ACPM-7353 CDMA Dual Band 4x5 Power Amplifier Module (Cellular/PCS) Data Sheet Description Features The ACPM-7353 is a dual-band PAM (Power Amplifier Module) designed for CDMA (code division multiple access) cellular and PCS. The ACPM-7353 meets stringent CDMA linearity requirements to and beyond 28dBm output power in both bands. The 4mmx5mm form factor 14-pin surface mount package is self contained, incorporating 50ohm input and output matching networks • Dual-Band PA (Cellular and PCS) The ACPM-7353 features 5th generation of CoolPAM circuit technology which supports 3 modes – bypass, mid and high power modes. The CoolPAM is stage bypass technology which enables power amplifier to lower power consumption. Active bypass feature is added to 5th generation to enhance power added efficiency at low output range and this technology extends talk time of mobiles more by further saving power amplifier’s current consumption. • High Efficiency at max output power The power amplifier is manufactured on an advanced InGaP HBT (hetero-junction Bipolar Transistor) MMIC (microwave monolithic integrated circuit) technology offering state-of-the-art reliability, temperature stability and ruggedness • Digital CDMA Cellular and PCS Dual Band The Module is housed in a cost effective, small and thin 4x5mm package. Component Image • Small Size (4x5mm) • Thin Package (0.9mm typ) • Excellent Linearity • 3-mode power control Bypass / Mid Power Mode / High Power Mode • 14-pin surface mounting package • Internal 50ohm matching networks for both RF input and output • Lead-free, RoHS compliant, Green Applications Ordering Information Part Number Number of Devices Container ACPM-7353-TR1G 1000 178mm (7”) Tape/Reel ACPM-7353-BLK 100 Bulk Functional Block Diagram Absolute Maximum Ratings No damage assuming only one parameter is set at limit at a time with all other parameters set at or below typical value Operation of any single parameter outside these conditions with the remaining parameters set at or below typical values may result in permanent damage. Description Min RF Input Power (high power mode) Output power (bypass mode, Cell & PCS) Output power in mid power mode (Cell) Output power in mid power mode (PCS) Typ Max Unit Associated Pins 0 10 11 16 18 dBm RFIn_Cell, RFIn_PCS RFOut_Cell, RFOut_PCS RFOut_Cell RFOut_PCS DC Supply Voltage 0 3.4 5.0 V Vcc1, Vcc2 Enable Voltage 0 2.6 3.3 V Ven Mode Control Voltage 0 2.6 3.3 V Vmode Bypass Control 0 2.6 3.3 V Vbp Storage Temperature -55 25 +125 °C Recommended Operating Condition Description Min Typ Max Unit DC Supply Voltage 3.2 3.4 4.2 V Enable Voltage (Ven) LOW HIGH 0 1.35 0 2.6 0.5 2.9 V V Mode Control Voltage (Vmode) LOW HIGH 0 1.35 0 2.6 0.5 2.9 V V Bypass Control Voltage (Vbp) LOW HIGH 0 1.35 0 2.6 0.5 2.9 V V 849 1910 MHz MHz 85 °C Operating Frequency Cellular PCS 824 1850 Ambient Temperature -30 2 25 Operating Logic Table Power Mode Ven Vbp Vmode Cellular Pout PCS Pout High Power Mode HIGH HIGH LOW ~28dBm ~28dBm Mid Power Mode HIGH HIGH HIGH ~16dBm ~18dBm Bypass Mode HIGH LOW – ~11dBm ~11dBm Shut Down Mode LOW LOW LOW – – Electrical Characteristics in Cellular Band - Conditions: Vcc=3.4V, Ven=2.6V, T=25°C, Zin/Zout=50ohm Characteristics Condition Min Typ Max Unit 824 – 849 MHz High Power Mode, Pout=28 dBm 24 27.5 dB Mid Power Mode, Pout=16 dBm 14 17.5 dB Bypass Power Mode, Pout=11dBm 8.5 12 dB High Power Mode, Pout=28 dBm 35.3 38.2 % Mid Power Mode, Pout=16 dBm 12.8 16.7 % Bypass Power Mode, Pout=11dBm 8.0 12.0 % Operating Frequency Range Gain Power Added Efficiency Total Supply Current Quiescent Current High Power Mode, Pout=28 dBm 485 525 mA Mid Power Mode, Pout=16 dBm 69 90 mA Bypass Power Mode, Pout=11dBm 29 43 mA High Power Mode 68 91 115 mA Mid Power Mode 11 23 33 mA Bypass Mode 1 3 5 mA Enable Current 100 uA Mode Control Current 100 uA Bypass Control Current 100 uA Total Current in Power-down mode Ven=0V, Vmode=0V, Vbp=0V 0.2 5 µA Adjacent Channel Power Ratio 900 kHz offset 1.98 MHz offset High Power Mode, Pout=28 dBm -48 -59 -46 -56 dBc dBc 900 kHz offset 1.98 MHz offset Mid Power Mode, Pout=16 dBm -52 -68 -46 -57 dBc dBc 900 kHz offset 1.98 MHz offset Bypass Mode, Pout=11dBm -58 -68 -46 -57 dBc dBc Second Third High Power Mode, Pout=28 dBm -30 -40 dBc dBc Harmonic Suppression Input VSWR Stability (Spurious Output) 2:1 In-Band Load VSWR <= 5:1, All Phase Out of Band Load VSWR <= 10:1, All Phase Forwarded power fixed Noise Power in Rx Band Ruggedness 3 -136 No Damage Pout<28dBm, Pin<10dBm, All phase High Power Mode 2.5:1 -60 dBc -132 dBm/Hz 10:1 VSWR Electrical Characteristics in PCS Band - Conditions: Vcc=3.4V, Ven=2.6V, T=25°C, Zin/Zout=50ohm Characteristics Condition Min. Typ. Max. Unit 1850 – 1910 MHz High Power Mode, Pout=28 dBm 23 26 dB Mid Power Mode, Pout=18 dBm 13 16.5 dB Bypass Power Mode, Pout=11dBm 6.5 10.5 dB High Power Mode, Pout=28 dBm 35.3 38.2 % Mid Power Mode, Pout=18 dBm 15.1 19.1 % Bypass Power Mode, Pout=11dBm 7.6 10.6 % Operating Frequency Range Gain Power Added Efficiency Total Supply Current Quiescent Current High Power Mode, Pout=28 dBm 485 535 mA Mid Power Mode, Pout=18 dBm 95 120 mA Bypass Power Mode, Pout=11dBm 32 45 mA High Power Mode 80 105 125 mA Mid Power Mode 18 28 38 mA Bypass Mode 1 3 5 mA Enable Current 100 uA Mode Control Current 100 uA Bypass Control Current 100 uA 0.2 5 µA 1.25 MHz offset High Power Mode, Pout=28 dBm 1.98 MHz offset -48 -56 -46 -53 dBc dBc 1.25 MHz offset Mid Power Mode, Pout=18 dBm 1.98 MHz offset -56 -63 -46 -53 dBc dBc 1.25 MHz offset Bypass Mode, Pout=11 dBm 1.98 MHz offset -54 -66 -46 -53 dBc dBc -30 -40 dBc dBc Total Current in Power-down mode Adjacent Channel Power Ratio Harmonic Suppression Second Third Ven=0V, Vmode=0V, Vbp=0V High Power Mode, Pout=28 dBm Input VSWR Stability (Spurious Output) 2:1 In-Band Load VSWR <= 5:1, All Phase Out of Band Load VSWR <= 10:1, All Phase Forwarded power fixed Noise Power in Rx Band Ruggedness 4 -138.5 No Damage Pout<28dBm, Pin<10dBm, All phase High Power Mode 2.5:1 -60 dBc -133 dBm/Hz 10:1 VSWR Characteristics Data of Cell Band 500 450 400 350 300 250 200 150 100 50 0 Current (Cell Band) 824MHz 837MHz 849MHz 20 0 5 10 15 Pout (dBm) 20 25 ACPR1 (Cell Band) 0 5 10 15 Pout (dBm) 20 25 30 824MHz 837MHz 849MHz -50 25 30 ACPR2 (Cell Band) -50 824MHz 849MHz 894MHz -55 ACPR2 (dBc) ACPR1 (dBc) 0 30 -55 -60 -65 -60 -65 -70 -75 0 5 10 15 Pout (dBm) 20 25 30 Adjacent Channel Power Ratio 1 vs. Output Power 35 824MHz 837MHz 849MHz 30 25 20 15 10 5 0 5 10 15 Pout (dBm) Power Added Efficiency vs. Output Power 20 -80 0 5 10 15 Pout (dBm) 20 Adjacent Channel Power Ratio 2 vs. Output Power PAE (Cell Band) 40 PAE (%) 10 Gain vs. Output Power -45 5 15 5 -40 0 824MHz 849MHz 894MHz 25 Total Current vs. Output Power -70 Gain (Cell Band) 30 Gain (dB) Current (mA) (Vcc=3.4V, Ven=2.6, Vbp, Vmode= 0V or 2.6V, T=25°C, Zin/Zout=50ohm, IS-95 RL) 25 30 Characteristics Data of PCS Band 500 450 400 350 300 250 200 150 100 50 0 Current (PCS Band) 1.85GHz 1.88GHz 1.91GHz 20 15 10 5 0 5 10 15 Pout (dBm) 20 25 10 15 Pout (dBm) 20 25 30 25 30 ACPR2 (PCS Band) 1.85GHz 1.88GHz 1.91GHz -55 -55 -60 -65 -60 -65 -70 -75 0 5 10 15 Pout (dBm) 20 25 30 Adjacent Channel Power Ratio 1 vs. Output Power 35 1.85GHz 1.88GHz 1.91GHz 30 25 20 15 10 5 0 5 10 15 Pout (dBm) Power Added Efficiency vs. Output Power 20 -80 0 5 10 15 Pout (dBm) Adjacent Channel Power Ratio 2 vs. Output Power PAE (PCS Band) 40 PAE (%) 5 -50 ACPR2 (dBc) ACPR1 (dBc) -50 0 Gain vs. Output Power 1.85GHz 1.88GHz 1.91GHz -45 6 0 30 ACPR1 (PCS Band) -40 0 1.85GHz 1.88GHz 1.91GHz 25 Total Current vs. Output Power -70 Gain (PCS Band) 30 Gain (dB) Current (mA) (Vcc=3.4V, Ven=2.6, Vbp, Vmode= 0V or 2.6V, T=25°C, Zin/Zout=50ohm, IS-95 RL) 25 30 20 Footprint X-RAY TOP VIEW All dimensions are in millimeters PIN DESCRIPTIONS Pin # Name Description 1 RFIn_Cell Cellular Band RF Input 2 Vmode Mode Control 3 Vbp Bypass Control 4 Vcc1 Supply Voltage 5 Ven_Cell Cellular Band PA Enable 6 Ven_PCS PCS Band PA Enable 7 RFIn_PCS PCS Band RF Input 8 RFOut_PCS PCS Band RF Output 9 GND Ground 10 GND Ground 11 Vcc2 Supply Voltage 12 GND Ground 13 GND Ground 14 RFOut_Cell Cellular Band RF Output 7 Package Dimensions 0.6 Pin 1 Mark 1 14 2 13 3 12 4 11 5 10 6 9 7 8 4 ± 0.1 5 ± 0.1 0.9 ± 0.1 All dimensions are in millimeters Marking Specification Pin 1 Mark AVAGO ACPM-7353 Manufacturing Part Number PYYWW Lot Number P Manufacturing info YY Manufacturing Year WW Work Week A A A A A Assembly Lot Number AAAAA 8 Metallization PCB Design Guidelines The recommended PCB land pattern is shown in figures on the left side. The substrate is coated with solder mask between the I/O and conductive paddle to protect the gold pads from short circuit that is caused by solder bleeding/bridging. 0.50 0.60 0.40 Stencil Design Guidelines A properly designed solder screen or stencil is required to ensure optimum amount of solder paste is deposited onto the PCB pads. 0.73 0.33 0.25 Φ 0.3 Via on 0.6 pitch Solder Mask Opening 0.55 0.70 0.50 2.30 0.73 2.40 Solder Paste Stencil Aperture 0.50 0.60 0.40 2.10 0.73 2.00 9 The recommended stencil layout is shown here. Reducing the stencil opening can potentially generate more voids. On the other hand, stencil openings larger than 100% will lead to excessive solder paste smear or bridging across the I/O pads or conductive paddle to adjacent I/O pads. Considering the fact that solder paste thickness will directly affect the quality of the solder joint, a good choice is to use laser cut stencil composed of 0.100mm(4mils) or 0.127mm(5mils) thick stainless steel which is capable of producing the required fine stencil outline. Evaluation Board Schematic RF In Cell 1 RFIn_Cell Vmode Vbp C6 100 pF Vcc1 C5 100 pF C4 Ven_Cell 2.2uF Ven_PCS RF In PCS C3 1000 pF C2 100 pF C1 100 pF Evaluation Board Description 10 RFOut_Cell 14 2 Vmode GND 13 3 Vbp GND 12 4 Vcc1 Vcc2 11 5 Ven_Cell GND 10 6 Ven_PCS GND 9 Vcc2 C7 1000 pF C8 2.2uF RF Out PCS 7 RFIn_PCS RFOut_PCS 8 Tape and Reel Information ACPM-7353 PYYWW AAAAA Dimension List Millimeter Annote Millimeter A0 4.40±0.10 P2 2.00±0.05 B0 5.30±0.10 P10 40.00±0.20 K0 1.20±0.10 E 1.75±0.10 D0 1.55±0.05 F 5.50±0.05 D1 1.60±0.10 W 12.00±0.30 P0 4.00±0.10 T 0.30±0.05 Annote Tape and Reel Format – 4 mm x 5 mm 11 Reel Drawing BACK VIEW Shading indicates thru slots 18.4 max. 178 +0.4 -0.2 50 min. 25 min wide (ref) Slot for carrier tape insertion for attachment to reel hub (2 places 180° apart) 12.4 +2.0 -0.0 FRONT VIEW 1.5 min. 13.0 ± 0.2 21.0 ± 0.8 12 NOTES: 1. Reel shall be labeled with the following information (as a minimum). a. manufacturers name or symbol b. Avago Technologies part number c. purchase order number d. date code e. quantity of units 2. A certificate of compliance (c of c) shall be issued and accompany each shipment of product. 3. Reel must not be made with or contain ozone depleting materials. 4. All dimensions in millimeters (mm) Handling and Storage ESD (Electrostatic Discharge) Electrostatic discharge occurs naturally in the environment. With the increase in voltage potential, the outlet of neutralization or discharge will be sought. If the acquired discharge route is through a semiconductor device, destructive damage will result. ESD countermeasure methods should be developed and used to control potential ESD damage during handling in a factory environment at each manufacturing site. MSL (Moisture Sensitivity Level) Plastic encapsulated surface mount package is sensitive to damage induced by absorbed moisture and temperature. Avago Technologies follows JEDEC Standard J-STD 020B. Each component and package type is classified for moisture sensitivity by soaking a known dry package at various temperatures and relative humidity, and times. After soak, the components are subjected to three consecutive simulated reflows. The out of bag exposure time maximum limits are determined by the classification test describe below which corresponds to a MSL classification level 6 to 1 according to the JEDEC standard IPC/JEDEC J-STD-020B and J-STD-033. ACPM-7353 is MSL3. Thus, according to the J-STD-033 p.10, the maximum Manufacturers Exposure Time (MET) for this part is 168 hours. After this time period, the part would need to be removed from the reel, de-taped and then re-baked. MSL classification reflow temperature for the ACPM-7353 is targeted at 260°C +0/-5°C. Figure and table on next page show typical SMT profile for maximum temperature of 260 +0/-5°C. Moisture Classification Level and Floor Life MSL Level Floor Life (out of bag) at factory ambient =< 30°C/60% RH or as stated 1 Unlimited at =< 30°C/85% RH 2 1 year 2a 4 weeks 3 168 hours 4 72 hours 5 48 hours 5a 24 hours 6 Mandatory bake before use. After bake, must be reflowed within the time limit specified on the label Note : 1. The MSL Level is marked on the MSL Label on each shipping bag. 13 Reflow Profile Recommendations tp Tp Critical Zone T L to Tp Temperature Ramp-up TL tL Ts max Ts min Ramp-down ts Preheat 25 t 25oC to Peak Time Typical SMT Reflow Profile for Maximum Temperature = 260 +0/-5°C Typical SMT Reflow Profile for Maximum Temperature = 260 +0/ -5°C Profile Feature Sn-Pb Solder Pb-Free Solder Average ramp-up rate (TL to TP) 3°C/sec max 3°C/sec max Preheat - Temperature Min (Tsmin) - Temperature Max (Tsmax) - Time (min to max) (ts) 100°C 150°C 60-120 sec 150°C 200°C 60-120 sec Tsmax to TL - Ramp-up Rate 3°C/sec max Time maintained above: - Temperature (TL) - Time (TL) 183°C 60-150 sec 217°C 60-150 sec Peak temperature (Tp) 240 +0/-5°C 260 +0/-5°C Time within 5°C of actual Peak Temperature (tp) 10-30 sec 20-40 sec Ramp-down Rate 6°C/sec max 6°C/sec max Time 25°C to Peak Temperature 6 min max. 8 min max. 14 Storage Condition Baking of Populated Boards Packages described in this document must be stored in sealed moisture barrier, antistatic bags. Shelf life in a sealed moisture barrier bag is 12 months at <40°C and 90% relative humidity (RH) J-STD-033 p.6. Some SMD packages and board materials are not able to withstand long duration bakes at 125°C. Examples of this are some FR-4 materials, which cannot withstand a 24 hr bake at 125°C. Batteries and electrolytic capacitors are also temperature sensitive. With component and board temperature restrictions in mind, choose a bake temperature from Table 4-1 in J-STD 033; then determine the appropriate bake duration based on the component to be removed. For additional considerations see IPC-7711 andIPC-7721. Out-of-Bag Time Duration After unpacking the device must be soldered to the PCB within 168 hours with factory conditions <30°C and 60% RH as listed in the Table 5-1 on the J-STD-020D p.6. Baking It is not necessary to re-bake the part if both conditions (storage conditions and out-of bag conditions) have been satisfied. Baking must be done if at least one of the conditions above has not been satisfied. The baking conditions are listed in the Table 4-1 on the J-STD-033 p.8. CAUTION Tape and reel materials typically cannot be baked at the temperature described above. If out-of-bag exposure time is exceeded, parts must be baked for a longer time at low temperatures, or the parts must be de-reeled, de-taped, re-baked and then put back on tape and reel. (See moisture sensitive warning label on each shipping bag for information of baking). Board Rework Component Removal, Rework and Remount If a component is to be removed from the board, it is recommended that localized heating be used and the maximum body temperatures of any surface mount component on the board not exceed 200°C. This method will minimize moisture related component damage. If any component temperature exceeds 200°C, the board must be baked dry per 4-2 prior to rework and/or component removal. Component temperatures shall be measured at the top center of the package body. Any SMD packages that have not exceeded their floor life can be exposed to a maximum body temperature as high as their specified maximum reflow temperature. Removal for Failure Analysis Not following the above requirements may cause moisture/ reflow damage that could hinder or completely prevent the determination of the original failure mechanism. 15 Derating due to Factory Environmental Conditions Factory floor life exposures for SMD packages removed from the dry bags will be a function of the ambient environmental conditions. A safe, yet conservative, handling approach is to expose the SMD packages only up to the maximum time limits for each moisture sensitivity level as shown in table of Moisture Classification Level and Floor Life. This approach, however, does not work if the factory humidity or temperature is greater than the testing conditions of 30°C/60% RH. A solution for addressing this problem is to derate the exposure times based on the knowledge of moisture diffusion in the component package materials ref. JESD22-A120). Recommended equivalent total floor life exposures can be estimated for a range of humidities and temperatures based on the nominal plastic thickness for each device. Table on follwoing page lists equivalent derated floor lives for humidities ranging from 20-90% RH for three temperature, 20°C, 25°C, and 30°C. This table is applicable to SMDs molded with novolac, biphenyl or multifunctional epoxy mold compounds. The following assumptions were used in calculating this table: 1. Activation Energy for diffusion = 0.35eV (smallest known value). 2. For ≤60% RH, use Diffusivity = 0.121exp ( -0.35eV/kT) mm2/s (this used smallest known Diffusivity @ 30°C). 3. For >60% RH, use Diffusivity = 1.320exp ( -0.35eV/kT) mm2/s (this used largest known Diffusivity @ 30°C). Recommended Equivalent Total Floor Life (days) @ 20°C, 25°C & 30°C, 35°C For ICs with Novolac, Biphenyl and Multifunctional Epoxies (Reflow at same temperature at which the component was classified) Maximum Percent Relative Humidity Maximum Percent Relative Humidity Package Type and Body Thickness Moisture Sensitivity Level 5% 10% 20% 30% 40% 50% 60% 70% 80% 90% Body Thickness ≥3.1 mm Including PQFPs >84 pin, PLCCs (square) All MQFPs or All BGAs ≥1 mm Level 2a ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 94 124 167 231 44 60 78 103 32 41 53 69 26 33 42 57 16 28 36 47 7 10 14 19 5 7 10 13 4 6 8 10 35°C 30°C 25°C 20°C Level 3 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 8 10 13 17 7 9 11 14 6 8 10 13 6 7 9 12 6 7 9 12 4 5 7 10 3 4 6 8 3 4 5 7 35°C 30°C 25°C 20°C Level 4 ∞ ∞ ∞ ∞ 3 5 6 8 3 4 5 7 3 4 5 7 2 4 5 7 2 3 5 7 2 3 4 6 2 3 3 5 1 2 3 4 1 2 3 4 35°C 30°C 25°C 20°C Level 5 ∞ ∞ ∞ ∞ 2 4 5 7 2 3 5 7 2 3 4 6 2 2 4 5 1 2 3 5 1 2 3 4 1 2 2 3 1 1 2 3 1 1 2 3 35°C 30°C 25°C 20°C Level 5a ∞ ∞ ∞ ∞ 1 2 3 5 1 1 2 4 1 1 2 3 1 1 2 3 1 1 2 3 1 1 2 2 1 1 1 2 1 1 1 2 1 1 1 2 35°C 30°C 25°C 20°C Level 2a ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 58 86 148 ∞ 30 39 51 69 22 28 37 49 3 4 6 8 2 3 4 5 1 2 3 4 35°C 30°C 25°C 20°C Level 3 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 12 19 25 32 9 12 15 19 7 9 12 15 6 8 10 13 5 7 9 12 2 3 5 7 2 2 3 5 1 2 3 4 35°C 30°C 25°C 20°C Level 4 ∞ ∞ ∞ ∞ 5 7 9 11 4 5 7 9 3 4 5 7 3 4 5 6 2 3 4 6 2 3 4 5 1 2 3 4 1 2 2 3 1 1 2 3 35°C 30°C 25°C 20°C Level 5 ∞ ∞ ∞ ∞ 3 4 5 6 2 3 4 5 2 3 3 5 2 2 3 4 2 2 3 4 1 2 3 4 1 1 2 3 1 1 1 3 1 1 1 2 35°C 30°C 25°C 20°C Level 5a ∞ ∞ ∞ ∞ 1 2 2 3 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 1 2 0.5 0.5 1 2 0.5 0.5 1 1 35°C 30°C 25°C 20°C Level 2a ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 17 28 ∞ ∞ 1 1 2 2 0.5 1 1 2 0.5 1 1 1 35°C 30°C 25°C 20°C Level 3 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 8 11 14 20 5 7 10 13 1 1 2 2 0.5 1 1 2 0.5 1 1 1 35°C 30°C 25°C 20°C Level 4 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 7 9 12 17 4 5 7 9 3 4 5 7 2 3 4 6 1 1 2 2 0.5 1 1 2 0.5 1 1 1 35°C 30°C 25°C 20°C Level 5 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 7 13 18 26 3 5 6 8 2 3 4 6 2 2 3 5 1 2 3 4 1 1 2 2 0.5 1 1 2 0.5 1 1 1 35°C 30°C 25°C 20°C Level 5a ∞ ∞ ∞ ∞ 7 10 13 18 2 3 5 6 1 2 3 4 1 1 2 3 1 1 2 2 1 1 2 2 1 1 1 2 0.5 1 1 2 0.5 0.5 1 1 35°C 30°C 25°C 20°C Body 2.1 mm ≤ Thickness <3.1 mm including PLCCs (rectangular) 18-32 pin SOICs (wide body) SOICs ≥20 pins, PQFPs ≤80 pins Body Thickness <2.1 mm including SOICs <18 pin All TQFPs, TSOPs or All BGAs <1 mm body thickness 16 For product information and a complete list of distributors, please go to our web site: www.avagotech.com Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries. Data subject to change. Copyright © 2005-2008 Avago Technologies. All rights reserved. AV02-1611EN - October 20, 2008