. 6.30.3 Initial Scan Chain Configuration The first level of debug interface that sees the scan controller is the TAP router module. The debugger can configure the TAP router for serially linking up to 16 TAP controllers or individually scanning one of the TAP controllers without disrupting the IR state of the other TAPs. 6.30.3.1 Adding TAPS to the Scan Chain The TAP router must be programmed to add additional TAPs to the scan chain. The following JTAG scans must be completed to add the ARM926EJ-S to the scan chain. A Power-On Reset (POR) or the JTAG Test-Logic Reset state configures the TAP router to contain only the router’s TAP. Copyright © 2010–2014, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 185 AM1707 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 www.ti.com Router TDO TDI CLK Steps TMS Router ARM926EJ-S/ETM Figure 6-71. Adding ARM926EJ-S to the scan chain Pre-amble: The device whose data reaches the emulator first is listed first in the board configuration file. This device is a pre-amble for all the other devices. This device has the lowest device ID. Post-amble: The device whose data reaches the emulator last is listed last in the board configuration file. This device is a post-amble for all the other devices. This device has the highest device ID. • Function : Update the JTAG preamble and post-amble counts. – Parameter : The IR pre-amble count is '0'. – Parameter : The IR post-amble count is '0'. – Parameter : The DR pre-amble count is '0'. – Parameter : The DR post-amble count is '0'. – Parameter : The IR main count is '6'. – Parameter : The DR main count is '1'. • Function : Do a send-only JTAG IR/DR scan. – Parameter : The route to JTAG shift state is 'shortest transition'. – Parameter : The JTAG shift state is 'shift-ir'. – Parameter : The JTAG destination state is 'pause-ir'. – Parameter : The bit length of the command is '6'. – Parameter : The send data value is '0x00000007'. – Parameter : The actual receive data is 'discarded'. • Function : Do a send-only JTAG IR/DR scan. – Parameter : The route to JTAG shift state is 'shortest transition'. – Parameter : The JTAG shift state is 'shift-dr'. – Parameter : The JTAG destination state is 'pause-dr'. – Parameter : The bit length of the command is '8'. – Parameter : The send data value is '0x00000089'. – Parameter : The actual receive data is 'discarded'. • Function : Do a send-only JTAG IR/DR scan. – Parameter : The route to JTAG shift state is 'shortest transition'. – Parameter : The JTAG shift state is 'shift-ir'. – Parameter : The JTAG destination state is 'pause-ir'. – Parameter : The bit length of the command is '6'. – Parameter : The send data value is '0x00000002'. – Parameter : The actual receive data is 'discarded'. • Function : Embed the port address in next command. – Parameter : The port address field is '0x0f000000'. – Parameter : The port address value is '3'. 186 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 Copyright © 2010–2014, Texas Instruments Incorporated AM1707 www.ti.com • • • • SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 Function : Do a send-only JTAG IR/DR scan. – Parameter : The route to JTAG shift state is 'shortest transition'. – Parameter : The JTAG shift state is 'shift-dr'. – Parameter : The JTAG destination state is 'pause-dr'. – Parameter : The bit length of the command is '32'. – Parameter : The send data value is '0xa2002108'. – Parameter : The actual receive data is 'discarded'. Function : Do a send-only all-ones JTAG IR/DR scan. – Parameter : The JTAG shift state is 'shift-ir'. – Parameter : The JTAG destination state is 'run-test/idle'. – Parameter : The bit length of the command is '6'. – Parameter : The send data value is 'all-ones'. – Parameter : The actual receive data is 'discarded'. Function : Wait for a minimum number of TCLK pulses. – Parameter : The count of TCLK pulses is '10'. Function : Update the JTAG preamble and post-amble counts. – Parameter : The IR pre-amble count is '0'. – Parameter : The IR post-amble count is '6'. – Parameter : The DR pre-amble count is '0'. – Parameter : The DR post-amble count is '1'. – Parameter : The IR main count is '4'. – Parameter : The DR main count is '1'. The initial scan chain contains only the TAP router module. The following steps must be completed in order to add ETB TAP to the scan chain. Router TDI ARM926EJ-S/ETM TDO CLK Steps TMS Router • ARM926EJ-S/ETM ETB Figure 6-72. Adding ETB to the scan chain Function : Do a send-only JTAG IR/DR scan. – Parameter : The route to JTAG shift state is 'shortest transition'. – Parameter : The JTAG shift state is 'shift-ir'. – Parameter : The JTAG destination state is 'pause-ir'. – Parameter : The bit length of the command is '6'. – Parameter : The send data value is '0x00000007'. – Parameter : The actual receive data is 'discarded'. Copyright © 2010–2014, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 187 AM1707 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 • • • • • • • www.ti.com Function : Do a send-only JTAG IR/DR scan. – Parameter : The route to JTAG shift state is 'shortest transition'. – Parameter : The JTAG shift state is 'shift-dr'. – Parameter : The JTAG destination state is 'pause-dr'. – Parameter : The bit length of the command is '8'. – Parameter : The send data value is '0x00000089'. – Parameter : The actual receive data is 'discarded'. Function : Do a send-only JTAG IR/DR scan. – Parameter : The route to JTAG shift state is 'shortest transition'. – Parameter : The JTAG shift state is 'shift-ir'. – Parameter : The JTAG destination state is 'pause-ir'. – Parameter : The bit length of the command is '6'. – Parameter : The send data value is '0x00000002'. – Parameter : The actual receive data is 'discarded'. Function : Embed the port address in next command. – Parameter : The port address field is '0x0f000000'. – Parameter : The port address value is '3'. Function : Do a send-only JTAG IR/DR scan. – Parameter : The route to JTAG shift state is 'shortest transition'. – Parameter : The JTAG shift state is 'shift-dr'. – Parameter : The JTAG destination state is 'pause-dr'. – Parameter : The bit length of the command is '32'. – Parameter : The send data value is '0xa3302108'. – Parameter : The actual receive data is 'discarded'. Function : Do a send-only all-ones JTAG IR/DR scan. – Parameter : The JTAG shift state is 'shift-ir'. – Parameter : The JTAG destination state is 'run-test/idle'. – Parameter : The bit length of the command is '6'. – Parameter : The send data value is 'all-ones'. – Parameter : The actual receive data is 'discarded'. Function : Wait for a minimum number of TCLK pulses. – Parameter : The count of TCLK pulses is '10'. Function : Update the JTAG preamble and post-amble counts. – Parameter : The IR pre-amble count is '0'. – Parameter : The IR post-amble count is '6 + 4'. – Parameter : The DR pre-amble count is '0'. – Parameter : The DR post-amble count is '1 + 1'. – Parameter : The IR main count is '4'. – Parameter : The DR main count is '1'. 6.30.4 JTAG 1149.1 Boundary Scan Considerations To • • • use boundary scan, the following sequence should be followed: Execute a valid reset sequence and exit reset Wait at least 6000 OSCIN clock cycles Enter boundary scan mode using the JTAG pins No specific value is required on the EMU0 pin for boundary scan testing. If TRST is not driven by the boundary scan tool or tester, TRST should be externally pulled high during boundary scan testing. 188 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 Copyright © 2010–2014, Texas Instruments Incorporated AM1707 www.ti.com SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 6.31 IEEE 1149.1 JTAG The JTAG (1) interface is used for BSDL testing and emulation of the device. The device requires that both TRST and RESET be asserted upon power up to be properly initialized. While RESET initializes the device, TRST initializes the device's emulation logic. Both resets are required for proper operation. While both TRST and RESET need to be asserted upon power up, only RESET needs to be released for the device to boot properly. TRST may be asserted indefinitely for normal operation, keeping the JTAG port interface and device's emulation logic in the reset state. . TRST only needs to be released when it is necessary to use a JTAG controller to debug the device or exercise the device's boundary scan functionality. Note: TRST is synchronous and must be clocked by TCK; otherwise, the boundary scan logic may not respond as expected after TRST is asserted. . RESET must be released only in order for boundary-scan JTAG to read the variant field of IDCODE correctly. Other boundary-scan instructions work correctly independent of current state of RESET. For maximum reliability, the device includes an internal pulldown (IPD) on the TRST pin to ensure that TRST will always be asserted upon power up and the device's internal emulation logic will always be properly initialized. JTAG controllers from Texas Instruments actively drive TRST high. However, some third-party JTAG controllers may not drive TRST high but expect the use of a pullup resistor on TRST. When using this type of JTAG controller, assert TRST to initialize the device after powerup and externally drive TRST high before attempting any emulation or boundary scan operations. 6.31.1 JTAG Peripheral Register Description(s) – JTAG ID Register (DEVIDR0) Table 6-113. DEVIDR0 Register BYTE ADDRESS ACRONYM 0x01C1 4018 DEVIDR0 (1) REGISTER DESCRIPTION JTAG Identification Register COMMENTS Read-only. Provides 32-bit JTAG ID of the device. IEEE Standard 1149.1-1990 Standard-Test-Access Port and Boundary Scan Architecture. The JTAG ID register is a read-only register that identifies to the customer the JTAG/Device ID. For the device, the JTAG ID register resides at address location 0x01C1 4018. The register hex value for each silicon revision is: • 0x8B7D F02F for silicon revision 1.1 • 0x9B7D F02F for silicon revisions 3.0, 2.1, and 2.0 For the actual register bit names and their associated bit field descriptions, see Figure 6-73 and Table 6114. Figure 6-73. JTAG ID (DEVIDR0) Register Description - Register Value 31 28 27 VARIANT (4-bit) R-xxxx 12 11 1 0 PART NUMBER (16-bit) MANUFACTURER (11-bit) LSB R-1011 0111 1101 1111 R-0000 0010 111 R-1 LEGEND: R = Read, W = Write, n = value at reset Copyright © 2010–2014, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 189 AM1707 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 www.ti.com Table 6-114. JTAG ID Register Selection Bit Descriptions BIT NAME 31:28 VARIANT DESCRIPTION Variant (4-Bit) value 27:12 PART NUMBER Part Number (16-Bit) value 11-1 MANUFACTURER Manufacturer (11-Bit) value 0 LSB 6.31.2 LSB. This bit is read as a "1". JTAG Test-Port Electrical Data/Timing Table 6-115. Timing Requirements for JTAG Test Port (see Figure 6-74) No. PARAMETER MIN MAX UNIT 1 tc(TCK) Cycle time, TCK 40 ns 2 tw(TCKH) Pulse duration, TCK high 16 ns 3 tw(TCKL) Pulse duration, TCK low 16 ns 4 tc(RTCK) Cycle time, RTCK 40 ns 5 tw(RTCKH) Pulse duration, RTCK high 16 ns 6 tw(RTCKL) Pulse duration, RTCK low 16 ns 7 tsu(TDIV-RTCKH) Setup time, TDI/TMS/TRST valid before RTCK high 4 ns 8 th(RTCKH-TDIV) Hold time, TDI/TMS/TRST valid after RTCK high 4 ns Table 6-116. Switching Characteristics Over Recommended Operating Conditions for JTAG Test Port (see Figure 6-74) No. 9 PARAMETER td(RTCKL-TDOV) MIN Delay time, RTCK low to TDO valid MAX UNIT 15 ns 1 2 3 TCK 4 5 6 RTCK 9 TDO 8 7 TDI/TMS/TRST Figure 6-74. JTAG Test-Port Timing 190 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 Copyright © 2010–2014, Texas Instruments Incorporated AM1707 www.ti.com SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 6.32 Real Time Clock (RTC) The RTC provides a time reference to an application running on the device. The current date and time is tracked in a set of counter registers that update once per second. The time can be represented in 12-hour or 24-hour mode. The calendar and time registers are buffered during reads and writes so that updates do not interfere with the accuracy of the time and date. Alarms are available to interrupt the CPU at a particular time, or at periodic time intervals, such as once per minute or once per day. In addition, the RTC can interrupt the CPU every time the calendar and time registers are updated, or at programmable periodic intervals. The real-time clock (RTC) provides the following features: • 100-year calendar (xx00 to xx99) • Counts seconds, minutes, hours, day of the week, date, month, and year with leap year compensation • Binary-coded-decimal (BCD) representation of time, calendar, and alarm • 12-hour clock mode (with AM and PM) or 24-hour clock mode • Alarm interrupt • Periodic interrupt • Single interrupt to the CPU • Supports external 32.768-kHz crystal or external clock source of the same frequency • Separate isolated power supply Figure 6-75 shows a block diagram of the RTC. RTC_XI Counter 32 kHz Oscillator Compensation Seconds Minutes Week Days XTAL RTC_XO Hours Days Months Years Oscillator Alarm Alarm Interrupts Timer Periodic Interrupts Figure 6-75. Real-Time Clock Block Diagram Copyright © 2010–2014, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 191 AM1707 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 www.ti.com 6.32.1 Clock Source The clock reference for the RTC is an external 32.768-kHz crystal or an external clock source of the same frequency. The RTC also has a separate power supply that is isolated from the rest of the system. When the CPU and other peripherals are without power, the RTC can remain powered to preserve the current time and calendar information. The source for the RTC reference clock may be provided by a crystal or by an external clock source. The RTC has an internal oscillator buffer to support direct operation with a crystal. The crystal is connected between pins RTC_XI and RTC_XO. RTC_XI is the input to the on-chip oscillator and RTC_XO is the output from the oscillator back to the crystal. A crystal with 70k-ohm max ESR is recommended. Typical load capacitance values are 10-20 pF, where the load capacitance is the series combination of C1 and C2. An external 32.768-kHz clock source may be used instead of a crystal. In such a case, the clock source is connected to RTC_XI, and RTC_XO is left unconnected. If the RTC is not used, the RTC_XI pin should be static held high or low and RTC_XO should be left unconnected. RTC Power Source Real Time Clock C2 XTAL 32.768 kHz RTC_CVDD RTC_XI RTC_XO 32K OSC C1 Real Time Clock (RTC) Module RTC_VSS Isolated RTC Power Domain Figure 6-76. Clock Source 192 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 Copyright © 2010–2014, Texas Instruments Incorporated AM1707 www.ti.com SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 6.32.2 Registers Table 6-117 lists the memory-mapped registers for the RTC. Table 6-117. Real-Time Clock (RTC) Registers BYTE ADDRESS ACRONYM 0x01C2 3000 SECOND Seconds Register 0x01C2 3004 MINUTE Minutes Register 0x01C2 3008 HOUR 0x01C2 300C DAY 0x01C2 3010 MONTH 0x01C2 3014 YEAR Year Register 0x01C2 3018 DOTW Day of the Week Register 0x01C2 3020 ALARMSECOND Alarm Seconds Register 0x01C2 3024 ALARMMINUTE Alarm Minutes Register 0x01C2 3028 ALARMHOUR Alarm Hours Register 0x01C2 302C ALARMDAY Alarm Days Register 0x01C2 3030 ALARMMONTH 0x01C2 3034 ALARMYEAR 0x01C2 3040 CTRL Control Register 0x01C2 3044 STATUS Status Register 0x01C2 3048 INTERRUPT 0x01C2 304C COMPLSB Compensation (LSB) Register 0x01C2 3050 COMPMSB Compensation (MSB) Register 0x01C2 3054 OSC 0x01C2 3060 SCRATCH0 Scratch 0 (General-Purpose) Register 0x01C2 3064 SCRATCH1 Scratch 1 (General-Purpose) Register 0x01C2 3068 SCRATCH2 Scratch 2 (General-Purpose) Register 0x01C2 306C KICK0 Kick 0 (Write Protect) Register 0x01C2 3070 KICK1 Kick 1 (Write Protect) Register Copyright © 2010–2014, Texas Instruments Incorporated REGISTER DESCRIPTION Hours Register Day of the Month Register Month Register Alarm Months Register Alarm Years Register Interrupt Enable Register Oscillator Register Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM1707 193 AM1707 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 www.ti.com 7 Device and Documentation Support 7.1 7.1.1 Device Support Development Support TI offers an extensive line of development tools for the device platform, including tools to evaluate the performance of the processors, generate code, develop algorithm implementations, and fully integrate and debug software and hardware modules. The tool's support documentation is electronically available within the Code Composer Studio™ Integrated Development Environment (IDE). The following products support development of the device applications: Software Development Tools: Code Composer Studio™ Integrated Development Environment (IDE): including Editor C/C++/Assembly Code Generation, and Debug plus additional development tools Hardware Development Tools: Extended Development System (XDS™) Emulator For a complete listing of development-support tools for the device, visit the Texas Instruments web site on the Worldwide Web at www.ti.com uniform resource locator (URL). For information on pricing and availability, contact the nearest TI field sales office or authorized distributor. 7.1.2 Device and Development-Support Tool Nomenclature To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all AM1xxx processors and support tools. Each commercial AM1xxx platform member has one of three prefixes: X, P, or null (no prefix). Texas Instruments recommends two of three possible prefix designators for its support tools: TMDX and TMDS. These prefixes represent evolutionary stages of product development from engineering prototypes (TMDX) through fully qualified production devices/tools (TMDS). Device development evolutionary flow: X Experimental device that is not necessarily representative of the final device's electrical specifications. P Final silicon die that conforms to the device's electrical specifications but has not completed quality and reliability verification. NULL Fully-qualified production device. Support tool development evolutionary flow: TMDX Development-support product that has not yet completed Texas Instruments internal qualification testing. TMDS Fully qualified development-support product. X and P devices and TMDX development-support tools are shipped against the following disclaimer: "Developmental product is intended for internal evaluation purposes." NULL devices and TMDS development-support tools have been characterized fully, and the quality and reliability of the device have been demonstrated fully. TI's standard warranty applies. Predictions show that prototype devices (X or P) have a greater failure rate than the standard production devices. Texas Instruments recommends that these devices not be used in any production system because their expected end-use failure rate still is undefined. Only qualified production devices are to be used. Figure 7-1 provides a legend for reading the device. 194 Device and Documentation Support Copyright © 2010–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM1707 AM1707 www.ti.com SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 X ( ) AM1707 ZKB ( ) 3 DEVICE SPEED RANGE 3 = 375 MHZ 4 = 456 MHz PREFIX X = Experimental Device P = Prototype Device Blank = Production Device TEMPERATURE RANGE (JUNCTION) Blank = 0°C to 90°C (Commercial Grade) D = -40°C to 90°C (Industrial Grade) A = -40°C to 105°C (Extended Grade) T = -40°C to 125°C (Automotive Grade) DEVICE SILICON REVISION B = Silicon Revision 2.0 C = Silicon Revision 2.1 D = Silicon Revision 3.0 PACKAGE TYPE ZKB = 256 Pin Plastic BGA, with Pb-free Soldered Balls [Green] Figure 7-1. Device Nomenclature 7.2 Documentation Support The following documents describe the device. Copies of these documents are available on the Internet at www.ti.com. Tip: Enter the literature number in the search box provided at www.ti.com. Reference Guides SPRUGR6 AM1707 ARM Microprocessor System Reference Guide SPRUFU0 7.3 AM17x/AM18x ARM Microprocessor Peripherals Overview Reference Guide Community Resources The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers. TI Embedded Processors Wiki Texas Instruments Embedded Processors Wiki. Established to help developers get started with Embedded Processors from Texas Instruments and to foster innovation and growth of general knowledge about the hardware and software surrounding these devices. 7.4 Trademarks E2E is a trademark of Texas Instruments. ARM9 is a trademark of ARM. ETM9, CoreSight are trademarks of ARM Limited. All other trademarks are the property of their respective owners. 7.5 Electrostatic Discharge Caution This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. 7.6 Glossary SLYZ022 — TI Glossary. This glossary lists and explains terms, acronyms, and definitions. Device and Documentation Support Copyright © 2010–2014, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM1707 195 AM1707 SPRS637E – FEBRUARY 2010 – REVISED JUNE 2014 www.ti.com 8 Mechanical Packaging and Orderable Information This section describes the device orderable part numbers, packaging options, materials, thermal and mechanical parameters. 8.1 Thermal Data for ZKB The following table(s) show the thermal resistance characteristics for the PBGA–ZKB mechanical package. Table 8-1. Thermal Resistance Characteristics (PBGA Package) [ZKB] PARAMETER °C/W (1) °C/W (2) AIR FLOW (m/s) (3) Junction-to-case 12.8 13.5 N/A RΘJB Junction-to-board 15.1 19.7 N/A RΘJA Junction-to-free air 24.5 33.8 0.00 21.9 30 0.50 21.1 28.7 1.00 20.4 27.4 2.00 19.6 26 4.00 0.6 0.8 0.00 0.8 1 0.50 0.9 1.2 1.00 1.1 1.4 2.00 RΘJC RΘJMA PsiJT PsiJB (1) (2) (3) 8.2 Junction-to-moving air Junction-to-package top Junction-to-board 1.3 1.8 4.00 14.9 19.1 0.00 14.4 18.2 0.50 14.4 18 1.00 14.3 17.7 2.00 14.1 17.4 4.00 These measurements were conducted in a JEDEC defined 2S2P system and will change based on environment as well as application. For more information, see these EIA/JEDEC standards – EIA/JESD51-2, Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air) and JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages. Power dissipation of 1W and ambient temp of 70C assumed. PCB with 2oz (70um) top and bottom copper thickness and 1.5oz (50um) inner copper thickness Simulation data, using the same model but with 1oz (35um) top and bottom copper thickness and 0.5oz (18um) inner copper thickness. Power dissipation of 1W and ambient temp of 70C assumed. m/s = meters per second Packaging Information The following packaging information and addendum reflect the most current data available for the designated device(s). This data is subject to change without notice and without revision of this document. 196 Mechanical Packaging and Orderable Information Submit Documentation Feedback Product Folder Links: AM1707 Copyright © 2010–2014, Texas Instruments Incorporated PACKAGE OPTION ADDENDUM www.ti.com 28-Jun-2016 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) AM1707BZKB3 NRND BGA ZKB 256 TBD Call TI Call TI 0 to 90 AM1707BZKB3 AM1707BZKB4 NRND BGA ZKB 256 TBD Call TI Call TI 0 to 90 AM1707BZKB4 AM1707BZKBA3 NRND BGA ZKB 256 TBD Call TI Call TI -40 to 105 AM1707BZKBA3 AM1707BZKBD4 NRND BGA ZKB 256 TBD Call TI Call TI -40 to 90 AM1707BZKBD4 AM1707BZKBT3 NRND BGA ZKB 256 TBD Call TI Call TI -40 to 125 AM1707BZKBT3 AM1707CZKB3 OBSOLETE BGA ZKB 256 TBD Call TI Call TI 0 to 90 AM1707CZKB3 AM1707CZKB4 OBSOLETE BGA ZKB 256 TBD Call TI Call TI 0 to 90 AM1707CZKB4 AM1707CZKBA3 OBSOLETE BGA ZKB 256 TBD Call TI Call TI -40 to 105 AM1707CZKBA3 AM1707CZKBD4 OBSOLETE BGA ZKB 256 TBD Call TI Call TI -40 to 90 AM1707CZKBD4 AM1707CZKBT3 OBSOLETE BGA ZKB 256 TBD Call TI Call TI -40 to 125 AM1707CZKBT3 AM1707DZKB3 ACTIVE BGA ZKB 256 90 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR 0 to 90 AM1707DZKB3 AM1707DZKB4 ACTIVE BGA ZKB 256 90 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR 0 to 90 AM1707DZKB4 AM1707DZKBA3 ACTIVE BGA ZKB 256 90 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR -40 to 105 AM1707DZKBA3 AM1707DZKBD4 ACTIVE BGA ZKB 256 90 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR -40 to 90 AM1707DZKBD4 (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) Addendum-Page 1 Samples PACKAGE OPTION ADDENDUM www.ti.com 28-Jun-2016 (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 2 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949. Products Applications Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com Energy and Lighting www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity www.ti.com/wirelessconnectivity Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2016, Texas Instruments Incorporated