dsPIC33F/PIC24H dsPIC33F/PIC24H Flash Programming Specification 1.0 DEVICE OVERVIEW This document defines the programming specification for the dsPIC33F 16-bit Digital Signal Controller (DSC) and PIC24H 16-bit Microcontroller (MCU) families. This programming specification is required only for those developing programming support for the dsPIC33F/ PIC24H family. Customers only using one of these devices should use development tools that already provide support for device programming. This document includes programming specifications for the following devices: • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • dsPIC33FJ64GP206 dsPIC33FJ64GP306 dsPIC33FJ64GP310 dsPIC33FJ64GP706 dsPIC33FJ64GP708 dsPIC33FJ64GP710 dsPIC33FJ128GP206 dsPIC33FJ128GP306 dsPIC33FJ128GP310 dsPIC33FJ128GP706 dsPIC33FJ128GP708 dsPIC33FJ128GP710 dsPIC33FJ256GP506 dsPIC33FJ256GP510 dsPIC33FJ256GP710 dsPIC33FJ64MC506 dsPIC33FJ64MC508 dsPIC33FJ64MC510 dsPIC33FJ64MC706 dsPIC33FJ64MC710 dsPIC33FJ128MC506 dsPIC33FJ128MC510 dsPIC33FJ128MC706 dsPIC33FJ128MC708 dsPIC33FJ128MC710 dsPIC33FJ256MC510 dsPIC33FJ256MC710 PIC24HJ64GP206 PIC24HJ64GP210 PIC24HJ64GP506 PIC24HJ64GP510 PIC24HJ128GP206 PIC24HJ128GP210 © 2007 Microchip Technology Inc. • • • • • • • • • • • • • PIC24HJ128GP306 PIC24HJ128GP310 PIC24HJ128GP506 PIC24HJ128GP510 PIC24HJ256GP206 PIC24HJ256GP210 PIC24HJ256GP610 dsPIC33FJ12GP201 dsPIC33FJ12GP202 dsPIC33FJ12MC201 dsPIC33FJ12MC202 PIC24HJ12GP201 PIC24HJ12GP202 2.0 PROGRAMMING OVERVIEW OF THE dsPIC33F/PIC24H There are two methods of programming the dsPIC33F/ PIC24H family of devices discussed in this programming specification. They are: • In-Circuit Serial Programming™ (ICSP™) programming capability • Enhanced In-Circuit Serial Programming The ICSP programming method is the most direct method to program the device; however, it is also the slower of the two methods. It provides native, low-level programming capability to erase, program and verify the chip. The Enhanced ICSP protocol uses a faster method that takes advantage of the programming executive, as illustrated in Figure 2-1. The programming executive provides all the necessary functionality to erase, program and verify the chip through a small command set. The command set allows the programmer to program the dsPIC33F/PIC24H Programming Specification devices without having to deal with the low-level programming protocols of the chip. Preliminary DS70152D-page 1 dsPIC33F/PIC24H PROGRAMMING SPECIFICATION FIGURE 2-1: PROGRAMMING SYSTEM OVERVIEW FOR ENHANCED ICSP™ FIGURE 2-2: 3.3V dsPIC33F/PIC24H Programmer CONNECTIONS FOR THE ON-CHIP REGULATOR dsPIC33F/PIC24H Programming Executive VDD VDDCORE CF VSS On-Chip Memory Note 1: This specification is divided into major sections that describe the programming methods independently. Section 3.0 “Device Programming – Enhanced ICSP” describes the Enhanced ICSP method. Section 5.0 “Device Programming – ICSP” describes the ICSP method. 2.1 Power Requirements All devices in the dsPIC33F/PIC24H family are dual voltage supply designs: one supply for the core and another for the peripherals and I/O pins. A regulator is provided on-chip to alleviate the need for two external voltage supplies. All of the dsPIC33F/PIC24H devices power their core digital logic at a nominal 2.5V. To simplify system design, all devices in the dsPIC33F/PIC24H Programming Specification family incorporate an on-chip regulator that allows the device to run its core logic from VDD. 2.2 Program Memory Write/Erase Requirements The program Flash memory on the dsPIC33F/PIC24H has a specific write/erase requirement that must be adhered to for proper device operation. The rule is that any given word in memory must not be written without first erasing the page in which it is located. Thus, the easiest way to conform to this rule is to write all the data in a programming block within one write cycle. The programming methods specified in this document comply with this requirement. Note: The regulator provides power to the core from the other VDD pins. A low-ESR capacitor (such as tantalum) must be connected to the VDDCORE pin (Figure 2-2). This helps to maintain the stability of the regulator. The specifications for core voltage and capacitance are listed in Section TABLE 8-1: “AC/DC Characteristics and Timing Requirements”. DS70152D-page 2 These are typical operating voltages. Refer to Section TABLE 8-1: “AC/DC Characteristics and Timing Requirements” for the full operating ranges of VDD and Preliminary A program memory word can be programmed twice before an erase, but only if (a) the same data is used in both program operations or (b) bits containing ‘1’ are set to ‘0’ but no ‘0’ is set to ‘1’. © 2007 Microchip Technology Inc. dsPIC33F/PIC24H PROGRAMMING SPECIFICATION 2.3 Pin Diagrams The pin diagrams for the dsPIC33F/PIC24H device family are shown in the following figures. The pins that are required for programming are listed in Table 2-1. The MCLR, PGC1, PGD1, PGC2, PGD2, PGC3 and PGD3 pins are shown in bold letters in the figures. Refer to the appropriate device data sheet for complete pin descriptions. TABLE 2-1: PIN DESCRIPTIONS (PINS USED DURING PROGRAMMING) During Programming Pin Name MCLR VDD and AVDD(1) VSS and AVSS(1) VDDCORE Pin Name Pin Type Pin Description MCLR P Programming Enable VDD P Power Supply VSS P Ground VDDCORE P Regulated Power Supply for Core PGC1 PGC1 I Primary Programming Pin Pair: Serial Clock PGD1 PGD1 I/O Primary Programming Pin Pair: Serial Data PGC2 PGC2 I Secondary Programming Pin Pair: Serial Clock PGD2 PGD2 I/O Secondary Programming Pin Pair: Serial Data PGC3 PGC3 I Tertiary Programming Pin Pair: Serial Clock PGD3 PGD3 I/O Tertiary Programming Pin Pair: Serial Data Legend: I = Input, O = Output, P = Power Note 1: All power supply and ground pins must be connected, including analog supplies (AVDD) and ground (AVSS). © 2007 Microchip Technology Inc. Preliminary DS70152D-page 3 dsPIC33F/PIC24H PROGRAMMING SPECIFICATION Pin Diagrams 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 CSDO/RG13 CSDI/RG12 CSCK/RG14 RG0 RG1 RF1 RF0 VDD VDDCORE OC8/CN16/RD7 OC7/CN15/RD6 OC6/IC6/CN14/RD5 OC5/IC5/CN13/RD4 OC4/RD3 OC3/RD2 OC2/RD1 64-Pin TQFP 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 dsPIC33FJ64GP206 dsPIC33FJ128GP206 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 PGC2/EMUC2/SOSCO/T1CK/CN0/RC14 PGD2/EMUD2/SOSCI/T4CK/CN1/RC13 OC1/RD0 IC4/INT4/RD11 IC3/INT3/RD10 IC2/U1CTS/INT2/RD9 IC1/INT1/RD8 VSS OSC2/CLKO/RC15 OSC1/CLKIN/RC12 VDD SCL1/RG2 SDA1/RG3 U1RTS/SCK1/INT0/RF6 U1RX/SDI1/RF2 U1TX/SDO1/RF3 PGC1/EMUC1/AN6/OCFA/RB6 PGD1/EMUD1/AN7/RB7 AVDD AVSS U2CTS/AN8/RB8 AN9/RB9 TMS/AN10/RB10 TDO/AN11/RB11 VSS VDD TCK/AN12/RB12 TDI/AN13/RB13 U2RTS/AN14/RB14 AN15/OCFB/CN12/RB15 U2RX/CN17/RF4 U2TX/CN18/RF5 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 COFS/RG15 AN16/T2CK/T7CK/RC1 AN17/T3CK/T6CK/RC2 SCK2/CN8/RG6 SDI2/CN9/RG7 SDO2/CN10/RG8 MCLR SS2/T5CK/CN11/RG9 VSS VDD AN5/IC8/CN7/RB5 AN4/IC7/CN6/RB4 AN3/CN5/RB3 AN2/SS1/LVDIN/CN4/RB2 PGC3/EMUC3/AN1/VREF-/CN3/RB1 PGD3/EMUD3/AN0/VREF+/CN2/RB0 DS70152D-page 4 Preliminary © 2007 Microchip Technology Inc. dsPIC33F/PIC24H PROGRAMMING SPECIFICATION Pin Diagrams (Continued) 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 CSDO/RG13 CSDI/RG12 CSCK/RG14 RG0 RG1 RF1 RF0 VDD VDDCORE OC8/CN16/RD7 OC7/CN15/RD6 OC6/IC6/CN14/RD5 OC5/IC5/CN13/RD4 OC4/RD3 OC3/RD2 OC2/RD1 64-Pin TQFP 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 dsPIC33FJ64GP306 dsPIC33FJ128GP306 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 PGC2/EMUC2/SOSCO/T1CK/CN0/RC14 PGD2/EMUD2/SOSCI/T4CK/CN1/RC13 OC1/RD0 IC4/INT4/RD11 IC3/INT3/RD10 IC2/U1CTS/INT2/RD9 IC1/INT1/RD8 VSS OSC2/CLKO/RC15 OSC1/CLKIN/RC12 VDD SCL1/RG2 SDA1/RG3 U1RTS/SCK1/INT0/RF6 U1RX/SDI1/RF2 U1TX/SDO1/RF3 PGC1/EMUC1/AN6/OCFA/RB6 PGD1/EMUD1/AN7/RB7 AVDD AVSS U2CTS/AN8/RB8 AN9/RB9 TMS/AN10/RB10 TDO/AN11/RB11 VSS VDD TCK/AN12/RB12 TDI/AN13/RB13 U2RTS/AN14/RB14 AN15/OCFB/CN12/RB15 U2RX/SDA2/CN17/RF4 U2TX/SCL2/CN18/RF5 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 COFS/RG15 AN16/T2CK/T7CK/RC1 AN17/T3CK/T6CK/RC2 SCK2/CN8/RG6 SDI2/CN9/RG7 SDO2/CN10/RG8 MCLR SS2/T5CK/CN11/RG9 VSS VDD AN5/IC8/CN7/RB5 AN4/IC7/CN6/RB4 AN3/CN5/RB3 AN2/SS1/LVDIN/CN4/RB2 PGC3/EMUC3/AN1/VREF-/CN3/RB1 PGD3/EMUD3/AN0/VREF+/CN2/RB0 © 2007 Microchip Technology Inc. Preliminary DS70152D-page 5 dsPIC33F/PIC24H PROGRAMMING SPECIFICATION Pin Diagrams (Continued) 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 CSDO/RG13 CSDI/RG12 CSCK/RG14 RG0 RG1 C1TX/RF1 C1RX/RF0 VDD VDDCORE OC8/CN16/RD7 OC7/CN15/RD6 OC6/IC6/CN14/RD5 OC5/IC5/CN13/RD4 OC4/RD3 OC3/RD2 OC2/RD1 64-Pin TQFP 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 dsPIC33FJ256GP506 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 PGC2/EMUC2/SOSCO/T1CK/CN0/RC14 PGD2/EMUD2/SOSCI/T4CK/CN1/RC13 OC1/RD0 IC4/INT4/RD11 IC3/INT3/RD10 IC2/U1CTS/INT2/RD9 IC1/INT1/RD8 VSS OSC2/CLKO/RC15 OSC1/CLKIN/RC12 VDD SCL1/RG2 SDA1/RG3 U1RTS/SCK1/INT0/RF6 U1RX/SDI1/RF2 U1TX/SDO1/RF3 PGC1/EMUC1/AN6/OCFA/RB6 PGD1/EMUD1/AN7/RB7 AVDD AVSS U2CTS/AN8/RB8 AN9/RB9 TMS/AN10/RB10 TDO/AN11/RB11 VSS VDD TCK/AN12/RB12 TDI/AN13/RB13 U2RTS/AN14/RB14 AN15/OCFB/CN12/RB15 U2RX/SDA2/CN17/RF4 U2TX/SCL2/CN18/RF5 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 COFS/RG15 AN16/T2CK/T7CK/RC1 AN17/T3CK/T6CK/RC2 SCK2/CN8/RG6 SDI2/CN9/RG7 SDO2/CN10/RG8 MCLR SS2/T5CK/CN11/RG9 VSS VDD AN5/IC8/CN7/RB5 AN4/IC7/CN6/RB4 AN3/CN5/RB3 AN2/SS1/LVDIN/CN4/RB2 PGC3/EMUC3/AN1/VREF-/CN3/RB1 PGD3/EMUD3/AN0/VREF+/CN2/RB0 DS70152D-page 6 Preliminary © 2007 Microchip Technology Inc. dsPIC33F/PIC24H PROGRAMMING SPECIFICATION Pin Diagrams (Continued) 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 CSDO/RG13 CSDI/RG12 CSCK/RG14 C2RX/RG0 C2TX/RG1 C1TX/RF1 C1RX/RF0 VDD VDDCORE OC8/CN16/RD7 OC7/CN15/RD6 OC6/IC6/CN14/RD5 OC5/IC5/CN13/RD4 OC4/RD3 OC3/RD2 OC2/RD1 64-Pin TQFP 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 dsPIC33FJ64GP706 dsPIC33FJ128GP706 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 PGC2/EMUC2/SOSCO/T1CK/CN0/RC14 PGD2/EMUD2/SOSCI/T4CK/CN1/RC13 OC1/RD0 IC4/INT4/RD11 IC3/INT3/RD10 IC2/U1CTS/INT2/RD9 IC1/INT1/RD8 VSS OSC2/CLKO/RC15 OSC1/CLKIN/RC12 VDD SCL1/RG2 SDA1/RG3 U1RTS/SCK1/INT0/RF6 U1RX/SDI1/RF2 U1TX/SDO1/RF3 PGC1/EMUC1/AN6/OCFA/RB6 PGD1/EMUD1/AN7/RB7 AVDD AVSS U2CTS/AN8/RB8 AN9/RB9 TMS/AN10/RB10 TDO/AN11/RB11 VSS VDD TCK/AN12/RB12 TDI/AN13/RB13 U2RTS/AN14/RB14 AN15/OCFB/CN12/RB15 U2RX/SDA2/CN17/RF4 U2TX/SCL2/CN18/RF5 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 COFS/RG15 AN16/T2CK/T7CK/RC1 AN17/T3CK/T6CK/RC2 SCK2/CN8/RG6 SDI2/CN9/RG7 SDO2/CN10/RG8 MCLR SS2/T5CK/CN11/RG9 VSS VDD AN5/IC8/CN7/RB5 AN4/IC7/CN6/RB4 AN3/CN5/RB3 AN2/SS1/LVDIN/CN4/RB2 PGC3/EMUC3/AN1/VREF-/CN3/RB1 PGD3/EMUD3/AN0/VREF+/CN2/RB0 © 2007 Microchip Technology Inc. Preliminary DS70152D-page 7 dsPIC33F/PIC24H PROGRAMMING SPECIFICATION Pin Diagrams (Continued) IC5/RD12 OC4/RD3 OC3/RD2 OC2/RD1 IC6/CN19/RD13 OC7/CN15/RD6 OC6/CN14/RD5 OC5/CN13/RD4 C1TX/RF1 C1RX/RF0 VDD VDDCORE OC8/CN16/RD7 C2RX/RG0 C2TX/RG1 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 CSCK/RG14 AN23/CN23/RA7 AN22/CN22/RA6 80 79 78 77 76 CSDO/RG13 CSDI/RG12 80-Pin TQFP COFS/RG15 1 60 PGC2/EMUC2/SOSCO/T1CK/ CN0/RC14 AN16/T2CK/T7CK/RC1 2 59 PGD2/EMUD2/SOSCI/CN1/RC13 AN17/T3CK/T6CK/RC2 3 58 OC1/RD0 4 57 5 56 IC4/RD11 IC3/RD10 6 55 IC2/RD9 IC1/RD8 AN18/T4CK/T9CK/RC3 AN19/T5CK/T8CK/RC4 SCK2/CN8/RG6 SDI2/CN9/RG7 7 54 SDO2/CN10/RG8 8 53 SDA2/INT4/RA3 MCLR 9 52 SCL2/INT3/RA2 VSS SS2/CN11/RG9 VSS 10 VDD 12 TMS/AN20/INT1/RA12 TDO/AN21/INT2/RA13 AN5/CN7/RB5 AN4/CN6/RB4 AN3/CN5/RB3 AN2/SS1/LVDIN/CN4/RB2 PGC3/EMUC3/AN1/CN3/RB1 PGD3/EMUD3/AN0/CN2/RB0 DS70152D-page 8 51 dsPIC33FJ64GP708 dsPIC33FJ128GP708 44 SCK1/INT0/RF6 SDI1/RF7 18 43 SDO1/RF8 19 42 U1RX/RF2 20 41 U1TX/RF3 24 25 26 27 28 29 30 31 32 33 34 VREF-/RA9 AVDD AVSS U2CTS/AN8/RB8 AN9/RB9 AN10/RB10 AN11/RB11 VSS VDD TCK/AN12/RB12 TDI/AN13/RB13 22 PGD1/EMUD1/AN7/RB7 VREF+/RA10 21 PGC1/EMUC1/AN6/OCFA/RB6 23 Preliminary 40 45 39 16 17 U2TX/CN18/RF5 SDA1/RG3 U2RX/CN17/RF4 46 IC8/U1RTS/CN21/RD15 SCL1/RG2 15 38 VDD 47 37 48 14 36 13 35 OSC1/CLKIN/RC12 U2RTS/AN14/RB14 OSC2/CLKO/RC15 49 AN15/OCFB/CN12/RB15 IC7/U1CTS/CN20/RD14 50 11 © 2007 Microchip Technology Inc. dsPIC33F/PIC24H PROGRAMMING SPECIFICATION Pin Diagrams (Continued) 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 AN28/RE4 AN27/RE3 AN26/RE2 CSDO/RG13 CSDI/RG12 CSCK/RG14 AN25/RE1 AN24/RE0 AN23/CN23/RA7 AN22/CN22/RA6 RG0 RG1 RF1 RF0 VDD VDDCORE OC8/CN16/RD7 OC7/CN15/RD6 OC6/CN14/RD5 OC5/CN13/RD4 IC6/CN19/RD13 IC5/RD12 OC4/RD3 OC3/RD2 OC2/RD1 100-Pin TQFP COFS/RG15 VDD AN29/RE5 AN30/RE6 AN31/RE7 AN16/T2CK/T7CK/RC1 AN17/T3CK/T6CK/RC2 AN18/T4CK/T9CK/RC3 AN19/T5CK/T8CK/RC4 SCK2/CN8/RG6 SDI2/CN9/RG7 SDO2/CN10/RG8 MCLR SS2/CN11/RG9 VSS VDD TMS/RA0 AN20/INT1/RA12 AN21/INT2/RA13 AN5/CN7/RB5 AN4/CN6/RB4 AN3/CN5/RB3 AN2/SS1/LVDIN/CN4/RB2 PGC3/EMUC3/AN1/CN3/RB1 75 2 3 4 5 6 7 8 9 10 11 12 74 VSS PGC2/EMUC2/SOSCO/T1CK/CN0/RC14 73 PGD2/EMUD2/SOSCI/CN1/RC13 72 OC1/RD0 IC4/RD11 IC3/RD10 13 14 15 16 17 18 19 20 21 22 23 24 25 71 70 69 68 67 66 dsPIC33FJ64GP310 dsPIC33FJ128GP310 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 IC2/RD9 IC1/RD8 INT4/RA15 INT3/RA14 VSS OSC2/CLKO/RC15 OSC1/CLKIN/RC12 VDD TDO/RA5 TDI/RA4 SDA2/RA3 SCL2/RA2 SCL1/RG2 SDA1/RG3 SCK1/INT0/RF6 SDI1/RF7 SDO1/RF8 U1RX/RF2 U1TX/RF3 PGC1/EMUC1/AN6/OCFA/RB6 PGD1/EMUD1/AN7/RB7 VREF-/RA9 VREF+/RA10 AVDD AVSS AN8/RB8 AN9/RB9 AN10/RB10 AN11/RB11 VSS VDD TCK/RA1 U2RTS/RF13 U2CTS/RF12 AN12/RB12 AN13/RB13 AN14/RB14 AN15/OCFB/CN12/RB15 VSS VDD IC7/U1CTS/CN20/RD14 IC8/U1RTS/CN21/RD15 U2RX/CN17/RF4 U2TX/CN18/RF5 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 PGD3/EMUD3/AN0/CN2/RB0 1 © 2007 Microchip Technology Inc. Preliminary DS70152D-page 9 dsPIC33F/PIC24H PROGRAMMING SPECIFICATION Pin Diagrams (Continued) 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 AN28/RE4 AN27/RE3 AN26/RE2 CSDO/RG13 CSDI/RG12 CSCK/RG14 AN25/RE1 AN24/RE0 AN23/CN23/RA7 AN22/CN22/RA6 RG0 RG1 C1TX/RF1 C1RX/RF0 VDD VDDCORE OC8/CN16/RD7 OC7/CN15/RD6 OC6/CN14/RD5 OC5/CN13/RD4 IC6/CN19/RD13 IC5/RD12 OC4/RD3 OC3/RD2 OC2/RD1 100-Pin TQFP COFS/RG15 VDD AN29/RE5 AN30/RE6 AN31/RE7 AN16/T2CK/T7CK/RC1 AN17/T3CK/T6CK/RC2 AN18/T4CK/T9CK/RC3 AN19/T5CK/T8CK/RC4 SCK2/CN8/RG6 SDI2/CN9/RG7 SDO2/CN10/RG8 MCLR SS2/CN11/RG9 VSS VDD TMS/RA0 AN20/INT1/RA12 AN21/INT2/RA13 AN5/CN7/RB5 AN4/CN6/RB4 AN3/CN5/RB3 AN2/SS1/LVDIN/CN4/RB2 PGC3/EMUC3/AN1/CN3/RB1 75 2 3 4 5 6 7 8 9 10 11 12 74 VSS PGC2/EMUC2/SOSCO/T1CK/CN0/RC14 73 PGD2/EMUD2/SOSCI/CN1/RC13 72 OC1/RD0 IC4/RD11 IC3/RD10 13 14 15 16 17 18 19 20 21 22 23 24 25 71 70 69 68 67 66 dsPIC33FJ256GP510 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 IC2/RD9 IC1/RD8 INT4/RA15 INT3/RA14 VSS OSC2/CLKO/RC15 OSC1/CLKIN/RC12 VDD TDO/RA5 TDI/RA4 SDA2/RA3 SCL2/RA2 SCL1/RG2 SDA1/RG3 SCK1/INT0/RF6 SDI1/RF7 SDO1/RF8 U1RX/RF2 U1TX/RF3 PGC1/EMUC1/AN6/OCFA/RB6 PGD1/EMUD1/AN7/RB7 VREF-/RA9 VREF+/RA10 AVDD AVSS AN8/RB8 AN9/RB9 AN10/RB10 AN11/RB11 VSS VDD TCK/RA1 U2RTS/RF13 U2CTS/RF12 AN12/RB12 AN13/RB13 AN14/RB14 AN15/OCFB/CN12/RB15 VSS VDD IC7/U1CTS/CN20/RD14 IC8/U1RTS/CN21/RD15 U2RX/CN17/RF4 U2TX/CN18/RF5 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 PGD3/EMUD3/AN0/CN2/RB0 1 DS70152D-page 10 Preliminary © 2007 Microchip Technology Inc. dsPIC33F/PIC24H PROGRAMMING SPECIFICATION Pin Diagrams (Continued) 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 AN28/RE4 AN27/RE3 AN26/RE2 CSDO/RG13 CSDI/RG12 CSCK/RG14 AN25/RE1 AN24/RE0 AN23/CN23/RA7 AN22/CN22/RA6 C2RX/RG0 C2TX/RG1 C1TX/RF1 C1RX/RF0 VDD VDDCORE OC8/CN16/RD7 OC7/CN15/RD6 OC6/CN14/RD5 OC5/CN13/RD4 IC6/CN19/RD13 IC5/RD12 OC4/RD3 OC3/RD2 OC2/RD1 100-Pin TQFP COFS/RG15 VDD AN29/RE5 AN30/RE6 AN31/RE7 AN16/T2CK/T7CK/RC1 AN17/T3CK/T6CK/RC2 AN18/T4CK/T9CK/RC3 AN19/T5CK/T8CK/RC4 SCK2/CN8/RG6 SDI2/CN9/RG7 SDO2/CN10/RG8 MCLR SS2/CN11/RG9 VSS VDD TMS/RA0 AN20/INT1/RA12 AN21/INT2/RA13 AN5/CN7/RB5 AN4/CN6/RB4 AN3/CN5/RB3 AN2/SS1/LVDIN/CN4/RB2 PGC3/EMUC3/AN1/CN3/RB1 75 2 3 4 5 6 7 8 9 10 11 12 74 VSS PGC2/EMUC2/SOSCO/T1CK/CN0/RC14 73 PGD2/EMUD2/SOSCI/CN1/RC13 72 OC1/RD0 IC4/RD11 IC3/RD10 13 14 15 16 17 18 19 20 21 22 23 24 25 71 70 69 68 67 66 dsPIC33FJ64GP710 dsPIC33FJ128GP710 dsPIC33FJ256GP710 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 IC2/RD9 IC1/RD8 INT4/RA15 INT3/RA14 VSS OSC2/CLKO/RC15 OSC1/CLKIN/RC12 VDD TDO/RA5 TDI/RA4 SDA2/RA3 SCL2/RA2 SCL1/RG2 SDA1/RG3 SCK1/INT0/RF6 SDI1/RF7 SDO1/RF8 U1RX/RF2 U1TX/RF3 PGC1/EMUC1/AN6/OCFA/RB6 PGD1/EMUD1/AN7/RB7 VREF-/RA9 VREF+/RA10 AVDD AVSS AN8/RB8 AN9/RB9 AN10/RB10 AN11/RB11 VSS VDD TCK/RA1 U2RTS/RF13 U2CTS/RF12 AN12/RB12 AN13/RB13 AN14/RB14 AN15/OCFB/CN12/RB15 VSS VDD IC7/U1CTS/CN20/RD14 IC8/U1RTS/CN21/RD15 U2RX/CN17/RF4 U2TX/CN18/RF5 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 PGD3/EMUD3/AN0/CN2/RB0 1 © 2007 Microchip Technology Inc. Preliminary DS70152D-page 11 dsPIC33F/PIC24H PROGRAMMING SPECIFICATION Pin Diagrams (Continued) 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 PWM3L/RE4 PWM2H/RE3 PWM2L/RE2 PWM1H/RE1 PWM1L/RE0 C1TX/RF1 C1RX/RF0 VDD VDDCORE OC8/UPDN/CN16/RD7 OC7/CN15/RD6 OC6/IC6/CN14/RD5 OC5/IC5/CN13/RD4 OC4/RD3 OC3/RD2 OC2/RD1 64-Pin TQFP 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 dsPIC33FJ64MC506 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 PGC2/EMUC2/SOSCO/T1CK/CN0/RC14 PGD2/EMUD2/SOSCI/T4CK/CN1/RC13 OC1/RD0 IC4/INT4/RD11 IC3/INT3/RD10 IC2/U1CTS/FLTB/INT2/RD9 IC1/FLTA/INT1/RD8 VSS OSC2/CLKO/RC15 OSC1/CLKIN/RC12 VDD SCL1/RG2 SDA1/RG3 U1RTS/SCK1/INT0/RF6 U1RX/SDI1/RF2 U1TX/SDO1/RF3 PGC1/EMUC1/AN6/OCFA/RB6 PGD1/EMUD1/AN7/RB7 AVDD AVSS U2CTS/AN8/RB8 AN9/RB9 TMS/AN10/RB10 TDO/AN11/RB11 VSS VDD TCK/AN12/RB12 TDI/AN13/RB13 U2RTS/AN14/RB14 AN15/OCFB/CN12/RB15 U2RX/CN17/RF4 U2TX/CN18/RF5 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 PWM3H/RE5 PWM4L/RE6 PWM4H/RE7 SCK2/CN8/RG6 SDI2/CN9/RG7 SDO2/CN10/RG8 MCLR SS2/T5CK/CN11/RG9 VSS VDD AN5/QEB/IC8/CN7/RB5 AN4/QEA/IC7/CN6/RB4 AN3/INDX/CN5/RB3 AN2/SS1/LVDIN/CN4/RB2 PGC3/EMUC3/AN1/VREF-/CN3/RB1 PGD3/EMUD3/AN0/VREF+/CN2/RB0 DS70152D-page 12 Preliminary © 2007 Microchip Technology Inc. dsPIC33F/PIC24H PROGRAMMING SPECIFICATION Pin Diagrams (Continued) 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 PWM3L/RE4 PWM2H/RE3 PWM2L/RE2 PWM1H/RE1 PWM1L/RE0 C1TX/RF1 C1RX/RF0 VDD VDDCORE OC8/UPDN/CN16/RD7 OC7/CN15/RD6 OC6/IC6/CN14/RD5 OC5/IC5/CN13/RD4 OC4/RD3 OC3/RD2 OC2/RD1 64-Pin TQFP 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 dsPIC33FJ128MC506 dsPIC33FJ64MC506 dsPIC33FJ128MC706 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 PGC2/EMUC2/SOSCO/T1CK/CN0/RC14 PGD2/EMUD2/SOSCI/T4CK/CN1/RC13 OC1/RD0 IC4/INT4/RD11 IC3/INT3/RD10 IC2/U1CTS/FLTB/INT2/RD9 IC1/FLTA/INT1/RD8 VSS OSC2/CLKO/RC15 OSC1/CLKIN/RC12 VDD SCL1/RG2 SDA1/RG3 U1RTS/SCK1/INT0/RF6 U1RX/SDI1/RF2 U1TX/SDO1/RF3 PGC1/EMUC1/AN6/OCFA/RB6 PGD1/EMUD1/AN7/RB7 AVDD AVSS U2CTS/AN8/RB8 AN9/RB9 TMS/AN10/RB10 TDO/AN11/RB11 VSS VDD TCK/AN12/RB12 TDI/AN13/RB13 U2RTS/AN14/RB14 AN15/OCFB/CN12/RB15 U2RX/SDA2/CN17/RF4 U2TX/SCL2/CN18/RF5 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 PWM3H/RE5 PWM4L/RE6 PWM4H/RE7 SCK2/CN8/RG6 SDI2/CN9/RG7 SDO2/CN10/RG8 MCLR SS2/T5CK/CN11/RG9 VSS VDD AN5/QEB/IC8/CN7/RB5 AN4/QEA/IC7/CN6/RB4 AN3/INDX/CN5/RB3 AN2/SS1/LVDIN/CN4/RB2 PGC3/EMUC3/AN1/VREF-/CN3/RB1 PGD3/EMUD3/AN0/VREF+/CN2/RB0 © 2007 Microchip Technology Inc. Preliminary DS70152D-page 13 dsPIC33F/PIC24H PROGRAMMING SPECIFICATION Pin Diagrams (Continued) IC5/RD12 OC4/RD3 OC3/RD2 OC2/RD1 OC7/CN15/RD6 OC6/CN14/RD5 OC5/CN13/RD4 IC6/CN19/RD13 CRX2/RG0 C2TX/RG1 C1TX/RF1 C1RX/RF0 VDD VDDCORE OC8/CN16/UPDN/RD7 PWM1L/RE0 PWM2L/RE2 PWM1H/RE1 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 PWM3L/RE4 PWM2H/RE3 80-Pin TQFP PWM3H/RE5 1 60 PGC2/EMUC2/SOSCO/T1CK/CN0/RC14 PWM4L/RE6 2 59 PGD2/EMUD2/SOSCI/CN1/RC13 OC1/RD0 PWM4H/RE7 3 58 AN16/T2CK/T7CK/RC1 AN17/T3CK/T6CK/RC2 SCK2/CN8/RG6 4 57 5 56 IC4/RD11 IC3/RD10 6 55 IC2/RD9 SDI2/CN9/RG7 7 54 IC1/RD8 SDO2/CN10/RG8 MCLR 8 53 INT4/RA3 INT3/RA2 VSS 9 52 SS2/CN11/RG9 VSS 10 51 VDD 12 49 OSC2/CLKO/RC15 OSC1/CLKIN/RC12 TMS/FLTA/INT1/RE8 13 48 VDD TDO/FLTB/INT2/RE9 14 47 SCL1/RG2 AN5/QEB/CN7/RB5 AN4/QEA/CN6/RB4 15 46 SDA1/RG3 16 45 SCK1/INT0/RF6 AN3/INDX/CN5/RB3 17 44 SDI1/RF7 AN2/SS1/LVDIN/CN4/RB2 PGC3/EMUC3/AN1/CN3/RB1 18 43 SDO1/RF8 19 42 U1RX/RF2 PGD3/EMUD3/AN0/CN2/RB0 20 41 U1TX/RF3 DS70152D-page 14 dsPIC33FJ64MC508 34 40 33 TDI/AN13/RB13 39 32 TCK/AN12/RB12 U2TX/CN18/RF5 31 VDD U2RX/CN17/RF4 30 VSS 38 29 AN11/RB11 37 28 AN9/RB9 AN10/RB10 IC8/U1RTS/CN21/RD15 27 U2CTS/AN8/RB8 36 26 AVSS 35 25 AVDD U2RTS/AN14/RB14 24 Preliminary 50 AN15/OCFB/CN12/RB15 IC7/U1CTS/CN20/RD14 23 VREF-/RA9 22 PGD1/EMUD1/AN7/RB7 VREF+/RA10 21 PGC1/EMUC1/AN6/OCFA/RB6 11 © 2007 Microchip Technology Inc. dsPIC33F/PIC24H PROGRAMMING SPECIFICATION Pin Diagrams (Continued) IC5/RD12 OC4/RD3 OC3/RD2 OC2/RD1 OC6/CN14/RD5 OC5/CN13/RD4 IC6/CN19/RD13 CRX2/RG0 C2TX/RG1 C1TX/RF1 C1RX/RF0 VDD VDDCORE OC8/CN16/UPDN/RD7 OC7/CN15/RD6 PWM2L/RE2 PWM1H/RE1 PWM1L/RE0 PWM2H/RE3 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 PWM3L/RE4 80-Pin TQFP PWM3H/RE5 1 60 PGC2/EMUC2/SOSCO/T1CK/CN0/RC14 PWM4L/RE6 2 59 PGD2/EMUD2/SOSCI/CN1/RC13 PWM4H/RE7 3 58 OC1/RD0 AN16/T2CK/T7CK/RC1 AN17/T3CK/T6CK/RC2 SCK2/CN8/RG6 4 57 5 56 IC4/RD11 IC3/RD10 6 55 IC2/RD9 SDI2/CN9/RG7 7 54 IC1/RD8 8 53 SDA2/INT4/RA3 SCL2/INT3/RA2 VSS SDO2/CN10/RG8 MCLR 9 52 SS2/CN11/RG9 VSS 10 51 VDD 12 49 OSC2/CLKO/RC15 OSC1/CLKIN/RC12 VDD dsPIC33FJ128MC708 11 50 © 2007 Microchip Technology Inc. 29 30 31 32 33 34 35 36 37 38 39 40 VSS VDD TCK/AN12/RB12 TDI/AN13/RB13 U2RTS/AN14/RB14 AN15/OCFB/CN12/RB15 IC7/U1CTS/CN20/RD14 IC8/U1RTS/CN21/RD15 U2RX/CN17/RF4 U2TX/CN18/RF5 U1TX/RF3 AN11/RB11 41 28 20 AN9/RB9 U1RX/RF2 PGD3/EMUD3/AN0/CN2/RB0 AN10/RB10 SDO1/RF8 42 27 43 19 26 18 U2CTS/AN8/RB8 AN2/SS1/LVDIN/CN4/RB2 PGC3/EMUC3/AN1/CN3/RB1 25 SDI1/RF7 AVSS SCK1/INT0/RF6 44 AVDD 45 17 24 16 AN3/INDX/CN5/RB3 VREF+/RA10 SDA1/RG3 23 46 VREF-/RA9 SCL1/RG2 15 22 47 21 48 14 PGD1/EMUD1/AN7/RB7 13 PGC1/EMUC1/AN6/OCFA/RB6 TMS/FLTA/INT1/RE8 TDO/FLTB/INT2/RE9 AN5/QEB/CN7/RB5 AN4/QEA/CN6/RB4 Preliminary DS70152D-page 15 dsPIC33F/PIC24H PROGRAMMING SPECIFICATION Pin Diagrams (Continued) 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 PWM3L/RE4 PWM2H/RE3 PWM2L/RE2 CSDO/RG13 CSDI/RG12 CSCK/RG14 PWM1H/RE1 PWM1L/RE0 AN23/CN23/RA7 AN22/CN22/RA6 RG0 RG1 C1TX/RF1 C1RX/RF0 VDD VDDCORE OC8/UPDN//CN16/RD7 OC7/CN15/RD6 OC6/CN14/RD5 OC5/CN13/RD4 IC6/CN19/RD13 IC5/RD12 OC4/RD3 OC3/RD2 OC2/RD1 100-Pin TQFP COFS/RG15 VDD PWM3H/RE5 PWM4L/RE6 PWM4H/RE7 AN16/T2CK/T7CK/RC1 AN17/T3CK/T6CK/RC2 AN18/T4CK/T9CK/RC3 AN19/T5CK/T8CK/RC4 SCK2/CN8/RG6 SDI2/CN9/RG7 SDO2/CN10/RG8 MCLR SS2/CN11/RG9 VSS VDD TMS/RA0 AN20/FLTA/INT1/RE8 AN21/FLTB/INT2/RE9 AN5/QEB/CN7/RB5 AN4/QEA/CN6/RB4 AN3/INDX/CN5/RB3 AN2/SS1/LVDIN/CN4/RB2 PGC3/EMUC3/AN1/CN3/RB1 75 2 3 4 5 6 7 8 9 10 11 12 74 VSS PGC2/EMUC2/SOSCO/T1CK/CN0/RC14 73 PGD2/EMUD2/SOSCI/CN1/RC13 72 OC1/RD0 IC4/RD11 IC3/RD10 IC2/RD9 71 70 69 68 67 66 13 14 15 16 17 18 19 20 21 22 23 24 25 dsPIC33FJ64MC510 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 IC1/RD8 INT4/RA15 INT3/RA14 VSS OSC2/CLKO/RC15 OSC1/CLKIN/RC12 VDD TDO/RA5 TDI/RA4 RA3 RA2 SCL1/RG2 SDA1/RG3 SCK1/INT0/RF6 SDI1/RF7 SDO1/RF8 U1RX/RF2 U1TX/RF3 PGC1/EMUC1/AN6/OCFA/RB6 PGD1/EMUD1/AN7/RB7 VREF-/RA9 VREF+/RA10 AVDD AVSS AN8/RB8 AN9/RB9 AN10/RB10 AN11/RB11 VSS VDD TCK/RA1 U2RTS/RF13 U2CTS/RF12 AN12/RB12 AN13/RB13 AN14/RB14 AN15/OCFB/CN12/RB15 VSS VDD IC7/U1CTS/CN20/RD14 IC8/U1RTS/CN21/RD15 U2RX/CN17/RF4 U2TX/CN18/RF5 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 PGD3/EMUD3/AN0/CN2/RB0 1 DS70152D-page 16 Preliminary © 2007 Microchip Technology Inc. dsPIC33F/PIC24H PROGRAMMING SPECIFICATION Pin Diagrams (Continued) 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 PWM3L/RE4 PWM2H/RE3 PWM2L/RE2 CSDO/RG13 CSDI/RG12 CSCK/RG14 PWM1H/RE1 PWM1L/RE0 AN23/CN23/RA7 AN22/CN22/RA6 RG0 RG1 C1TX/RF1 C1RX/RF0 VDD VDDCORE OC8/UPDN//CN16/RD7 OC7/CN15/RD6 OC6/CN14/RD5 OC5/CN13/RD4 IC6/CN19/RD13 IC5/RD12 OC4/RD3 OC3/RD2 OC2/RD1 100-Pin TQFP COFS/RG15 VDD PWM3H/RE5 PWM4L/RE6 PWM4H/RE7 AN16/T2CK/T7CK/RC1 AN17/T3CK/T6CK/RC2 AN18/T4CK/T9CK/RC3 AN19/T5CK/T8CK/RC4 SCK2/CN8/RG6 SDI2/CN9/RG7 SDO2/CN10/RG8 MCLR SS2/CN11/RG9 VSS VDD TMS/RA0 AN20/FLTA/INT1/RE8 AN21/FLTB/INT2/RE9 AN5/QEB/CN7/RB5 AN4/QEA/CN6/RB4 AN3/INDX/CN5/RB3 AN2/SS1/LVDIN/CN4/RB2 PGC3/EMUC3/AN1/CN3/RB1 75 2 3 4 5 6 7 8 9 10 11 12 74 VSS PGC2/EMUC2/SOSCO/T1CK/CN0/RC14 73 PGD2/EMUD2/SOSCI/CN1/RC13 72 OC1/RD0 IC4/RD11 IC3/RD10 IC2/RD9 71 70 69 68 67 66 13 14 15 16 17 18 19 20 21 22 23 24 25 dsPIC33FJ128MC510 dsPIC33FJ256MC510 65 64 63 62 61 60 59 58 57 56 IC1/RD8 INT4/RA15 INT3/RA14 VSS OSC2/CLKO/RC15 OSC1/CLKIN/RC12 VDD TDO/RA5 TDI/RA4 SDA2/RA3 SCL2/RA2 SCL1/RG2 SDA1/RG3 55 54 53 52 SCK1/INT0/RF6 51 U1TX/RF3 SDI1/RF7 SDO1/RF8 U1RX/RF2 PGC1/EMUC1/AN6/OCFA/RB6 PGD1/EMUD1/AN7/RB7 VREF-/RA9 VREF+/RA10 AVDD AVSS AN8/RB8 AN9/RB9 AN10/RB10 AN11/RB11 VSS VDD TCK/RA1 U2RTS/RF13 U2CTS/RF12 AN12/RB12 AN13/RB13 AN14/RB14 AN15/OCFB/CN12/RB15 VSS VDD IC7/U1CTS/CN20/RD14 IC8/U1RTS/CN21/RD15 U2RX/CN17/RF4 U2TX/CN18/RF5 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 PGD3/EMUD3/AN0/CN2/RB0 1 © 2007 Microchip Technology Inc. Preliminary DS70152D-page 17 dsPIC33F/PIC24H PROGRAMMING SPECIFICATION Pin Diagrams (Continued) 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 PWM3L/RE4 PWM2H/RE3 PWM2L/RE2 CSDO/RG13 CSDI/RG12 CSCK/RG14 PWM1H/RE1 PWM1L/RE0 AN23/CN23/RA7 AN22/CN22/RA6 C2RX/RG0 C2TX/RG1 C1TX/RF1 C1RX/RF0 VDD VDDCORE OC8/UPDN//CN16/RD7 OC7/CN15/RD6 OC6/CN14/RD5 OC5/CN13/RD4 IC6/CN19/RD13 IC5/RD12 OC4/RD3 OC3/RD2 OC2/RD1 100-Pin TQFP COFS/RG15 VDD PWM3H/RE5 PWM4L/RE6 PWM4H/RE7 AN16/T2CK/T7CK/RC1 AN17/T3CK/T6CK/RC2 AN18/T4CK/T9CK/RC3 AN19/T5CK/T8CK/RC4 SCK2/CN8/RG6 SDI2/CN9/RG7 SDO2/CN10/RG8 MCLR SS2/CN11/RG9 VSS VDD TMS/RA0 AN20/FLTA/INT1/RE8 AN21/FLTB/INT2/RE9 AN5/QEB/CN7/RB5 AN4/QEA/CN6/RB4 AN3/INDX/CN5/RB3 AN2/SS1/LVDIN/CN4/RB2 PGC3/EMUC3/AN1/CN3/RB1 75 2 3 4 5 6 7 8 9 10 11 12 74 VSS PGC2/EMUC2/SOSCO/T1CK/CN0/RC14 73 PGD2/EMUD2/SOSCI/CN1/RC13 72 OC1/RD0 IC4/RD11 IC3/RD10 IC2/RD9 71 70 69 68 67 66 13 14 15 16 17 18 19 20 21 22 23 24 25 dsPIC33FJ64MC710 dsPIC33FJ128MC710 dsPIC33FJ256MC710 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 IC1/RD8 INT4/RA15 INT3/RA14 VSS OSC2/CLKO/RC15 OSC1/CLKIN/RC12 VDD TDO/RA5 TDI/RA4 SDA2/RA3 SCL2/RA2 SCL1/RG2 SDA1/RG3 SCK1/INT0/RF6 SDI1/RF7 SDO1/RF8 U1RX/RF2 U1TX/RF3 PGC1/EMUC1/AN6/OCFA/RB6 PGD1/EMUD1/AN7/RB7 VREF-/RA9 VREF+/RA10 AVDD AVSS AN8/RB8 AN9/RB9 AN10/RB10 AN11/RB11 VSS VDD TCK/RA1 U2RTS/RF13 U2CTS/RF12 AN12/RB12 AN13/RB13 AN14/RB14 AN15/OCFB/CN12/RB15 VSS VDD IC7/U1CTS/CN20/RD14 IC8/U1RTS/CN21/RD15 U2RX/CN17/RF4 U2TX/CN18/RF5 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 PGD3/EMUD3/AN0/CN2/RB0 1 DS70152D-page 18 Preliminary © 2007 Microchip Technology Inc. dsPIC33F/PIC24H PROGRAMMING SPECIFICATION Pin Diagrams (Continued) 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 RG13 RG12 RG14 RG0 RG1 RF1 RF0 VDD VDDCORE OC8/CN16/RD7 OC7/CN15/RD6 OC6/IC6/CN14/RD5 OC5/IC5/CN13/RD4 OC4/RD3 OC3/RD2 OC2/RD1 64-Pin TQFP 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 PIC24HJ64GP206 PIC24HJ128GP206 PIC24HJ256GP206 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 PGC2/EMUC2/SOSCO/T1CK/CN0/RC14 PGD2/EMUD2/SOSCI/T4CK/CN1/RC13 OC1/RD0 IC4/INT4/RD11 IC3/INT3/RD10 IC2/U1CTS/INT2/RD9 IC1/INT1/RD8 VSS OSC2/CLKO/RC15 OSC1/CLKIN/RC12 VDD SCL1/RG2 SDA1/RG3 U1RTS/SCK1/INT0/RF6 U1RX/SDI1/RF2 U1TX/SDO1/RF3 PGC1/EMUC1/AN6/OCFA/RB6 PGD1/EMUD1/AN7/RB7 AVDD AVSS U2CTS/AN8/RB8 AN9/RB9 TMS/AN10/RB10 TDO/AN11/RB11 VSS VDD TCK/AN12/RB12 TDI/AN13/RB13 U2RTS/AN14/RB14 AN15/OCFB/CN12/RB15 U2RX/CN17/RF4 U2TX/CN18/RF5 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 RG15 AN16/T2CK/T7CK/RC1 AN17/T3CK/T6CK/RC2 SCK2/CN8/RG6 SDI2/CN9/RG7 SDO2/CN10/RG8 MCLR SS2/T5CK/CN11/RG9 VSS VDD AN5/IC8/CN7/RB5 AN4/IC7/CN6/RB4 AN3/CN5/RB3 AN2/SS1/CN4/RB2 PGC3/EMUC3/AN1/VREF-/CN3/RB1 PGD3/EMUD3/AN0/VREF+/CN2/RB0 Note: The PIC24HJ64GP206 device does not have the SCL2 and SDA2 pins. © 2007 Microchip Technology Inc. Preliminary DS70152D-page 19 dsPIC33F/PIC24H PROGRAMMING SPECIFICATION Pin Diagrams (Continued) 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 RG13 RG12 RG14 RG0 RG1 RF1 RF0 VDD VDDCORE OC8/CN16/RD7 OC7/CN15/RD6 OC6/IC6/CN14/RD5 OC5/IC5/CN13/RD4 OC4/RD3 OC3/RD2 OC2/RD1 64-Pin TQFP 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 PIC24HJ128GP306 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 PGC2/EMUC2/SOSCO/T1CK/CN0/RC14 PGD2/EMUD2/SOSCI/T4CK/CN1/RC13 OC1/RD0 IC4/INT4/RD11 IC3/INT3/RD10 IC2/U1CTS/INT2/RD9 IC1/INT1/RD8 VSS OSC2/CLKO/RC15 OSC1/CLKIN/RC12 VDD SCL1/RG2 SDA1/RG3 U1RTS/SCK1/INT0/RF6 U1RX/SDI1/RF2 U1TX/SDO1/RF3 PGC1/EMUC1/AN6/OCFA/RB6 PGD1/EMUD1/AN7/RB7 AVDD AVSS U2CTS/AN8/RB8 AN9/RB9 TMS/AN10/RB10 TDO/AN11/RB11 VSS VDD TCK/AN12/RB12 TDI/AN13/RB13 U2RTS/AN14/RB14 AN15/OCFB/CN12/RB15 U2RX/SDA2/CN17/RF4 U2TX/SCL2/CN18/RF5 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 RG15 AN16/T2CK/T7CK/RC1 AN17/T3CK/T6CK/RC2 SCK2/CN8/RG6 SDI2/CN9/RG7 SDO2/CN10/RG8 MCLR SS2/T5CK/CN11/RG9 VSS VDD AN5/IC8/CN7/RB5 AN4/IC7/CN6/RB4 AN3/CN5/RB3 AN2/SS1/CN4/RB2 PGC3/EMUC3/AN1/VREF-/CN3/RB1 PGD3/EMUD3/AN0/VREF+/CN2/RB0 DS70152D-page 20 Preliminary © 2007 Microchip Technology Inc. dsPIC33F/PIC24H PROGRAMMING SPECIFICATION Pin Diagrams (Continued) 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 CSDO/RG13 CSDI/RG12 CSCK/RG14 RG0 RG1 C1TX/RF1 C1RX/RF0 VDD VDDCORE OC8/CN16/RD7 OC7/CN15/RD6 OC6/IC6/CN14/RD5 OC5/IC5/CN13/RD4 OC4/RD3 OC3/RD2 OC2/RD1 64-Pin TQFP 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 PIC24HJ64GP506 PIC24HJ128GP506 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 PGC2/EMUC2/SOSCO/T1CK/CN0/RC14 PGD2/EMUD2/SOSCI/T4CK/CN1/RC13 OC1/RD0 IC4/INT4/RD11 IC3/INT3/RD10 IC2/U1CTS/INT2/RD9 IC1/INT1/RD8 VSS OSC2/CLKO/RC15 OSC1/CLKIN/RC12 VDD SCL1/RG2 SDA1/RG3 U1RTS/SCK1/INT0/RF6 U1RX/SDI1/RF2 U1TX/SDO1/RF3 PGC1/EMUC1/AN6/OCFA/RB6 PGD1/EMUD1/AN7/RB7 AVDD AVSS U2CTS/AN8/RB8 AN9/RB9 TMS/AN10/RB10 TDO/AN11/RB11 VSS VDD TCK/AN12/RB12 TDI/AN13/RB13 U2RTS/AN14/RB14 AN15/OCFB/CN12/RB15 U2RX/SDA2/CN17/RF4 U2TX/SCL2/CN18/RF5 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 COFS/RG15 AN16/T2CK/T7CK/RC1 AN17/T3CK/T6CK/RC2 SCK2/CN8/RG6 SDI2/CN9/RG7 SDO2/CN10/RG8 MCLR SS2/T5CK/CN11/RG9 VSS VDD AN5/IC8/CN7/RB5 AN4/IC7/CN6/RB4 AN3/CN5/RB3 AN2/SS1/CN4/RB2 PGC3/EMUC3/AN1/VREF-/CN3/RB1 PGD3/EMUD3/AN0/VREF+/CN2/RB0 © 2007 Microchip Technology Inc. Preliminary DS70152D-page 21 dsPIC33F/PIC24H PROGRAMMING SPECIFICATION Pin Diagrams (Continued) 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 AN28/RE4 AN27/RE3 AN26/RE2 RG13 RG12 RG14 AN25/RE1 AN24/RE0 AN23/CN23/RA7 AN22/CN22/RA6 RG0 RG1 RF1 RF0 VDD VDDCORE OC8/CN16/RD7 OC7/CN15/RD6 OC6/CN14/RD5 OC5/CN13/RD4 IC6/CN19/RD13 IC5/RD12 OC4/RD3 OC3/RD2 OC2/RD1 100-Pin TQFP RG15 VDD AN29/RE5 AN30/RE6 AN31/RE7 AN16/T2CK/T7CK/RC1 AN17/T3CK/T6CK/RC2 AN18/T4CK/T9CK/RC3 AN19/T5CK/T8CK/RC4 SCK2/CN8/RG6 SDI2/CN9/RG7 SDO2/CN10/RG8 MCLR SS2/CN11/RG9 VSS VDD TMS/RA0 AN20/INT1/RA12 AN21/INT2/RA13 AN5/CN7/RB5 AN4/CN6/RB4 AN3/CN5/RB3 AN2/SS1/CN4/RB2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 PGD3/EMUD3/AN0/CN2/RB0 25 VSS 73 PGD2/EMUD2/SOSCI/CN1/RC13 OC1/RD0 IC4/RD11 72 71 70 69 68 67 66 PIC24HJ64GP210 PIC24HJ128GP210 PIC24HJ128GP310 PIC24HJ256GP210 65 64 63 62 PGC2/EMUC2/SOSCO/T1CK/CN0/RC14 IC3/RD10 IC2/RD9 IC1/RD8 INT4/RA15 INT3/RA14 VSS 61 60 OSC2/CLKO/RC15 OSC1/CLKIN/RC12 VDD TDO/RA5 TDI/RA4 59 58 SDA2/RA3 SCL2/RA2 57 56 55 SCL1/RG2 SDA1/RG3 SCK1/INT0/RF6 54 53 52 51 SDI1/RF7 SDO1/RF8 U1RX/RF2 U1TX/RF3 PGC1/EMUC1/AN6/OCFA/RB6 PGD1/EMUD1/AN7/RB7 VREF-/RA9 VREF+/RA10 AVDD AVSS AN8/RB8 AN9/RB9 AN10/RB10 AN11/RB11 VSS VDD TCK/RA1 U2RTS/RF13 U2CTS/RF12 AN12/RB12 AN13/RB13 AN14/RB14 AN15/OCFB/CN12/RB15 VSS VDD IC7/U1CTS/CN20/RD14 IC8/U1RTS/CN21/RD15 U2RX/CN17/RF4 U2TX/CN18/RF5 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 PGC3/EMUC3/AN1/CN3/RB1 23 24 75 74 DS70152D-page 22 Preliminary © 2007 Microchip Technology Inc. dsPIC33F/PIC24H PROGRAMMING SPECIFICATION Pin Diagrams (Continued) 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 AN28/RE4 AN27/RE3 AN26/RE2 RG13 RG12 RG14 AN25/RE1 AN24/RE0 AN23/CN23/RA7 AN22/CN22/RA6 RG0 RG1 C1TX/RF1 C1RX/RF0 VDD VDDCORE OC8/CN16/RD7 OC7/CN15/RD6 OC6/CN14/RD5 OC5/CN13/RD4 IC6/CN19/RD13 IC5/RD12 OC4/RD3 OC3/RD2 OC2/RD1 100-Pin TQFP RG15 VDD AN29/RE5 AN30/RE6 AN31/RE7 AN16/T2CK/T7CK/RC1 AN17/T3CK/T6CK/RC2 AN18/T4CK/T9CK/RC3 AN19/T5CK/T8CK/RC4 SCK2/CN8/RG6 SDI2/CN9/RG7 SDO2/CN10/RG8 MCLR SS2/CN11/RG9 VSS VDD TMS/RA0 AN20/INT1/RA12 AN21/INT2/RA13 AN5/CN7/RB5 AN4/CN6/RB4 AN3/CN5/RB3 AN2/SS1/CN4/RB2 PGC3/EMUC3/AN1/CN3/RB1 75 74 VSS PGC2/EMUC2/SOSCO/T1CK/CN0/RC14 73 PGD2/EMUD2/SOSCI/CN1/RC13 OC1/RD0 5 6 7 8 9 71 70 69 68 67 66 72 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 65 64 PIC24HJ64GP510 PIC24HJ128GP510 63 62 61 60 59 58 57 56 55 54 53 52 51 IC4/RD11 IC3/RD10 IC2/RD9 IC1/RD8 INT4/RA15 INT3/RA14 VSS OSC2/CLKO/RC15 OSC1/CLKIN/RC12 VDD TDO/RA5 TDI/RA4 SDA2/RA3 SCL2/RA2 SCL1/RG2 SDA1/RG3 SCK1/INT0/RF6 SDI1/RF7 SDO1/RF8 U1RX/RF2 U1TX/RF3 PGC1/EMUC1/AN6/OCFA/RB6 PGD1/EMUD1/AN7/RB7 VREF-/RA9 VREF+/RA10 AVDD AVSS AN8/RB8 AN9/RB9 AN10/RB10 AN11/RB11 VSS VDD TCK/RA1 U2RTS/RF13 U2CTS/RF12 AN12/RB12 AN13/RB13 AN14/RB14 AN15/OCFB/CN12/RB15 VSS VDD IC7/U1CTS/CN20/RD14 IC8/U1RTS/CN21/RD15 U2RX/CN17/RF4 U2TX/CN18/RF5 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 PGD3/EMUD3/AN0/CN2/RB0 1 2 3 4 © 2007 Microchip Technology Inc. Preliminary DS70152D-page 23 dsPIC33F/PIC24H PROGRAMMING SPECIFICATION Pin Diagrams (Continued) 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 AN28/RE4 AN27/RE3 AN26/RE2 RG13 RG12 RG14 AN25/RE1 AN24/RE0 AN23/CN23/RA7 AN22/CN22/RA6 C2RX/RG0 C2TX/RG1 C1TX/RF1 C1RX/RF0 VDD VDDCORE OC8/CN16/RD7 OC7/CN15/RD6 OC6/CN14/RD5 OC5/CN13/RD4 IC6/CN19/RD13 IC5/RD12 OC4/RD3 OC3/RD2 OC2/RD1 100-Pin TQFP RG15 VDD AN29/RE5 AN30/RE6 AN31/RE7 AN16/T2CK/T7CK/RC1 AN17/T3CK/T6CK/RC2 AN18/T4CK/T9CK/RC3 AN19/T5CK/T8CK/RC4 SCK2/CN8/RG6 SDI2/CN9/RG7 SDO2/CN10/RG8 MCLR SS2/CN11/RG9 VSS VDD TMS/RA0 AN20/INT1/RA12 AN21/INT2/RA13 AN5/CN7/RB5 AN4/CN6/RB4 75 VSS 2 3 4 5 6 7 8 9 10 11 12 74 73 PGC2/EMUC2/SOSCO/T1CK/CN0/RC14 PGD2/EMUD2/SOSCI/CN1/RC13 72 OC1/RD0 71 70 69 IC4/RD11 IC3/RD10 IC2/RD9 68 67 66 IC1/RD8 INT4/RA15 PIC24HJ256GP610 13 14 15 16 17 18 19 20 21 22 23 24 25 65 64 63 62 61 60 59 58 INT3/RA14 VSS OSC2/CLKO/RC15 OSC1/CLKIN/RC12 VDD TDO/RA5 TDI/RA4 SDA2/RA3 SCL2/RA2 57 56 55 54 SCL1/RG2 SDA1/RG3 SCK1/INT0/RF6 53 52 51 SDO1/RF8 U1RX/RF2 SDI1/RF7 U1TX/RF3 PGC1/EMUC1/AN6/OCFA/RB6 PGD1/EMUD1/AN7/RB7 VREF-/RA9 VREF+/RA10 AVDD AVSS AN8/RB8 AN9/RB9 AN10/RB10 AN11/RB11 VSS VDD TCK/RA1 U2RTS/RF13 U2CTS/RF12 AN12/RB12 AN13/RB13 AN14/RB14 AN15/OCFB/CN12/RB15 VSS VDD IC7/U1CTS/CN20/RD14 IC8/U1RTS/CN21/RD15 U2RX/CN17/RF4 U2TX/CN18/RF5 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 AN3/CN5/RB3 AN2/SS1/CN4/RB2 PGC3/EMUC3/AN1/CN3/RB1 PGD3/EMUD3/AN0/CN2/RB0 1 DS70152D-page 24 Preliminary © 2007 Microchip Technology Inc. dsPIC33F/PIC24H PROGRAMMING SPECIFICATION Pin Diagrams (Continued) 18-PIN SDIP 18-PIN SOIC 1 18 VDD PGD2/EMUD2/AN0/VREF+/CN2/RA0 2 17 VSS PGC2/EMUC2/AN1/VREF-/CN3/RA1 3 16 AN6/RP15/CN11/RB15 PGD1/EMUD1/AN2/RP0/CN4/RB0 4 15 AN7/RP14/CN12/RB14 PGC1/EMUC1/AN3/RP1/CN5/RB1 5 14 VDDCORE OSCI/CLKI/CN30/RA2 6 13 VSS OSCO/CLKO/CN29/RA3 7 12 SCL1/RP9/CN21/RB9 PGD3/EMUD3/SOSCI/RP4/CN1/RB4 8 11 SDA1/RP8/CN22/RB8 PGC3/EMUC3/SOSCO/T1CK/CN0/RA4 9 10 INT0/RP7/CN23/RB7 © 2007 Microchip Technology Inc. dsPIC33FJ12GP201 PIC24HJ12GP201 MCLR Preliminary DS70152D-page 25 dsPIC33F/PIC24H PROGRAMMING SPECIFICATION Pin Diagrams (Continued) 20-PIN SDIP 20-PIN SSOP 1 20 VDD PGD2/EMUD2/AN0/VREF+/CN2/RA0 2 19 Vss PGC2/EMC2/AN1/VREF-/CN3/RA1 3 18 PWM1L1/RP15/CN11/RB15 PGD1/EMUD1/AN2/RP0/CN4/RB0 4 17 PWM1H1/RP14/CN12/RB14 PGC1/EMUC1/AN3/RP1/CN5/RB1 5 16 PWM1L2/RP13/CN13/RB13 VSS 6 15 PWM1H2/RP12/CN14/RB12 OSCI/CLKI/CN30/RA2 7 14 VDDCORE OSCO/CLKO/CN29/RA3 8 13 PWM2L1/SDA1/RP9/CN21/RB9 PGD3/EMUD3/SOSCI/RP4/CN1/RB4 9 12 PWM2H1/SCL1/RP8/CN22/RB8 10 11 INT0/RP7/CN23/RB7 PGC3/EMUC3/SOSCO/T1CK/CN0/RA4 dsPIC33FJ12MC201 MCLR Pin Diagrams (Continued) 28-PIN SDIP 28-PIN SOIC 1 28 AV DD PGD2/EMUD2/AN0/VREF+/CN2/RA0 2 27 AV ss PGC2/EMUC2/AN1/VREF-/CN3/RA1 3 26 AN6/RP15/CN11/RB15 PGD1/EMUD1/AN2/RP0/CN4/RB0 4 25 AN7/RP14/CN12/RB14 PGC1/EMUC1/AN3/RP1/CN5/RB1 5 24 AN8/RP13/CN13/RB13 AN4/RP2/CN6/RB2 6 23 AN9/RP12/CN14/RB12 AN5/RP3/CN7/RB3 7 22 TMS/RP11/CN15/RB11 Vss 8 21 TDI/RP10/CN16/RB10 OSCO/CLK1/CN30/RA2 9 20 VDDCORE dsPIC33FJ12GP202 PIC24HJ12GP202 DS70152D-page 26 MCLR OSCI/CLKI/CN29/RA3 10 19 Vss PGD3/EMUD3/SOSC/RP4/CN1/RB4 11 18 TDO/SDA1/RP9/CN21/RB9 PGC3/EMUC3/SOSCO/T1CK/CN0/RA4 12 17 TCK/SCL1/RP8/CN22/RB8 VDD 13 16 INT0/RP7/CN23/RB7 ASDA1/RP5/CN27/RB5 14 15 ASCL1/RP6/CN24/RB6 Preliminary © 2007 Microchip Technology Inc. dsPIC33F/PIC24H PROGRAMMING SPECIFICATION Pin Diagrams (Continued) 28-PIN SDIP 28-PIN SOIC 1 28 AV DD PGD2/EMUD2/AN0/VREF+/CN2/RA0 2 27 AVss PGC2/EMUC2/AN1/VREF-/CN3/RA1 3 26 PWM1L1/RP15/CN11/RB15 PGD1/EMUD1/AN2/RP0/CN4/RB0 4 25 PWM1H1/RP14/CN12/RB14 PGC1/EMUC1/AN3/RP1/CN5/RB1 5 24 PWM1L2/RP13/CN13/RB13 AN4/RP2/CN6/RB2 6 23 PWM1H2/RP12/CN14/RB12 AN5/RP3/CN7/RB3 7 22 TMS/PWM1L3/RP11/CN15/RB11 Vss 8 21 TDI/PWM1H3/RP10/CN16/RB10 OSCI/CLKI/CN30/RA2 9 20 V DDCORE 19 Vss dsPIC33FJ12MC202 MCLR OSCO/CLKO/CN29/RA3 10 PGD3/EMUD3/SOSCI/RP4/CN1/RB4 11 18 TDO/PWM2L1/SDA1/RP9/CN21/RB9 PGC3/EMUC3/SOSCO/T1CK/CN0/RA4 12 17 TCK/PWM2H1/SCL1/RP8/CN22/RB8 V DD 13 16 INT0/RP7/CN23/RB7 ASDA1/RP5/CN27/RB5 14 15 ASCL1/RP6/CN24/RB6 © 2007 Microchip Technology Inc. Preliminary DS70152D-page 27 dsPIC33F/PIC24H PROGRAMMING SPECIFICATION Pin Diagrams (Continued) 28 27 26 25 24 23 AN7/RP14/CN12/RB14 AN6/RP15/CN11/RB15 AVSS AVDD MCLR PGD2/EMUD2/AN0/VREF+/CN2/RA0 PGC2/EMUC2/AN1/VREF-/CN3/RA1 28-Pin QFN 6*6mm 22 PGD1/EMUD1/AN2/RP0/CN4/RB0 1 21 AN8/RP13/CN13/RB13 PGC1/EMUC1/AN3/RP1/CN5/RB1 2 20 AN9/RP12/CN14/RB12 AN4/RP2/CN6/RB2 3 19 TMS/RP11/CN15/RB11 18 TDI/RP10/CN16/RB10 dsPIC33FJ12GP202 PIC24HJ12GP202 OSCI/CLKI/CN30/RA2 6 16 V SS OSCO/CLKO/CN29/RA3 7 15 PGD3/EMUD3/SOSCI/RP4/CN1/RB4 8 DS70152D-page 28 9 10 11 12 13 14 TCK/SCL1/RP8/CN22/RB8 V DDCORE INT0/RP7/CN23/RB7 17 ASCL1/RP6/CN24/RB6 5 ASDA1/RP5/CN27/RB5 VSS V DD 4 PGC3/EMUC3/SOSCO/T1CK/CN0/RA4 AN5/RP3/CN7/RB3 Preliminary TDO/SDA1/RP9/CN21/RB9 © 2007 Microchip Technology Inc. dsPIC33F/PIC24H PROGRAMMING SPECIFICATION Pin Diagrams (Continued) 25 23 22 AV ss AVDD MCLR 26 PWM1H1/ RP14/CN12/RB14 27 PWM1L1/RP15/CN11/RB15 28 PGD2/EMUD2/AN0/VREF+/CN2/RA0 PGC2/EMUC2/AN1/VREF-/CN3/RA1 28-Pin QFN 6*6mm 24 PGD1/EMUD1/AN2/RP0/CN4/RB0 1 21 PWM1L2/RP13/CN13/RB13 PGC1/EMUC1/AN3/RP1/CN5/RB1 2 20 PWM1H2/RP12/CN14/RB12 AN4/RP2/CN6/RB2 3 19 TMS/PWM1L3/RP11/CN15/RB11 AN5/RP3/CN7/RB3 4 18 TDI/PWM1H3/RP10/CN16/RB10 VSS 5 17 V DDCORE OSCI/CLKI/CN30/RA2 6 16 VSS OSCO/CLKO/CN29/RA3 7 15 TDO/PWM2L1/SDA1/RP9/CN21/RB9 © 2007 Microchip Technology Inc. 11 12 13 14 ASCL1/RP6/CN24/RB6 INT0/RP7/CN23/RB7 TCK/PWM2H1/SCL1/RP8/CN22/RB8 PGC3/EMUC3/SOSCO/T1CK/CN0/RA4 10 ASDA1/RP5/CN27/RB5 9 VDD 8 PGD3/EMUD3/SOSCI/RP4/CN1/RB4 dsPIC33FJ12MC202 Preliminary DS70152D-page 29 dsPIC33F/PIC24H PROGRAMMING SPECIFICATION 2.4 Memory Map The program memory map extends from 0x0 to 0xFFFFFE. Code storage is located at the base of the memory map and supports up to 88K instructions (about 256 Kbytes). Table 2-2 shows the program memory size and number of erase and program blocks present in each device variant. Each erase block, or page, contains 512 instructions and each program block, or row, contains 64 instructions. Locations 0x800000 through 0x800FFE are reserved for executive code memory. This region stores the programming executive and the debugging executive. The programming executive is used for device pro- TABLE 2-2: gramming and the debug executive is used for in-circuit debugging. This region of memory can not be used to store user code. Locations 0xF80000 through 0xF80017 are reserved for the device Configuration registers. Locations 0xFF0000 and 0xFF0002 are reserved for the Device ID Word registers. These bits can be used by the programmer to identify what device type is being programmed. They are described in Section 7.0 “Device ID”. The Device ID registers read out normally, even after code protection is applied. Figure 2-3 shows the memory map for the dsPIC33F/ PIC24H family variants. CODE MEMORY SIZE User Memory Address Limit (Instruction Words) Write Blocks Erase Blocks Executive Memory Address Limit (Instruction Words) dsPIC33FJ64GP206 0x00ABFE (22K) 344 43 0x800FFE (2K) dsPIC33FJ64GP306 0x00ABFE (22K) 344 43 0x800FFE (2K) dsPIC33FJ64GP310 0x00ABFE (22K) 344 43 0x800FFE (2K) dsPIC33FJ64GP706 0x00ABFE (22K) 344 43 0x800FFE (2K) dsPIC33FJ64GP708 0x00ABFE (22K) 344 43 0x800FFE (2K) dsPIC33FJ64GP710 0x00ABFE (22K) 344 43 0x800FFE (2K) dsPIC33FJ128GP206 0x0157FE (44K) 688 86 0x800FFE (2K) dsPIC33FJ128GP306 0x0157FE (44K) 688 86 0x800FFE (2K) dsPIC33FJ128GP310 0x0157FE (44K) 688 86 0x800FFE (2K) dsPIC33FJ128GP706 0x0157FE (44K) 688 86 0x800FFE (2K) dsPIC33FJ128GP708 0x0157FE (44K) 688 86 0x800FFE (2K) dsPIC33F/PIC24H Device dsPIC33FJ128GP710 0x0157FE (44K) 688 86 0x800FFE (2K) dsPIC33FJ256GP506 0x02ABFE (88K) 1368 171 0x800FFE (2K) dsPIC33FJ256GP510 0x02ABFE (88K) 1368 171 0x800FFE (2K) dsPIC33FJ256GP710 0x02ABFE (88K) 1368 171 0x800FFE (2K) dsPIC33FJ64MC506 0x00ABFE (22K) 344 43 0x800FFE (2K) dsPIC33FJ64MC508 0x00ABFE (22K) 344 43 0x800FFE (2K) dsPIC33FJ64MC510 0x00ABFE (22K) 344 43 0x800FFE (2K) dsPIC33FJ64MC706 0x00ABFE (22K) 344 43 0x800FFE (2K) dsPIC33FJ64MC710 0x00ABFE (22K) 344 43 0x800FFE (2K) dsPIC33FJ128MC506 0x0157FE (44K) 688 86 0x800FFE (2K) dsPIC33FJ128MC510 0x0157FE (44K) 688 86 0x800FFE (2K) dsPIC33FJ128MC706 0x0157FE (44K) 688 86 0x800FFE (2K) dsPIC33FJ128MC708 0x0157FE (44K) 688 86 0x800FFE (2K) dsPIC33FJ128MC710 0x0157FE (44K) 688 86 0x800FFE (2K) dsPIC33FJ256MC510 0x02ABFE (88K) 1368 171 0x800FFE (2K) dsPIC33FJ256MC710 0x02ABFE (88K) 1368 171 0x800FFE (2K) PIC24HJ64GP206 0x00ABFE (22K) 344 43 0x800FFE (2K) PIC24HJ64GP210 0x00ABFE (22K) 344 43 0x800FFE (2K) PIC24HJ64GP506 0x00ABFE (22K) 344 43 0x800FFE (2K) PIC24HJ64GP510 0x00ABFE (22K) 344 43 0x800FFE (2K) PIC24HJ128GP206 0x0157FE (44K) 688 86 0x800FFE (2K) PIC24HJ128GP210 0x0157FE (44K) 688 86 0x800FFE (2K) DS70152D-page 30 Preliminary © 2007 Microchip Technology Inc. dsPIC33F/PIC24H PROGRAMMING SPECIFICATION TABLE 2-2: CODE MEMORY SIZE (CONTINUED) PIC24HJ128GP306 0x0157FE (44K) 688 86 0x800FFE (2K) PIC24HJ128GP310 0x0157FE (44K) 688 86 0x800FFE (2K) PIC24HJ128GP506 0x0157FE (44K) 688 86 0x800FFE (2K) PIC24HJ128GP510 0x0157FE (44K) 688 86 0x800FFE (2K) PIC24HJ256GP206 0x02ABFE (88K) 1368 171 0x800FFE (2K) PIC24HJ256GP210 0x02ABFE (88K) 1368 171 0x800FFE (2K) PIC24HJ256GP610 0x02ABFE (88K) 1368 171 0x800FFE (2K) dsPIC33FJ12GP201 0x001FFE (4K) 64 8 0x8007FE (1K) dsPIC33FJ12GP202 0x001FFE (4K) 64 8 0x8007FE (1K) dsPIC33FJ12MC201 0x001FFE (4K) 64 8 0x8007FE (1K) dsPIC33FJ12MC202 0x001FFE (4K) 64 8 0x8007FE (1K) PIC24HJ12GP201 0x001FFE (4K) 64 8 0x8007FE (1K) PIC24HJ12GP202 0x001FFE (4K) 64 8 0x8007FE (1K) © 2007 Microchip Technology Inc. Preliminary DS70152D-page 31 dsPIC33F/PIC24H PROGRAMMING SPECIFICATION FIGURE 2-3: PROGRAM MEMORY MAP 0x000000 User Flash Code Memory (87552 x 24-bit) User Memory Space 0x02ABFE 0x02AC00 Reserved 0x7FFFFE 0x800000 Executive Code Memory (2048 x 24-bit) 0x800FFE 0x801000 Configuration Memory Space Reserved Configuration Registers (12 x 8-bit) 0xF7FFFE 0xF80000 0xF80017 0xF80018 Reserved Device ID (2 x 16-bit) Reserved Note: 0xFEFFFE 0xFF0000 0xFF0002 0xFF0004 0xFFFFFE The address boundaries for user Flash and Executive code memory are device dependent. DS70152D-page 32 Preliminary © 2007 Microchip Technology Inc. dsPIC33F/PIC24H PROGRAMMING SPECIFICATION 3.0 DEVICE PROGRAMMING – ENHANCED ICSP 3.1 This section discusses programming the device through Enhanced ICSP and the programming executive. The programming executive resides in executive memory (separate from code memory) and is executed when Enhanced ICSP Programming mode is entered. The programming executive provides the mechanism for the programmer (host device) to program and verify the dsPIC33F/PIC24H Programming Specification family devices using a simple command set and communication protocol. There are several basic functions provided by the programming executive: • • • • • Read Memory Erase Memory Program Memory Blank Check Read Executive Firmware Revision Figure 3-1 shows the high-level overview of the programming process. After entering Enhanced ICSP mode, the programming executive is verified. Next, the device is erased. Then, the code memory is programmed, followed by the nonvolatile device Configuration registers. Code memory (including the Configuration registers) is then verified to ensure that programming was successful. After the programming executive has been verified in memory (or loaded if not present), the dsPIC33F/ PIC24H Programming Specification can be programmed using the command set shown in Table 3-1. FIGURE 3-1: The programming executive performs the low-level tasks required for erasing, programming and verifying a device. This allows the programmer to program the device by issuing the appropriate commands and data. Table 3-1 summarizes the commands. A detailed description for each command is provided in Section 4.2 “Programming Executive Commands”. TABLE 3-1: COMMAND SET SUMMARY Command Description HIGH-LEVEL ENHANCED ICSP™ PROGRAMMING FLOW Start Enter Enhanced ICSP™ Perform Bulk Erase Program Memory SCHECK Sanity check READC Read Configuration registers or Device ID registers READP Read code memory PROGC Program a Configuration register and verify PROGP Program one row of code memory and verify PROGW Program one word of code memory and verify QBLANK Query if the code memory is blank QVER Query the software version Verify Program Program Configuration Bits Verify Configuration Bits Exit Enhanced ICSP The programming executive uses the device’s data RAM for variable storage and program execution. After the programming executive has run, no assumptions should be made about the contents of data RAM. © 2007 Microchip Technology Inc. Overview of the Programming Process Preliminary Done DS70152D-page 33 dsPIC33F/PIC24H PROGRAMMING SPECIFICATION 3.2 Confirming the Presence of the Programming Executive 3.3 Before programming can begin, the programmer must confirm that the programming executive is stored in executive memory. The procedure for this task is shown in Figure 3-2. First, ICSP mode is entered. Then, the unique Application ID Word stored in executive memory is read. If the programming executive is resident, the Application ID Word is 0xBB, which means programming can resume as normal. However, if the Application ID Word is not 0xBB, the programming executive must be programmed to executive code memory using the method described in Section 6.0 “Programming the Programming Executive to Memory”. Section 5.0 “Device Programming – ICSP” describes the ICSP programming method. Section 5.11 “Reading the Application ID Word” describes the procedure for reading the Application ID Word in ICSP mode. FIGURE 3-2: CONFIRMING PRESENCE OF PROGRAMMING EXECUTIVE Start As shown in Figure 3-3, entering Enhanced ICSP Program/Verify mode requires three steps: 1. 2. 3. The MCLR pin is briefly driven high then low. A 32-bit key sequence is clocked into PGD. MCLR is then driven high within a specified period of time and held. The programming voltage applied to MCLR is VIH, which is essentially VDD in the case of dsPIC33F/ PIC24H devices. There is no minimum time requirement for holding at VIH. After VIH is removed, an interval of at least P18 must elapse before presenting the key sequence on PGD. The key sequence is a specific 32-bit pattern, ‘0100 1101 0100 0011 0100 1000 0101 0000’ (more easily remembered as 0x4D434850 in hexadecimal format). The device will enter Program/Verify mode only if the key sequence is valid. The Most Significant bit (MSb) of the most significant nibble must be shifted in first. Once the key sequence is complete, VIH must be applied to MCLR and held at that level for as long as Program/Verify mode is to be maintained. An interval time of at least P19 and P7 must elapse before presenting data on PGD. Signals appearing on PGD before P7 has elapsed will not be interpreted as valid. On successful entry, the program memory can be accessed and programmed in serial fashion. While in the Program/Verify mode, all unused I/Os are placed in the high-impedance state. Enter ICSP™ Mode Read the Application ID from Address 0x807F0 Is Application ID 0xBB? Entering Enhanced ICSP Mode No Yes Prog. Executive is Resident in Memory Prog. Executive must be Programmed Finish DS70152D-page 34 Preliminary © 2007 Microchip Technology Inc. dsPIC33F/PIC24H PROGRAMMING SPECIFICATION FIGURE 3-3: ENTERING ENHANCED ICSP™ MODE P6 P14 MCLR P19 VDD P7 VIH VIH Program/Verify Entry Code = 0x4D434850 0 b31 PGD 1 b30 0 b29 0 b28 1 b27 ... 0 b3 0 b2 0 b1 0 b0 PGC P1A P1B P18 3.4 Blank Check 3.5 The term “Blank Check” implies verifying that the device has been successfully erased and has no programmed memory locations. A blank or erased memory location is always read as a ‘1’. The Device ID registers (0xFF0000:0xFF0002) can be ignored by the Blank Check since this region stores device information that cannot be erased. The device Configuration registers are also ignored by the Blank Check. Additionally, all unimplemented memory space should be ignored from the Blank Check. The QBLANK command is used for the Blank Check. It determines if the code memory is erased by testing these memory regions. A ‘BLANK’ or ‘NOT BLANK’ response is returned. If it is determined that the device is not blank, it must be erased before attempting to program the chip. 3.5.1 Code Memory Programming PROGRAMMING METHODOLOGY Code memory is programmed with the PROGP command. PROGP programs one row of code memory starting from the memory address specified in the command. The number of PROGP commands required to program a device depends on the number of write blocks that must be programmed in the device. A flowchart for programming code memory is shown in Figure 3-4. In this example, all 88K instruction words of a dsPIC33F/PIC24H device are programmed. First, the number of commands to send (called ‘RemainingCmds’ in the flowchart) is set to 1368 and the destination address (called ‘BaseAddress’) is set to ‘0’. Next, one write block in the device is programmed with a PROGP command. Each PROGP command contains data for one row of code memory of the dsPIC33F/PIC24H. After the first command is processed successfully, ‘RemainingCmds’ is decremented by ‘1’ and compared with ‘0’. Since there are more PROGP commands to send, ‘BaseAddress’ is incremented by 0x80 to point to the next row of memory. On the second PROGP command, the second row is programmed. This process is repeated until the entire device is programmed.. Note: © 2007 Microchip Technology Inc. Preliminary If a bootloader needs to be programmed, the bootloader code must not be programmed into the first page of code memory. For example, if a bootloader located at address 0x200 attempts to erase the first page, it would inadvertently erase itself. Instead, program the bootloader into the second page, e.g. 0x400. DS70152D-page 35 dsPIC33F/PIC24H PROGRAMMING SPECIFICATION FIGURE 3-4: FLOWCHART FOR PROGRAMMING CODE MEMORY 3.5.2 After code memory is programmed, the contents of memory can be verified to ensure that programming was successful. Verification requires code memory to be read back and compared against the copy held in the programmer’s buffer. Start The READP command can be used to read back all the programmed code memory. BaseAddress = 0x0 RemainingCmds = 1368 Alternatively, you can have the programmer perform the verification after the entire device is programmed, using a checksum computation. Send PROGP Command to Program BaseAddress Is PROGP response PASS? 3.5.3 CHECKSUM COMPUTATION Only the Configuration registers are included in the checksum computation. The Device ID and Unit ID are not included in the checksum computation. No Table 3-2 shows how this 16-bit computation can be made for each dsPIC33F and PIC24H device. Computations for read code protection are shown both enabled and disabled. The checksum values shown here assume that the Configuration registers are also erased. However, when code protection is enabled, the value of the FGS register is assumed to be 0x5. Yes RemainingCmds = RemainingCmds – 1 BaseAddress = BaseAddress + 0x80 No PROGRAMMING VERIFICATION Is RemainingCmds ‘0’? Yes Finish DS70152D-page 36 Failure Report Error Preliminary © 2007 Microchip Technology Inc. dsPIC33F/PIC24H PROGRAMMING SPECIFICATION TABLE 3-2: CHECKSUM COMPUTATION Device dsPIC33FJ64GP206 dsPIC33FJ64GP306 dsPIC33FJ64GP310 dsPIC33FJ64GP706 dsPIC33FJ64GP708 dsPIC33FJ64GP710 Read Code Protection Disabled Checksum Computation CFGB + SUM(0:00ABFF) Erased Value Value with 0xAAAAAA at 0x0 and Last Code Address 0x03BC 0x01BE Enabled CFGB 0x05BA 0x05BA Disabled CFGB + SUM(0:00ABFF) 0x03BC 0x01BE Enabled CFGB 0x05BA 0x05BA Disabled CFGB + SUM(0:00ABFF) 0x03BC 0x01BE Enabled CFGB 0x05BA 0x05BA Disabled CFGB + SUM(0:00ABFF) 0x03BC 0x01BE Enabled CFGB 0x05BA 0x05BA Disabled CFGB + SUM(0:00ABFF) 0x03BC 0x01BE Enabled CFGB 0x05BA 0x05BA Disabled CFGB + SUM(0:00ABFF) 0x03BC 0x01BE Enabled dsPIC33FJ128GP206 Disabled Enabled dsPIC33FJ128GP306 Disabled Enabled dsPIC33FJ128GP310 Disabled Enabled dsPIC33FJ128GP706 Disabled Enabled dsPIC33FJ128GP708 Disabled Enabled dsPIC33FJ128GP710 Disabled Enabled dsPIC33FJ256GP506 Disabled Enabled dsPIC33FJ256GP510 Disabled Enabled dsPIC33FJ256GP710 Disabled Enabled CFGB 0x05BA 0x05BA CFGB + SUM(0:0157FF) 0x01BC 0xFFBE CFGB 0x05BA 0x05BA CFGB + SUM(0:0157FF) 0x01BC 0xFFBE CFGB 0x05BA 0x05BA CFGB + SUM(0:0157FF) 0x01BC 0xFFBE CFGB 0x05BA 0x05BA CFGB + SUM(0:0157FF) 0x01BC 0xFFBE CFGB 0x05BA 0x05BA CFGB + SUM(0:0157FF) 0x01BC 0xFFBE CFGB 0x05BA 0x05BA CFGB + SUM(0:0157FF) 0x01BC 0xFFBE CFGB 0x05BA 0x05BA CFGB + SUM(0:02ABFF) 0x03BC 0x01BE CFGB 0x05BA 0x05BA CFGB + SUM(0:02ABFF) 0x03BC 0x01BE CFGB 0x05BA 0x05BA CFGB + SUM(0:02ABFF) 0x03BC 0x01BE CFGB 0x05BA 0x05BA Item Description: SUM(a:b) = Byte sum of locations a to b inclusive (all 3 bytes of code memory) CFGB = Configuration Block (masked) = Byte sum of ((FBS & 0xCF) + (FSS & 0xFF) + (FGS & 0x07) + (FOSCSEL & 0xA7) + (FOSC & 0xE7) + (FWDT & 0xDF) + (FPOR & 0xE7) + (FICD & 0xE3)) (for dsPIC33FJ12GP201/202, dsPIC33FJ12MC201/202 and PIC24HJ12GP201/202) = Byte sum of ((FBS & 0xCF) + (FSS & 0xCF) + (FGS & 0x07) + (FOSCSEL & 0xA7) + (FOSC & 0xC7) + (FWDT & 0xDF) + (FPOR & 0xE7) + (FICD & 0xE3)) (for all other devices) © 2007 Microchip Technology Inc. Preliminary DS70152D-page 37 dsPIC33F/PIC24H PROGRAMMING SPECIFICATION TABLE 3-2: CHECKSUM COMPUTATION (CONTINUED) Device dsPIC33FJ64MC506 dsPIC33FJ64MC508 dsPIC33FJ64MC510 dsPIC33FJ64MC706 dsPIC33FJ64MC710 Read Code Protection CFGB + SUM(0:00ABFF) 0x03BC 0x01BE Enabled CFGB 0x05BA 0x05BA Disabled CFGB + SUM(0:00ABFF) 0x03BC 0x01BE Enabled CFGB 0x05BA 0x05BA Disabled CFGB + SUM(0:00ABFF) 0x03BC 0x01BE Enabled CFGB 0x05BA 0x05BA Disabled CFGB + SUM(0:00ABFF) 0x03BC 0x01BE Enabled CFGB 0x05BA 0x05BA Disabled CFGB + SUM(0:00ABFF) 0x03BC 0x01BE Enabled CFGB 0x05BA 0x05BA CFGB + SUM(0:0157FF) 0x01BC 0xFFBE CFGB 0x05BA 0x05BA CFGB + SUM(0:0157FF) 0x01BC 0xFFBE CFGB 0x05BA 0x05BA CFGB + SUM(0:0157FF) 0x01BC 0xFFBE CFGB 0x05BA 0x05BA CFGB + SUM(0:0157FF) 0x01BC 0xFFBE CFGB 0x05BA 0x05BA CFGB + SUM(0:0157FF) 0x01BC 0xFFBE CFGB 0x05BA 0x05BA CFGB + SUM(0:02ABFF) 0x03BC 0x01BE CFGB 0x05BA 0x05BA Enabled dsPIC33FJ128MC510 Disabled Enabled dsPIC33FJ128MC706 Disabled Enabled dsPIC33FJ128MC708 Disabled Enabled dsPIC33FJ128MC710 Disabled Enabled dsPIC33FJ256MC510 Disabled Enabled dsPIC33FJ256MC710 Disabled PIC24HJ64GP210 PIC24HJ64GP506 Value with 0xAAAAAA at 0x0 and Last Code Address Disabled dsPIC33FJ128MC506 Disabled PIC24HJ64GP206 Checksum Computation Erased Value CFGB + SUM(0:02ABFF) 0x03BC 0x01BE Enabled CFGB 0x05BA 0x05BA Disabled CFGB + SUM(0:00ABFF) 0x03BC 0x01BE Enabled CFGB 0x05BA 0x05BA Disabled CFGB + SUM(0:00ABFF) 0x03BC 0x01BE Enabled CFGB 0x05BA 0x05BA Disabled CFGB + SUM(0:00ABFF) 0x03BC 0x01BE Enabled CFGB 0x05BA 0x05BA Item Description: SUM(a:b) = Byte sum of locations a to b inclusive (all 3 bytes of code memory) CFGB = Configuration Block (masked) = Byte sum of ((FBS & 0xCF) + (FSS & 0xFF) + (FGS & 0x07) + (FOSCSEL & 0xA7) + (FOSC & 0xE7) + (FWDT & 0xDF) + (FPOR & 0xE7) + (FICD & 0xE3)) (for dsPIC33FJ12GP201/202, dsPIC33FJ12MC201/202 and PIC24HJ12GP201/202) = Byte sum of ((FBS & 0xCF) + (FSS & 0xCF) + (FGS & 0x07) + (FOSCSEL & 0xA7) + (FOSC & 0xC7) + (FWDT & 0xDF) + (FPOR & 0xE7) + (FICD & 0xE3)) (for all other devices) DS70152D-page 38 Preliminary © 2007 Microchip Technology Inc. dsPIC33F/PIC24H PROGRAMMING SPECIFICATION TABLE 3-2: CHECKSUM COMPUTATION (CONTINUED) Device PIC24HJ64GP510 PIC24HJ128GP206 PIC24HJ128GP210 PIC24HJ128GP306 PIC24HJ128GP310 PIC24HJ128GP506 PIC24HJ128GP510 PIC24HJ256GP206 PIC24HJ256GP210 PIC24HJ256GP610 dsPIC33FJ12GP201 dsPIC33FJ12GP202 dsPIC33FJ12MC201 dsPIC33FJ12MC202 PIC24HJ12GP201 PIC24HJ12GP202 Read Code Protection Checksum Computation Erased Value Value with 0xAAAAAA at 0x0 and Last Code Address Disabled CFGB + SUM(0:00ABFF) 0x03BC 0x01BE Enabled CFGB 0x05BA 0x05BA Disabled CFGB + SUM(0:0157FF) 0x01BC 0xFFBE Enabled CFGB 0x05BA 0x05BA Disabled CFGB + SUM(0:0157FF) 0x01BC 0xFFBE Enabled CFGB 0x05BA 0x05BA Disabled CFGB + SUM(0:0157FF) 0x01BC 0xFFBE Enabled CFGB 0x05BA 0x05BA Disabled CFGB + SUM(0:0157FF) 0x01BC 0xFFBE Enabled CFGB 0x05BA 0x05BA Disabled CFGB + SUM(0:0157FF) 0x01BC 0xFFBE Enabled CFGB 0x05BA 0x05BA Disabled CFGB + SUM(0:0157FF) 0x01BC 0xFFBE Enabled CFGB 0x05BA 0x05BA Disabled CFGB + SUM(0:02ABFF) 0x03BC 0x01BE Enabled CFGB 0x05BA 0x05BA Disabled CFGB + SUM(0:02ABFF) 0x03BC 0x01BE Enabled CFGB 0x05BA 0x05BA Disabled CFGB + SUM(0:02ABFF) 0x03BC 0x01BE Enabled CFGB 0x05BA 0x05BA Disabled CFGB + SUM(0:001FFF) 0xD60C 0xD40E Enabled CFGB 0x060A 0x060A Disabled CFGB + SUM(0:001FFF) 0xD60C 0xD40E Enabled CFGB 0x060A 0x060A Disabled CFGB + SUM(0:001FFF) 0xD60C 0xD40E Enabled CFGB 0x060A 0x060A Disabled CFGB + SUM(0:001FFF) 0xD60C 0xD40E Enabled CFGB 0x060A 0x060A Disabled CFGB + SUM(0:001FFF) 0xD60C 0xD40E Enabled CFGB 0x060A 0x060A Disabled CFGB + SUM(0:001FFF) 0xD60C 0xD40E Enabled CFGB 0x060A 0x060A Item Description: SUM(a:b) = Byte sum of locations a to b inclusive (all 3 bytes of code memory) CFGB = Configuration Block (masked) = Byte sum of ((FBS & 0xCF) + (FSS & 0xFF) + (FGS & 0x07) + (FOSCSEL & 0xA7) + (FOSC & 0xE7) + (FWDT & 0xDF) + (FPOR & 0xE7) + (FICD & 0xE3)) (for dsPIC33FJ12GP201/202, dsPIC33FJ12MC201/202 and PIC24HJ12GP201/202) = Byte sum of ((FBS & 0xCF) + (FSS & 0xCF) + (FGS & 0x07) + (FOSCSEL & 0xA7) + (FOSC & 0xC7) + (FWDT & 0xDF) + (FPOR & 0xE7) + (FICD & 0xE3)) (for all other devices) © 2007 Microchip Technology Inc. Preliminary DS70152D-page 39 dsPIC33F/PIC24H PROGRAMMING SPECIFICATION 3.6 3.6.1 Configuration Bits Programming OVERVIEW The dsPIC33F/PIC24H has Configuration bits stored in twelve 8-bit Configuration registers, aligned on even configuration memory address boundaries. These bits can be set or cleared to select various device configurations. There are three types of Configuration bits: system operation bits, code-protect bits and unit ID bits. The system operation bits determine the power-on settings for system level components, such as oscillator and Watchdog Timer. The code-protect bits prevent program memory from being read and written. The register descriptions for the FBS, FSS, FGS, FOSCSEL, FOSC, FWDT, FPOR and FICD Configuration registers are shown in Table 3-3. The Configuration register map is shown in Table 3-4.. Note: If any of the code-protect bits in FBS, FSS or FGS is clear, then the entire device must be erased before it can be reprogrammed. DS70152D-page 40 Preliminary © 2007 Microchip Technology Inc. dsPIC33F/PIC24H PROGRAMMING SPECIFICATION TABLE 3-3: dsPIC33F/PIC24H CONFIGURATION BITS DESCRIPTION Bit Field Register RBS<1:0> FBS Description Boot Segment Data RAM Code Protection 11 = No RAM is reserved for Boot Segment 10 = Small-sized Boot RAM [128 bytes of RAM are reserved for Boot Segment] 01 = Medium-sized Boot RAM [256 bytes of RAM are reserved for Boot Segment] 00 = Large-sized Boot RAM [1024 bytes of RAM are reserved for Boot Segment] [Note: This bit is Reserved in dsPIC33FJ12GP201/202, dsPIC33FJ12MC201/202 and PIC24HJ12GP201/202.] BSS<2:0> FBS Boot Segment Program Memory Code Protection 111 = No Boot Segment 110 = Standard security, Small-sized Boot Program Flash [Boot Segment ends at 0x0003FF in dsPIC33FJ12GP201/202, dsPIC33FJ12MC201/202 and PIC24HJ12GP201/202. Boot Segment ends at 0x0007FF in other all other devices.] 101 = Standard security, Medium-sized Boot Program Flash [Boot Segment ends at 0x0007FF in dsPIC33FJ12GP201/202, dsPIC33FJ12MC201/202 and PIC24HJ12GP201/202. Boot Segment ends at 0x001FFF in all other devices.] 100 = Standard security, Large-sized Boot Program Flash [Boot Segment ends at 0x000FFF in dsPIC33FJ12GP201/202, dsPIC33FJ12MC201/202 and PIC24HJ12GP201/202. Boot Segment ends at 0x003FFF in all other devices.] 011 = No Boot Segment 010 = High security, Small-sized Boot Program Flash [Reserved in dsPIC33FJ12GP201/202, dsPIC33FJ12MC201/202 and PIC24HJ12GP201/202. Boot Segment ends at 0x0007FF in all other devices.] 001 = High security, Medium-sized Boot Program Flash [Reserved in dsPIC33FJ12GP201/202, dsPIC33FJ12MC201/202 and PIC24HJ12GP201/202. Boot Segment ends at 0x001FFF in all other devices.] 000 = High security, Large-sized Boot Program Flash [Reserved in dsPIC33FJ12GP201/202, dsPIC33FJ12MC201/202 and PIC24HJ12GP201/202. Boot Segment ends at 0x003FFF in all other devices.] BWRP FBS Boot Segment Program Memory Write Protection 1 = Boot Segment program memory is not write-protected 0 = Boot program memory is write-protected © 2007 Microchip Technology Inc. Preliminary DS70152D-page 41 dsPIC33F/PIC24H PROGRAMMING SPECIFICATION TABLE 3-3: dsPIC33F/PIC24H CONFIGURATION BITS DESCRIPTION (CONTINUED) Bit Field Register Description RSS<1:0> FSS Secure Segment Data RAM Code Protection 11 = No Data RAM is reserved for Secure Segment 10 = Small-sized Secure RAM [(256 – N) bytes of RAM are reserved for Secure Segment in all other devices.] 01 = Medium-sized Secure RAM [(2048 – N) bytes of RAM are reserved for Secure Segment in all other devices.] 00 = Large-sized Secure RAM [(4096 – N) bytes of RAM are reserved for Secure Segment in all other devices.] where N = Number of bytes of RAM reserved for Boot Sector. Note 1: This bit is Reserved in dsPIC33FJ12GP201/202, dsPIC33FJ12MC201/202 and PIC24HJ12GP201/202.] 2: If the defined Boot Segment size is greater than or equal to the defined Secure Segment, then the Secure Segment size selection has no effect and the Secure Segment is disabled. SSS<2:0> FSS Secure Segment Program Memory Code Protection 111 = No Secure Segment 110 = Standard security, Small-sized Secure Program Flash [Secure Segment ends at 0x001FFF for dsPIC33FJ64GPxxx/ dsPIC33FJ64MCxxx/PIC24HJ64GPxxx devices, and at 0x003FFF in other devices.] 101 = Standard security, Medium-sized Secure Program Flash [Secure Segment ends at 0x003FFF for dsPIC33FJ64GPxxx/ dsPIC33FJ64MCxxx/PIC24HJ64GPxxx devices, and at 0x007FFF in other devices.] 100 = Standard security, Large-sized Secure Program Flash [Secure Segment ends at 0x007FFF for dsPIC33FJ64GPxxx/ dsPIC33FJ64MCxxx/PIC24HJ64GPxxx devices, and at 0x00FFFF in other devices.] 011 = No Secure Segment 010 = High security, Small-sized Secure Program Flash [Secure Segment ends at 0x001FFF for dsPIC33FJ64GPxxx/ dsPIC33FJ64MCxxx/PIC24HJ64GPxxx devices, and at 0x003FFF in other devices.] 001 = High security, Medium-sized Secure Program Flash [Secure Segment ends at 0x003FFF for dsPIC33FJ64GPxxx/ dsPIC33FJ64MCxxx/PIC24HJ64GPxxx devices, and at 0x007FFF in other devices.] 000 = High security, Large-sized Secure Program Flash [Secure Segment ends at 0x007FFF for dsPIC33FJ64GPxxx/ dsPIC33FJ64MCxxx/PIC24HJ64GPxxx devices, and at 0x00FFFF in other devices.] [Note: This bit is Reserved in dsPIC33FJ12GP201/202, dsPIC33FJ12MC201/202 and PIC24HJ12GP201/202.] SWRP DS70152D-page 42 FSS Secure Segment Program Memory Write Protection 1 = Secure Segment program memory is not write-protected 0 = Secure program memory is write-protected [Note: This bit is Reserved in dsPIC33FJ12GP201/202, dsPIC33FJ12MC201/202 and PIC24HJ12GP201/202.] Preliminary © 2007 Microchip Technology Inc. dsPIC33F/PIC24H PROGRAMMING SPECIFICATION TABLE 3-3: dsPIC33F/PIC24H CONFIGURATION BITS DESCRIPTION (CONTINUED) Bit Field Register Description GSS<1:0> FGS General Segment Code-Protect bit 11 = Code protection is disabled 10 = Standard security code protection is enabled 0x = Reserved in dsPIC33FJ12GP201/202, dsPIC33FJ12MC201/202 and PIC24HJ12GP201/202. In all other devices, high security code protection is enabled. GWRP FGS General Segment Write-Protect bit 1 = General Segment program memory is not write-protected 0 = General Segment program memory is write-protected IESO FOSCSEL Two-speed Oscillator Start-Up Enable bit 1 = Start up device with FRC, then automatically switch to the user-selected oscillator source when ready 0 = Start up device with user-selected oscillator source TEMP FOSCSEL Temperature Protection Enable bit 1 = Temperature protection disabled 0 = Temperature protection enabled FNOSC<2:0> FOSCSEL Initial Oscillator Source Selection bits 111 = Internal Fast RC (FRC) oscillator 110 = Reserved 101 = LPRC oscillator 100 = Secondary (LP) oscillator 011 = Primary (XT, HS, EC) oscillator with PLL 010 = Primary (XT, HS, EC) oscillator 001 = Internal Fast RC (FRC) oscillator with PLL 000 = Reserved FCKSM<1:0> FOSC Clock Switching Mode bits 1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled IOL1WAY FOSC Peripheral Pin Select Configuration 1 = Allow only one reconfiguration 0 = Allow multiple reconfigurations [Note: This bit is only present in the dsPIC33FJ12GP201/202, dsPIC33FJ12MC201/202 and PIC24HJ12GP201/202 devices.] OSCIOFNC FOSC OSC2 Pin Function bit (except in XT and HS modes) 1 = OSC2 is clock output 0 = OSC2 is general purpose digital I/O pin POSCMD<1:0> FOSC Primary Oscillator Mode Select bits 11 = Primary oscillator disabled 10 = HS crystal oscillator mode 01 = XT crystal oscillator mode 00 = EC (external clock) mode FWDTEN FWDT Watchdog Enable bit 1 = Watchdog always enabled (LPRC oscillator cannot be disabled. Clearing the SWDTEN bit in the RCON register will have no effect) 0 = Watchdog enabled/disabled by user software (LPRC can be disabled by clearing the SWDTEN bit in the RCON register) WINDIS FWDT Watchdog Timer Window Enable bit 1 = Watchdog Timer in Non-Window mode 0 = Watchdog Timer in Window mode WDTPRE FWDT Watchdog Timer Prescaler bit 1 = 1:128 0 = 1:32 © 2007 Microchip Technology Inc. Preliminary DS70152D-page 43 dsPIC33F/PIC24H PROGRAMMING SPECIFICATION TABLE 3-3: dsPIC33F/PIC24H CONFIGURATION BITS DESCRIPTION (CONTINUED) Bit Field Register WDTPOST FWDT Watchdog Timer Postscaler bits 1111 = 1:32,768 1110 = 1:16,384 . . . 0001 = 1:2 0000 = 1:1 PWMPIN FPOR Motor Control PWM Module Pin mode 1 = PWM module pins controlled by PORT register at device Reset (tri-stated) 0 = PWM module pins controlled by PWM module at device Reset (configured as output pins) HPOL FPOR Motor Control PWM High-side Polarity bit 1 = PWM module high-side output pins have active-high output polarity 0 = PWM module high-side output pins have active-low output polarity LPOL FPOR Motor Control PWM Low-side Polarity bit 1 = PWM module low-side output pins have active-high output polarity 0 = PWM module low-side output pins have active-low output polarity ALTI2C FPOR Alternate I2C™ pins 1 = I2C mapped to SDA1/SCL1 pins 0 = I2C mapped to ASDA1/SACL1 pins [Note: This bit is only present in the dsPIC33FJ12GP201/202, dsPIC33FJ12MC201/202 and PIC24HJ12GP201/202 devices.] FPWRT<2:0> FPOR Power-on Reset Timer Value Select bits 111 = PWRT = 128 ms 110 = PWRT = 64 ms 101 = PWRT = 32 ms 100 = PWRT = 16 ms 011 = PWRT = 8 ms 010 = PWRT = 4 ms 001 = PWRT = 2 ms 000 = PWRT Disabled BKBUG FICD Background Debug Enable bit 1 = Device will reset in User mode 0 = Device will reset in Debug mode COE FICD Debugger/Emulator Enable bit 1 = Device will reset in Operational mode 0 = Device will reset in Clip-On Emulation mode JTAGEN FICD JTAG Enable bit 1 = JTAG enabled 0 = JTAG disabled ICS<1:0> FICD ICD Communication Channel Select bits 11 = Communicate on PGC1/EMUC1 and PGD1/EMUD1 10 = Communicate on PGC2/EMUC2 and PGD2/EMUD2 01 = Communicate on PGC3/EMUC3 and PGD3/EMUD3 00 = Reserved, do not use — All DS70152D-page 44 Description Unimplemented (read as ‘0’, write as ‘0’) Preliminary © 2007 Microchip Technology Inc. dsPIC33F/PIC24H PROGRAMMING SPECIFICATION TABLE 3-4: Address dsPIC33F/PIC24H DEVICE CONFIGURATION REGISTER MAP Name Bit 7 Bit 6 FBS RBS<1:0> 0xF80002 FSS RSS<1:0>(3) 0xF80004 FGS 0xF80000 0xF80006 FOSCSEL Bit 5 (3) Bit 4 Bit 3 GSS<1:0> — IOL1WAY(2) — OSCIOFNC FOSC 0xF8000A FWDT 0xF8000C FPOR 0xF8000E FICD 0xF80010 FUID0 User Unit ID Byte 0 0xF80012 FUID1 User Unit ID Byte 1 0xF80014 FUID2 User Unit ID Byte 2 0xF80016 FUID3 User Unit ID Byte 3 2: 3: 3.6.2 FWDTEN WINDIS PWMPIN(1) HPOL(1) BKBUG COE - WDTPRE LPOL(1) ALTI2C(2) JTAGEN PROGRAMMING METHODOLOGY Twelve PROGC commands are required to program all the Configuration bits. A flowchart for Configuration bit programming is shown in Figure 3-5. 3.6.3 POSCMD<1:0> WDTPOST<3:0> — FPWRT<2:0> — ICS<1:0> On the dsPIC33F General Purpose Family devices (dsPIC33FJXXXGPXXX) and PIC24H devices, these bits are reserved (read as ‘1’ and must be programmed as ‘1’). These bits are only present in the dsPIC33FJ12GP201/202, dsPIC33FJ12MC201/202 and PIC24HJ12GP201/202 devices. In all other devices, they are unimplemented (read as ‘0’). In the dsPIC33FJ12GP201/202, dsPIC33FJ12MC201/202 and PIC24HJ12GP201/202 devices, these bits are reserved (read as ‘1’ and must be programmed as ‘1’). Configuration bits may be programmed a single byte at a time using the PROGC command. This command specifies the configuration data and Configuration register address. When Configuration bits are programmed, any unimplemented bits must be programmed with a ‘0’ and any reserved bits must be programmed with a ‘1’. Note: GWRP FNOSC<2:0> 0xF80008 Note 1: FCKSM<1:0> SWRP(3) SSS<2:0> TEMP Bit 0 BWRP (3) — — Bit 1 BSS<2:0> — — IESO Bit 2 If the General Code Segment CodeProtect bit (GCP) is programmed to ‘0’, code memory is code-protected and can not be read. Code memory must be verified before enabling read protection. See Section 3.6.4 “CodeGuard Security Configuration Bits” for more information about code-protect Configuration bits. PROGRAMMING VERIFICATION After the Configuration bits are programmed, the contents of memory should be verified to ensure that the programming was successful. Verification requires the Configuration bits to be read back and compared against the copy held in the programmer’s buffer. The READC command reads back the programmed Configuration bits and verifies that the programming was successful. 3.6.4 CODEGUARD SECURITY CONFIGURATION BITS The FBS, FSS and FGS Configuration registers are special Configuration registers that control the size and level of code protection for the Boot Segment, Secure Segment and General Segment, respectively. For each segment, two main forms of code protection are provided. One form prevents code memory from being written (write protection), while the other prevents code memory from being read (read protection). BWRP, SWRP and GWRP bits control write protection and BSS<2:0>, SSS<2:0> and GSS<1:0> bits controls read protection. The Chip Erase ERASEB command sets all the code protection bits to ‘1’, which allows the device to be programmed. When write protection is enabled, any programming operation to code memory will fail. When read protection is enabled, any read from code memory will cause a ‘0x0’ to be read, regardless of the actual contents of code memory. Since the programming executive always verifies what it programs, attempting to program code memory with read protection enabled will also result in failure. It is imperative that all code protection bits are ‘1’ while the device is being programmed and verified. Only after the device is programmed and verified should any of the above bits be programmed to ‘0’. Any unimplemented Configuration bits are read-only and read as ‘0’. The reserved bits are read-only and read as ‘1’. © 2007 Microchip Technology Inc. Preliminary DS70152D-page 45 dsPIC33F/PIC24H PROGRAMMING SPECIFICATION In addition to code memory protection, a part of Data RAM can be configured to be accessible only by code resident in the Boot Segment and/or Secure Segment. The sizes of these “reserved” sections are user-configurable, using the RBS<1:0> and RSS<1:0> bits. Note: 3.6.5 USER UNIT ID The dsPIC33F/PIC24H devices provide four 8-bit Configuration registers (FUID0 through FUID3) for the user to store product-specific information, such as unit serial numbers and other product manufacturing data. All bits in the FBS, FSS and FGS Configuration registers can only be programmed to a value of ‘0’. the ERASEB command is the only way to reprogram code-protect bits from ON (‘0’) to OFF (‘1’). FIGURE 3-5: CONFIGURATION BIT PROGRAMMING FLOW Start ConfigAddress = 0xF80000 Send PROGC Command Is PROGC response PASS? No Yes ConfigAddress = ConfigAddress + 2 No Is ConfigAddress 0xF80018? Yes Failure Report Error Finish 3.7 Exiting Enhanced ICSP Mode FIGURE 3-6: Exiting Program/Verify mode is done by removing VIH from MCLR, as shown in Figure 3-6. The only requirement for exit is that an interval P16 should elapse between the last clock and program signals on PGC and PGD before removing VIH. EXITING ENHANCED ICSP™ MODE P16 P17 VIH MCLR VDD PGD VIH PGC PGD = Input DS70152D-page 46 Preliminary © 2007 Microchip Technology Inc. dsPIC33F/PIC24H PROGRAMMING SPECIFICATION 4.0 THE PROGRAMMING EXECUTIVE 4.1 Programming Executive Communication The programmer and programming executive have a master-slave relationship, where the programmer is the master programming device and the programming executive is the slave. All communication is initiated by the programmer in the form of a command. Only one command at a time can be sent to the programming executive. In turn, the programming executive only sends one response to the programmer after receiving and processing a command. The programming executive command set is described in Section 4.2 “Programming Executive Commands”. The response set is described in Section 4.3 “Programming Executive Responses”. 4.1.1 COMMUNICATION INTERFACE AND PROTOCOL The ICSP/Enhanced ICSP interface is a 2 wire SPI implemented using the PGC and PGD pins. The PGC pin is used as a clock input pin and the clock source must be provided by the programmer. The PGD pin is used for sending command data to and receiving response data from the programming executive. All serial data is transmitted on the falling edge of PGC and latched on the rising edge of PGC. All data transmissions are sent to the Most Significant bit (MSb) first using 16-bit mode (see Figure 4-1). FIGURE 4-1: 2 3 4 5 6 11 12 13 14 After the entire response is clocked out, the programmer should terminate the clock on PGC until it is time to send another command to the programming executive. This protocol is shown in Figure 4-2. 4.1.2 SPI RATE In Enhanced ICSP mode, the dsPIC33F/PIC24H family devices operate from the Fast Internal RC oscillator, which has a nominal frequency of 7.3728 MHz. This oscillator frequency yields an effective system clock frequency of 1.8432 MHz. To ensure that the programmer does not clock too fast, it is recommended that a 7.35 MHz clock be provided by the programmer. 4.1.3 TIME OUTS The programming executive uses no Watchdog or time out for transmitting responses to the programmer. If the programmer does not follow the flow control mechanism using PGC as described in Section 4.1.1 “Communication Interface and Protocol”, it is possible that the programming executive will behave unexpectedly while trying to send a response to the programmer. Since the programming executive has no time out, it is imperative that the programmer correctly follow the described communication protocol. As a safety measure, the programmer should use the command time outs identified in Table 4-1. If the command time out expires, the programmer should reset the programming executive and start programming the device again. PROGRAMMING EXECUTIVE SERIAL TIMING P1 1 After the programming executive has processed the command, it brings PGD low for 15 μsec to indicate to the programmer that the response is available to be clocked out. The programmer can begin to clock out the response 23 μsec after PGD is brought low and it must provide the necessary amount of clock pulses to receive the entire response from the programming executive. 15 16 PGC P1A P3 P1B P2 PGD MSb 14 13 12 11 ... 5 4 3 2 1 LSb Since a 2 wire SPI is used, and data transmissions are bidirectional, a simple protocol is used to control the direction of PGD. When the programmer completes a command transmission, it releases the PGD line and allows the programming executive to drive this line high. The programming executive keeps the PGD line high to indicate that it is processing the command. © 2007 Microchip Technology Inc. Preliminary DS70152D-page 47 dsPIC33F/PIC24H PROGRAMMING SPECIFICATION FIGURE 4-2: PROGRAMMING EXECUTIVE – PROGRAMMER COMMUNICATION PROTOCOL Host Transmits Last Command Word 1 2 Programming Executive Processes Command Host Clocks Out Response 1 15 16 2 15 16 1 2 15 16 PGC PGD MSB X X X LSB P8 MSB X X X LSB 1 0 P9a P9b MSB X X X LSB 8ns 23 µs PGC = Input PGD = Input 4.2 PGC = Input (Idle) PGD = Output 4.2.2 Programming Executive Commands The programming executive command set is shown in Table 4-1. This table contains the opcode, mnemonic, length, time out and description for each command. Functional details on each command are provided in the command descriptions (Section 4.2.4 “Command Descriptions”). 4.2.1 PACKED DATA FORMAT When 24-bit instruction words are transferred across the 16-bit SPI interface, they are packed to conserve space using the format shown in Figure 4-4. This format minimizes traffic over the SPI and provides the programming executive with data that is properly aligned for performing table write operations. FIGURE 4-4: COMMAND FORMAT All programming executive commands have a general format consisting of a 16-bit header and any required data for the command (see Figure 4-3). The 16-bit header consists of a 4-bit opcode field, which is used to identify the command, followed by a 12-bit command length field. FIGURE 4-3: 15 PGC = Input PGD = Output 12 COMMAND FORMAT 11 15 PACKED INSTRUCTION WORD FORMAT 8 7 0 LSW1 MSB2 MSB1 LSW2 LSWx: Least Significant 16 bits of instruction word MSBx: Most Significant Byte of instruction word 0 Opcode Note: Length Command Data First Word (if required) When the number of instruction words transferred is odd, MSB2 is zero and LSW2 can not be transmitted. • 4.2.3 • Command Data Last Word (if required) The command opcode must match one of those in the command set. Any command that is received which does not match the list in Table 4-1 will return a “NACK” response (see Section 5.3.1.1 “Opcode Field”). The command length is represented in 16-bit words since the SPI operates in 16-bit mode. The programming executive uses the command length field to determine the number of words to read from the SPI port. If the value of this field is incorrect, the command will not be properly received by the programming executive. DS70152D-page 48 PROGRAMMING EXECUTIVE ERROR HANDLING The programming executive will “NACK” all unsupported commands. Additionally, due to the memory constraints of the programming executive, no checking is performed on the data contained in the programmer command. It is the responsibility of the programmer to command the programming executive with valid command arguments or the programming operation may fail. Additional information on error handling is provided in Section 5.3.1.3 “QE_Code Field”. Preliminary © 2007 Microchip Technology Inc. dsPIC33F/PIC24H PROGRAMMING SPECIFICATION TABLE 4-1: Opcode PROGRAMMING EXECUTIVE COMMAND SET Mnemonic Length (16-bit words) Time Out Description 0x0 SCHECK 1 1 msec Sanity check. 0x1 READC 3 1 msec Read an 8-bit word from the specified Configuration register or Device ID register. 0x2 READP 4 0x3 RESERVED 0x4 PROGC 4 5 msec Write an 8-bit word to the specified Configuration register. 0x5 PROGP 99 5 msec Program one row of code memory at the specified address, then verify. 0x6 PROGW 5 5 msec Program one instruction word of code memory at the specified address, then verify. 0x7 RESERVED N/A N/A This command is reserved. It will return a NACK. 0x8 RESERVED N/A N/A This command is reserved. It will return a NACK. N/A N/A This command is reserved. It will return a NACK. 2 TBD Query if the code memory is blank. 0x9 RESERVED 0xA QBLANK 1 msec/row Read ‘N’ 24-bit instruction words of code memory starting from the specified address. N/A N/A This command is reserved. It will return a NACK. 0xB QVER 1 1 msec 0xC RESERVED N/A N/A Query the programming executive software version. This command is reserved. It will return a NACK. 0xD RESERVED N/A N/A This command is reserved. It will return a NACK. Legend: TBD = To Be Determined Note: One row of code memory consists of (64) 24-bit words. Refer to Table 2-2 for device-specific information. 4.2.4 COMMAND DESCRIPTIONS All commands supported by the programming executive are described in Section 5.2.5 “SCHECK Command” through Section 4.2.12 “QVER Command”. 4.2.5 SCHECK COMMAND 15 12 11 0 Opcode Length Field Description Opcode 0x0 Length 0x1 The SCHECK command instructs the programming executive to do nothing but generate a response. This command is used as a “Sanity Check” to verify that the programming executive is operational. Expected Response (2 words): 0x1000 0x0002 Note: This instruction is not required programming, but is provided development purposes only. © 2007 Microchip Technology Inc. for for Preliminary DS70152D-page 49 dsPIC33F/PIC24H PROGRAMMING SPECIFICATION 4.2.6 15 READC COMMAND 12 11 Opcode 4.2.7 8 7 0 15 12 11 8 7 Opcode Length N READP COMMAND 0 Length N Addr_MSB Reserved Addr_LS Addr_MSB Addr_LS Field Description Field Description Opcode 0x1 Length 0x3 Opcode N Number of 8-bit Configuration registers or Device ID registers to read (max of 256) Length 0x4 N Number of 24-bit instructions to read (max of 32768) Addr_MSB MSB of 24-bit source address Reserved 0x0 Addr_LS Least Significant 16 bits of 24-bit source address Addr_MSB MSB of 24-bit source address Addr_LS Least Significant 16 bits of 24-bit source address The READC command instructs the programming executive to read N Configuration registers or Device ID registers, starting from the 24-bit address specified by Addr_MSB and Addr_LS. This command can only be used to read 8-bit or 16-bit data. When this command is used to read Configuration registers, the upper byte in every data word returned by the programming executive is 0x00 and the lower byte contains the Configuration register value. Expected Response (4 + 3 * (N – 1)/2 words for N odd): 0x1100 2+N Configuration register or Device ID Register 1 ... Configuration register or Device ID Register N Note: Reading unimplemented memory will cause the programming executive to reset. Please ensure that only memory locations present on a particular device are accessed. The READP command instructs the programming executive to read N 24-bit words of code memory, starting from the 24-bit address specified by Addr_MSB and Addr_LS. This command can only be used to read 24bit data. All data returned in the response to this command uses the packed data format described in Section 4.2.2 “Packed Data Format”. Expected Response (2 + 3 * N/2 words for N even): 0x1200 2 + 3 * N/2 Least significant program memory word 1 ... Least significant data word N Expected Response (4 + 3 * (N – 1)/2 words for N odd): 0x1200 4 + 3 * (N – 1)/2 Least significant program memory word 1 ... MSB of program memory word N (zero padded) Note: DS70152D-page 50 0x2 Preliminary Reading unimplemented memory will cause the programming executive to reset. Please ensure that only memory locations present on a particular device are accessed. © 2007 Microchip Technology Inc. dsPIC33F/PIC24H PROGRAMMING SPECIFICATION 4.2.8 PROGC COMMAND 15 12 11 4.2.9 8 7 Opcode 0 15 12 11 8 7 Opcode Length Reserved PROGP COMMAND 0 Length Reserved Addr_MSB Addr_MSB Addr_LS Addr_LS Data D_1 D_2 Field Opcode ... Description D_N 0x4 Length 0x4 Reserved 0x0 Field Description Addr_MSB MSB of 24-bit destination address Opcode 0x5 Addr_LS Least Significant 16 bits of 24-bit destination address Length 0x63 Reserved 0x0 Data 8-bit data word Addr_MSB MSB of 24-bit destination address The PROGC command instructs the programming executive to program a single Configuration register, located at the specified memory address. Addr_LS Least Significant 16 bits of 24-bit destination address D_1 16-bit data word 1 After the specified data word has been programmed to code memory, the programming executive verifies the programmed data against the data in the command. D_2 16-bit data word 2 Expected Response (2 words): 0x1400 0x0002 ... 16-bit data word 3 through 95 D_96 16-bit data word 96 The PROGP command instructs the programming executive to program one row of code memory (64 instruction words) to the specified memory address. Programming begins with the row address specified in the command. The destination address should be a multiple of 0x80. The data to program to memory, located in command words D_1 through D_96, must be arranged using the packed instruction word format shown in Figure 4-4. After all data has been programmed to code memory, the programming executive verifies the programmed data against the data in the command. Expected Response (2 words): 0x1500 0x0002 Note: © 2007 Microchip Technology Inc. Preliminary Refer to Table 2-2 for code memory size information. DS70152D-page 51 dsPIC33F/PIC24H PROGRAMMING SPECIFICATION 4.2.10 PROGW COMMAND 15 12 11 Opcode 4.2.11 8 7 0 12 11 0 Opcode Length Reserved 15 QBLANK COMMAND Length PSize Addr_MSB Addr_LS Data_LS Reserved Field Field Data_MSB Description Opcode 0x6 Length 0x5 Reserved 0x0 Addr_MSB MSB of 24-bit destination address Addr_LS Least Significant 16 bits of 24-bit destination address Data_MSB MSB of 24-bit data Data_LS Least Significant 16 bits of 24-bit data 0xA Length 0x2 PSize Length of program memory to check (in 24-bit words) +1, up to a max of 49152 The Blank Check for code memory begins at 0x0 and advances toward larger addresses for the specified number of instruction words. After the word has been programmed to code memory, the programming executive verifies the programmed data against the data in the command. DS70152D-page 52 Opcode The QBLANK command queries the programming executive to determine if the contents of code memory are blank (contains all ‘1’s). The size of code memory to check must be specified in the command. The PROGW command instructs the programming executive to program one word of code memory (3 bytes) to the specified memory address. Expected Response (2 words): 0x1600 0x0002 Description QBLANK returns a QE_Code of 0xF0 if the specified code memory and code-protect bits are blank; otherwise, QBLANK returns a QE_Code of 0x0F. Expected Response (2 words for blank device): 0x1AF0 0x0002 Expected Response (2 words for non-blank device): 0x1A0F 0x0002 Note: Preliminary The QBLANK command does not check the system operation Configuration bits since these bits are not set to ‘1’ when a Chip Erase is performed. © 2007 Microchip Technology Inc. dsPIC33F/PIC24H PROGRAMMING SPECIFICATION 4.2.12 4.3.1 QVER COMMAND 15 12 11 0 Opcode Length Field Description Opcode 0xB Length 0x1 RESPONSE FORMAT All programming executive responses have a general format consisting of a two-word header and any required data for the command. 15 12 11 Opcode The QVER command queries the version of the programming executive software stored in test memory. The “version.revision” information is returned in the response’s QE_Code using a single byte with the following format: main version in upper nibble and revision in the lower nibble (i.e., 0x23 means version 2.3 of programming executive software). Expected Response (2 words): 0x1BMN (where “MN” stands for version M.N) 0x0002 8 7 Last_Cmd 0 QE_Code Length D_1 (if applicable) ... D_N (if applicable) Field Description Opcode Response opcode. Last_Cmd Programmer command that generated the response. QE_Code Query code or error code. The programming executive sends a response to the programmer for each command that it receives. The response indicates if the command was processed correctly. It includes any required response data or error data. Length Response length in 16-bit words (includes 2 header words). D_1 First 16-bit data word (if applicable). D_N Last 16-bit data word (if applicable). The programming executive response set is shown in Table 4-2. This table contains the opcode, mnemonic and description for each response. The response format is described in Section 4.3.1 “Response Format”. 4.3.1.1 4.3 Programming Executive Responses TABLE 4-2: Opcode PROGRAMMING EXECUTIVE RESPONSE OPCODES Mnemonic Description 0x1 PASS Command successfully processed. 0x2 FAIL Command unsuccessfully processed. 0x3 NACK Command not known. © 2007 Microchip Technology Inc. Opcode Field The opcode is a 4-bit field in the first word of the response. The opcode indicates how the command was processed (see Table 4-2). If the command was processed successfully, the response opcode is PASS. If there was an error in processing the command, the response opcode is FAIL and the QE_Code indicates the reason for the failure. If the command sent to the programming executive is not identified, the programming executive returns a NACK response. 4.3.1.2 Last_Cmd Field The Last_Cmd is a 4-bit field in the first word of the response and indicates the command that the programming executive processed. Since the programming executive can only process one command at a time, this field is technically not required. However, it can be used to verify that the programming executive correctly received the command that the programmer transmitted. Preliminary DS70152D-page 53 dsPIC33F/PIC24H PROGRAMMING SPECIFICATION 4.3.1.3 QE_Code Field TABLE 4-4: The QE_Code is a byte in the first word of the response. This byte is used to return data for query commands and error codes for all other commands. When the programming executive processes one of the two query commands (QBLANK or QVER), the returned opcode is always PASS and the QE_Code holds the query response data. The format of the QE_Code for both queries is shown in Table 4-3. TABLE 4-3: Query QE_Code Description 0x0 No error. 0x1 Verify failed. 0x2 Other error. 4.3.1.4 Response Length The response length indicates the length of the programming executive’s response in 16-bit words. This field includes the 2 words of the response header. QE_Code FOR QUERIES QE_Code With the exception of the response for the READP command, the length of each response is only 2 words. QBLANK 0x0F = Code memory is NOT blank 0xF0 = Code memory is blank QVER 0xMN, where programming executive software version = M.N (i.e., 0x32 means software version 3.2). When the programming executive processes any command other than a Query, the QE_Code represents an error code. Supported error codes are shown in Table 4-4. If a command is successfully processed, the returned QE_Code is set to 0x0, which indicates that there was no error in the command processing. If the verify of the programming for the PROGP or PROGC command fails, the QE_Code is set to 0x1. For all other programming executive errors, the QE_Code is 0x2. DS70152D-page 54 QE_Code FOR NON-QUERY COMMANDS The response to the READP command uses the packed instruction word format described in Section 4.2.2 “Packed Data Format”. When reading an odd number of program memory words (N odd), the response to the READP command is (3 * (N + 1) / 2 + 2) words. When reading an even number of program memory words (N even), the response to the READP command is (3 * N / 2 + 2) words. Preliminary © 2007 Microchip Technology Inc. dsPIC33F/PIC24H PROGRAMMING SPECIFICATION 5.0 DEVICE PROGRAMMING – ICSP FIGURE 5-1: ICSP mode is a special programming protocol that allows you to read and write to dsPIC33F/PIC24H device family memory. The ICSP mode is the most direct method used to program the device; note, however, that Enhanced ICSP is faster. ICSP mode also has the ability to read the contents of executive memory to determine if the programming executive is present. This capability is accomplished by applying control codes and instructions serially to the device using pins PGC and PGD. Start Enter ICSP™ Perform Bulk Erase Program Memory In ICSP mode, the system clock is taken from the PGC pin, regardless of the device’s oscillator Configuration bits. All instructions are shifted serially into an internal buffer, then loaded into the instruction register and executed. No program fetching occurs from internal memory. Instructions are fed in 24 bits at a time. PGD is used to shift data in, and PGC is used as both the serial shift clock and the CPU execution clock. Note: HIGH-LEVEL ICSP™ PROGRAMMING FLOW Verify Program Program Configuration Bits Verify Configuration Bits During ICSP operation, the operating frequency of PGC must not exceed 5 MHz. Exit ICSP 5.1 Overview of the Programming Process Done Figure 5-1 shows the high-level overview of the programming process. After entering ICSP mode, the first action is to Bulk Erase the device. Next, the code memory is programmed, followed by the device Configuration registers. Code memory (including the Configuration registers) is then verified to ensure that programming was successful. Then, program the code-protect Configuration bits, if required. 5.2 ICSP Operation Upon entry into ICSP mode, the CPU is Idle. Execution of the CPU is governed by an internal state machine. A 4-bit control code is clocked in using PGC and PGD and this control code is used to command the CPU (see Table 5-1). The SIX control code is used to send instructions to the CPU for execution and the REGOUT control code is used to read data out of the device via the VISI register. TABLE 5-1: CPU CONTROL CODES IN ICSP™ MODE 4-Bit Mnemonic Control Code © 2007 Microchip Technology Inc. Description 0000b SIX Shift in 24-bit instruction and execute. 0001b REGOUT Shift out the VISI register. 0010b-1111b N/A Reserved. Preliminary DS70152D-page 55 dsPIC33F/PIC24H PROGRAMMING SPECIFICATION 5.2.1 SIX SERIAL INSTRUCTION EXECUTION 5.2.2 The SIX control code allows execution of dsPIC33F/ PIC24H Programming Specification assembly instructions. When the SIX code is received, the CPU is suspended for 24 clock cycles, as the instruction is then clocked into the internal buffer. Once the instruction is shifted in, the state machine allows it to be executed over the next four clock cycles. While the received instruction is executed, the state machine simultaneously shifts in the next 4-bit command (see Figure 5-2). REGOUT SERIAL INSTRUCTION EXECUTION The REGOUT control code allows for data to be extracted from the device in ICSP mode. It is used to clock the contents of the VISI register out of the device over the PGD pin. After the REGOUT control code is received, the CPU is held Idle for 8 cycles. After these eight cycles, an additional 16 cycles are required to clock the data out (see Figure 5-3). The REGOUT code is unique because the PGD pin is an input when the control code is transmitted to the device. However, after the control code is processed, the PGD pin becomes an output as the VISI register is shifted out. Note 1: Coming out of Reset, the first 4-bit control code is always forced to SIX and a forced NOP instruction is executed by the CPU. Five additional PGC clocks are needed on start-up, thereby resulting in a 9-bit SIX command instead of the normal 4-bit SIX command. After the forced SIX is clocked in, ICSP operation resumes as normal (the next 24 clock cycles load the first instruction word to the CPU). Note: Data is transmitted on the falling edge and latched on the rising edge of PGC. For all data transmissions, the Least Significant bit (LSb) is transmitted first. 2: TBLRDH, TBLRDL, TBLWTH and TBLWTL instructions must be followed by a NOP instruction. FIGURE 5-2: SIX SERIAL EXECUTION P1 1 2 3 4 5 6 7 8 9 1 2 4 3 5 6 7 17 18 8 19 20 21 22 23 24 1 2 3 4 PGC P4 P3 P4a P1A P1B P2 PGD 0 0 0 0 0 Execute PC – 1, Fetch SIX Control Code 0 0 0 0 LSB X X X X X X X X X X X X X X MSB 0 24-Bit Instruction Fetch 0 0 0 Execute 24-Bit Instruction, Fetch Next Control Code Only for Program Memory Entry PGD = Input FIGURE 5-3: 1 REGOUT SERIAL EXECUTION 2 3 4 1 2 7 8 1 2 3 4 6 5 11 12 13 14 15 16 1 2 3 4 PGC P4 PGD 1 0 0 0 Execute Previous Instruction, CPU Held in Idle Fetch REGOUT Control Code PGD = Input DS70152D-page 56 P4a P5 LSb 1 2 3 4 ... 10 11 12 13 14 MSb Shift Out VISI Register<15:0> PGD = Output Preliminary 0 0 0 0 No Execution Takes Place, Fetch Next Control Code PGD = Input © 2007 Microchip Technology Inc. dsPIC33F/PIC24H PROGRAMMING SPECIFICATION 5.3 Entering ICSP Mode The key sequence is a specific 32-bit pattern, ‘0100 1101 0100 0011 0100 1000 0101 0001’ (more easily remembered as 0x4D434851 in hexadecimal). The device will enter Program/Verify mode only if the sequence is valid. The Most Significant bit (MSb) of the most significant nibble must be shifted in first. As shown in Figure 5-4, entering ICSP Program/Verify mode requires three steps: 1. 2. 3. MCLR is briefly driven high then low. A 32-bit key sequence is clocked into PGD. MCLR is then driven high within a specified period of time and held. Once the key sequence is complete, VIH must be applied to MCLR and held at that level for as long as Program/Verify mode is to be maintained. An interval of at least time P19 and P7 must elapse before presenting data on PGD. Signals appearing on PGD before P7 has elapsed will not be interpreted as valid. The programming voltage applied to MCLR is VIH, which is essentially VDD in the case of dsPIC33F/ PIC24H devices. There is no minimum time requirement for holding at VIH. After VIH is removed, an interval of at least P18 must elapse before presenting the key sequence on PGD. FIGURE 5-4: On successful entry, the program memory can be accessed and programmed in serial fashion. While in ICSP mode, all unused I/Os are placed in the high-impedance state. ENTERING ICSP™ MODE P6 P19 P14 MCLR P7 VIH VIH VDD Program/Verify Entry Code = 0x4D434851 0 b31 PGD 1 b30 0 b29 0 b28 1 b27 ... 0 b3 0 b2 0 b1 1 b0 PGC P1A P1B P18 5.4 5.4.1 TABLE 5-2: Flash Memory Programming in ICSP Mode NVMCON Value PROGRAMMING OPERATIONS Flash memory write and erase operations are controlled by the NVMCON register. Programming is performed by setting NVMCON to select the type of erase operation (Table 5-2) or write operation (Table 5-3) and initiating the programming by setting the WR control bit (NVMCON<15>). In ICSP mode, all programming operations are selftimed. There is an internal delay between the user setting the WR control bit and the automatic clearing of the WR control bit when the programming operation is complete. Please refer to Section TABLE 8-1: “AC/ DC Characteristics and Timing Requirements” for information about the delays associated with various programming operations. © 2007 Microchip Technology Inc. NVMCON ERASE OPERATIONS Erase Operation 0x404F Erase all code memory, executive memory and Configuration registers (does not erase Unit ID or Device ID registers). 0x404D Erase General Segment and FGS Configuration register. 0x404C Erase Secure Segment and FSS Configuration register. This operation will also erase the General Segment and FGS Configuration register. 0x4042 Erase a page of code memory or executive memory. 0x4040 Erase a Configuration register byte. Preliminary DS70152D-page 57 dsPIC33F/PIC24H PROGRAMMING SPECIFICATION TABLE 5-3: NVMCON WRITE OPERATIONS NVMCON Value 0x4001 If a Segment Erase operation is required, Step 3 must be modified with the appropriate NVMCON value as per Table 5-2. Write Operation Program 1 row (64 instruction words) of code memory or executive memory. 0x4000 Write a Configuration register byte. 0x4003 Program a code memory word. 5.4.2 STARTING AND STOPPING A PROGRAMMING CYCLE The WR bit (NVMCON<15>) is used to start an erase or write cycle. Setting the WR bit initiates the programming cycle. All erase and write cycles are self-timed. The WR bit should be polled to determine if the erase or write cycle has been completed. Starting a programming cycle is performed as follows: BSET 5.5 NVMCON, #WR The Secure Segment Erase command is used to erase the Secure Segment and the FSS Configuration register. The General Segment Erase command is used to erase the General Segment and the FGS Configuration register. This command is only effective if a Boot Segment or Secure Segment has been enabled. Note 1: The Boot Segment and FBS Configuration register can only be erased using a Bulk Erase. 2: A Secure Segment Erase operation also erases the General Segment and FGS Configuration register. This is true even if Secure Segment is present on a device but not enabled. Erasing Program Memory The procedure for erasing program memory (all of code memory, data memory, executive memory and codeprotect bits) consists of setting NVMCON to 0x404F and then executing the programming cycle. For segment erase operations, the NVMCON value should be modified suitably, according to Table 5-2. Figure 5-5 shows the ICSP programming process for Bulk Erasing program memory. This process includes the ICSP command code, which must be transmitted (for each instruction) Least Significant bit first, using the PGC and PGD pins (see Figure 5-2). Note: The ability to individually erase various segments is a critical component of the CodeGuard™ Security features on dsPIC33F/PIC24H devices. An individual code segment may be erased without affecting other segments. In addition, the Configuration register corresponding to the erased code segment also gets erased. For example, the user might want to erase the code in the General Segment without erasing a Boot Loader located in Boot Segment. Program memory must be erased before writing any data to program memory. FIGURE 5-5: BULK ERASE FLOW Start Before performing any segment erase operation, the programmer must first determine if the dsPIC33F/ PIC24H device has defined a Boot Segment or Secure Segment, and ensure that a segment does not get overwritten by operations on any other segment. Also, a Bulk Erase should not be performed if a Boot Segment or Secure Segment has been defined. The BSS bit field in the FBS configuration register can be read to determine whether a Boot Segment has been defined. If a Boot Segment has already been defined (and probably already been programmed), the user must be warned about this fact. Similarly, the SSS bit field in the FSS configuration register can be read to determine whether a Secure Segment has been defined. If a Secure Segment has already been defined (and probably already been programmed), the user must be warned about this fact. Write 0x404F to NVMCON SFR A Bulk Erase operation is the recommended mechanism to allow a user to overwrite the Boot Segment (if one chooses to do so). Set the WR bit to Initiate Erase In general, the segments and CodeGuard Securityrelated configuration registers should be programmed in the following order: Delay P11 + P10 Time • FBS and Boot Segment • FSS and Secure Segment • FGS and General Segment Done DS70152D-page 58 Preliminary © 2007 Microchip Technology Inc. dsPIC33F/PIC24H PROGRAMMING SPECIFICATION TABLE 5-4: Command (Binary) SERIAL INSTRUCTION EXECUTION FOR BULK ERASING CODE MEMORY Data (Hex) Description Step 1: Exit the Reset vector. 0000 0000 0000 0000 000000 000000 040200 000000 NOP NOP GOTO NOP 0x200 Step 2: Set the NVMCON to erase all program memory. 0000 0000 2404FA 883B0A MOV MOV #0x404F, W10 W10, NVMCON BSET NOP NOP NVMCON, #WR Step 3: Initiate the erase cycle. 0000 0000 0000 A8E761 000000 000000 Step 4: Wait for Bulk Erase operation to complete and make sure WR bit is clear. 5.6 - - 0000 0000 0000 0001 807600 887840 000000 <VISI> Externally time ‘P11’ msec (see Section TABLE 8-1: “AC/DC Characteristics and Timing Requirements”) to allow sufficient time for the Bulk Erase operation to complete. MOV NVMCON, W0 MOV W0, VISI NOP Clock out contents of VISI register. Repeat until the WR bit is clear. Writing Code Memory The procedure for writing code memory is similar to the procedure for writing the Configuration registers, except that 64 instruction words are programmed at a time. To facilitate this operation, working registers, W0:W5, are used as temporary holding registers for the data to be programmed. Table 5-5 shows the ICSP programming details, including the serial pattern with the ICSP command code, which must be transmitted Least Significant bit first using the PGC and PGD pins (see Figure 5-2). In Step 1, the Reset vector is exited. In Step 2, the NVMCON register is initialized for programming of code memory. In Step 3, the 24-bit starting destination address for programming is loaded into the TBLPAG register and W7 register. The upper byte of the starting destination address is stored in TBLPAG and the lower 16 bits of the destination address are stored in W7. To minimize the programming time, the same packed instruction format that the programming executive uses is utilized (Figure 4-4). In Step 4, four packed instruction words are stored in working registers, W0:W5, using the MOV instruction and the read pointer, W6, is initialized. The contents of W0:W5 holding the packed instruction word data are shown in Figure 5-6. In Step 5, eight TBLWT instructions are used to copy the data from W0:W5 to the write latches of code memory. Since © 2007 Microchip Technology Inc. code memory is programmed 64 instruction words at a time, Steps 4 and 5 are repeated 16 times to load all the write latches (Step 6). After the write latches are loaded, programming is initiated by writing to the NVMCON register in Steps 7 and 8. In Step 9, the internal PC is reset to 0x200. This is a precautionary measure to prevent the PC from incrementing into unimplemented memory when large devices are being programmed. Lastly, in Step 10, Steps 3-9 are repeated until all of code memory is programmed. FIGURE 5-6: PACKED INSTRUCTION WORDS IN W0:W5 15 8 W0 W1 7 LSW0 MSB1 MSB0 W2 LSW1 W3 LSW2 W4 W5 Preliminary 0 MSB3 MSB2 LSW3 DS70152D-page 59 dsPIC33F/PIC24H PROGRAMMING SPECIFICATION TABLE 5-5: Command (Binary) SERIAL INSTRUCTION EXECUTION FOR WRITING CODE MEMORY Data (Hex) Description Step 1: Exit the Reset vector. 0000 0000 0000 0000 000000 000000 040200 000000 NOP NOP GOTO NOP 0x200 Step 2: Set the NVMCON to program 64 instruction words. 0000 0000 24001A 883B0A MOV MOV #0x4001, W10 W10, NVMCON Step 3: Initialize the write pointer (W7) for TBLWT instruction. 0000 0000 0000 200xx0 880190 2xxxx7 MOV MOV MOV #<DestinationAddress23:16>, W0 W0, TBLPAG #<DestinationAddress15:0>, W7 Step 4: Initialize the read pointer (W6) and load W0:W5 with the next 4 instruction words to program. 0000 0000 0000 0000 0000 0000 2xxxx0 2xxxx1 2xxxx2 2xxxx3 2xxxx4 2xxxx5 MOV MOV MOV MOV MOV MOV #<LSW0>, W0 #<MSB1:MSB0>, W1 #<LSW1>, W2 #<LSW2>, W3 #<MSB3:MSB2>, W4 #<LSW3>, W5 Step 5: Set the read pointer (W6) and load the (next set of) write latches. 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 EB0300 000000 BB0BB6 000000 000000 BBDBB6 000000 000000 BBEBB6 000000 000000 BB1BB6 000000 000000 BB0BB6 000000 000000 BBDBB6 000000 000000 BBEBB6 000000 000000 BB1BB6 000000 000000 CLR W6 NOP TBLWTL [W6++], NOP NOP TBLWTH.B[W6++], NOP NOP TBLWTH.B[W6++], NOP NOP TBLWTL [W6++], NOP NOP TBLWTL [W6++], NOP NOP TBLWTH.B[W6++], NOP NOP TBLWTH.B[W6++], NOP NOP TBLWTL [W6++], NOP NOP [W7] [W7++] [++W7] [W7++] [W7] [W7++] [++W7] [W7++] Step 6: Repeat steps 4-5 sixteen times to load the write latches for 64 instructions. Step 7: Initiate the write cycle. 0000 0000 0000 A8E761 000000 000000 BSET NOP NOP NVMCON, #WR Step 8: Wait for Row Program operation to complete and make sure WR bit is clear. DS70152D-page 60 Preliminary © 2007 Microchip Technology Inc. dsPIC33F/PIC24H PROGRAMMING SPECIFICATION TABLE 5-5: SERIAL INSTRUCTION EXECUTION FOR WRITING CODE MEMORY (CONTINUED) Command (Binary) Data (Hex) - - Externally time ‘P13’ msec (see Section TABLE 8-1: “AC/DC Characteristics and Timing Requirements”) to allow sufficient time for the Row Program operation to complete. 0000 0000 0000 0001 807600 887840 000000 <VISI> MOV NVMCON, W0 MOV W0, VISI NOP Clock out contents of VISI register. Repeat until the WR bit is clear. Description Step 9: Reset device internal PC. 0000 0000 040200 000000 GOTO NOP 0x200 Step 10: Repeat steps 3-9 until all code memory is programmed. FIGURE 5-7: PROGRAM CODE MEMORY FLOW Start N=1 LoopCount = 0 Configure Device for Writes Load 2 Bytes to Write Buffer at <Addr> N=N+1 All bytes written? No Yes N=1 LoopCount = LoopCount + 1 Start Write Sequence and Poll for WR bit to be cleared No All locations done? Yes Done © 2007 Microchip Technology Inc. Preliminary DS70152D-page 61 dsPIC33F/PIC24H PROGRAMMING SPECIFICATION 5.7 TABLE 5-6: Writing Configuration Memory The 8-bit Configuration registers are programmable, one register at a time. The default programming values recommended for the Configuration registers are shown in Table 5-6 and Table 5-7. The recommended default FOSCSEL value is 0x07, which selects the FRC clock oscillator setting. The FBS, FSS and FGS Configuration registers are special since they enable code protection for the device. For security purposes, once any bit in these registers is programmed to ‘0’ (to enable code protection), it can only be set back to ‘1’ by performing a Bulk Erase as described in Section 5.5 “Erasing Program Memory”. Programming any of these bits from a ‘0’ to ‘1’ is not possible, but they may be programmed from a ‘1’ to a ‘0’ to enable code protection. Table 5-8 shows the ICSP programming details for clearing the Configuration registers. In Step 1, the Reset vector is exited. In Step 2, the write pointer (W7) is loaded with 0x0000, which is the original destination address (in TBLPAG, 0xF8 of program memory). In Step 3, the NVMCON is set to program one Configuration register. In Step 4, the TBLPAG register is initialized to 0xF8 for writing to the Configuration registers. In Step 5, the value to write to each Configuration register is loaded to W0. In Step 6, the Configuration register data is written to the write latch using the TBLWTL instruction. In Steps 7 and 8, the programming cycle is initiated. In Step 9, the internal PC is set to 0x200 as a safety measure to prevent the PC from incrementing into unimplemented memory. Lastly, Steps 4-9 are repeated until all twelve Configuration registers are written. DS70152D-page 62 DEFAULT CONFIGURATION REGISTER VALUES FOR dsPIC33FJ12GP201/202, dsPIC33FJ12MC201/202 AND PIC24HJ12GP201/202 Address Name Default Value 0xF80000 FBS 0xCF 0xF80002 FSS 0xFF 0xF80004 FGS 0x07 0xF80006 FOSCSEL 0xA7 0xF80008 FOSC 0xE7 0xF8000A FWDT 0xDF 0xF8000C FPOR 0xF7 0xF8000E FICD 0xE3 0xF80010 FUID0 0xFF 0xF80012 FUID1 0xFF 0xF80014 FUID2 0xFF 0xF80016 FUID3 0xFF TABLE 5-7: DEFAULT CONFIGURATION REGISTER VALUES FOR ALL OTHER DEVICES Address Name Default Value 0xF80000 FBS 0xCF 0xF80002 FSS 0xCF 0xF80004 FGS 0x07 0xF80006 FOSCSEL 0xA7 0xF80008 FOSC 0xC7 0xF8000A FWDT 0xDF 0xF8000C FPOR 0xE7 0xF8000E FICD 0xE3 0xF80010 FUID0 0xFF 0xF80012 FUID1 0xFF 0xF80014 FUID2 0xFF 0xF80016 FUID3 0xFF Preliminary © 2007 Microchip Technology Inc. dsPIC33F/PIC24H PROGRAMMING SPECIFICATION TABLE 5-8: Command (Binary) SERIAL INSTRUCTION EXECUTION FOR WRITING CONFIGURATION REGISTERS Data (Hex) Description Step 1: Exit the Reset vector. 0000 0000 0000 0000 000000 000000 040200 000000 NOP NOP GOTO NOP 0x200 Step 2: Initialize the write pointer (W7) for the TBLWT instruction. 0000 200007 MOV #0x0000, W7 Step 3: Set the NVMCON register to program one Configuration register. 0000 0000 24000A 883B0A MOV MOV #0x4000, W10 W10, NVMCON Step 4: Initialize the TBLPAG register. 0000 0000 200F80 880190 MOV MOV #0xF8, W0 W0, TBLPAG Step 5: Load the Configuration register data to W6. 0000 2xxxx0 MOV #<CONFIG_VALUE>, W0 Step 6: Write the Configuration register data to the write latch and increment the write pointer. 0000 0000 0000 BB1B96 000000 000000 TBLWTL W0, [W7++] NOP NOP Step 7: Initiate the write cycle. 0000 0000 0000 A8E761 000000 000000 BSET NOP NOP NVMCON, #WR Step 8: Wait for the Configuration Register Write operation to complete and make sure WR bit is clear. - - 0000 0000 0000 0001 807600 887840 000000 <VISI> Externally time ‘P20’ msec (see Section TABLE 8-1: “AC/DC Characteristics and Timing Requirements”) to allow sufficient time for the Configuration Register Write operation to complete. MOV, NVMCON, W0 MOV W0, VISI NOP Clock out contents of VISI register. Repeat until the WR bit is clear. Step 9: Reset device internal PC. 0000 0000 040200 000000 GOTO NOP 0x200 Step 10: Repeat steps 5-9 until all twelve Configuration registers are written. © 2007 Microchip Technology Inc. Preliminary DS70152D-page 63 dsPIC33F/PIC24H PROGRAMMING SPECIFICATION 5.8 Reading Code Memory Reading from code memory is performed by executing a series of TBLRD instructions and clocking out the data using the REGOUT command. Table 5-9 shows the ICSP programming details for reading code memory. In Step 1, the Reset vector is exited. In Step 2, the 24-bit starting source address for reading is loaded into the TBLPAG register and W6 register. The upper byte of the starting source address is stored in TBLPAG and the lower 16 bits of the source address are stored in W6. TABLE 5-9: Command (Binary) To minimize the reading time, the packed instruction word format that was utilized for writing is also used for reading (see Figure 5-6). In Step 3, the write pointer, W7, is initialized. In Step 4, two instruction words are read from code memory and clocked out of the device, through the VISI register, using the REGOUT command. Step 4 is repeated until the desired amount of code memory is read. SERIAL INSTRUCTION EXECUTION FOR READING CODE MEMORY Data (Hex) Description Step 1: Exit Reset vector. 0000 0000 0000 0000 000000 000000 040200 000000 NOP NOP GOTO NOP 0x200 Step 2: Initialize TBLPAG and the read pointer (W6) for TBLRD instruction. 0000 0000 0000 200xx0 880190 2xxxx6 MOV MOV MOV #<SourceAddress23:16>, W0 W0, TBLPAG #<SourceAddress15:0>, W6 Step 3: Initialize the write pointer (W7) to point to the VISI register. 0000 0000 207847 000000 MOV NOP #VISI, W7 Step 4: Read and clock out the contents of the next two locations of code memory, through the VISI register, using the REGOUT command. 0000 0000 0000 0001 0000 0000 0000 0001 BA1B96 000000 000000 <VISI> BA9BB6 000000 000000 <VISI> TBLRDL [W6], [W7] NOP NOP Clock out contents of VISI register TBLRDH [W6++], [W7] NOP NOP Clock out contents of VISI register Step 5: Repeat step 4 until all desired code memory is read. Step 6: Reset device internal PC. 0000 0000 DS70152D-page 64 040200 000000 GOTO NOP 0x200 Preliminary © 2007 Microchip Technology Inc. dsPIC33F/PIC24H PROGRAMMING SPECIFICATION 5.9 Reading Configuration Memory The procedure for reading configuration memory is similar to the procedure for reading code memory, except that 16-bit data words are read (with the upper byte read being all ‘0’s) instead of 24-bit words. Since there are twelve Configuration registers, they are read one register at a time. TABLE 5-10: Command (Binary) Table 5-10 shows the ICSP programming details for reading all of configuration memory. Note that the TBLPAG register is hard coded to 0xF8 (the upper byte address of configuration memory) and the read pointer, W6, is initialized to 0x0000. SERIAL INSTRUCTION EXECUTION FOR READING ALL CONFIGURATION MEMORY Data (Hex) Description Step 1: Exit Reset vector. 0000 0000 0000 0000 000000 000000 040200 000000 NOP NOP GOTO NOP 0x200 Step 2: Initialize TBLPAG, the read pointer (W6) and the write pointer (W7) for TBLRD instruction. 0000 0000 0000 0000 0000 200F80 880190 EB0300 207847 000000 MOV MOV CLR MOV NOP #0xF8, W0 W0, TBLPAG W6 #VISI, W7 Step 3: Read the Configuration register and write it to the VISI register (located at 0x784) and clock out the VISI register using the REGOUT command. 0000 0000 0000 0001 BA0BB6 000000 000000 <VISI> TBLRDL [W6++], [W7] NOP NOP Clock out contents of VISI register Step 4: Repeat step 3 twelve times to read all the Configuration registers. Step 5: Reset device internal PC. 0000 0000 040200 000000 © 2007 Microchip Technology Inc. GOTO NOP 0x200 Preliminary DS70152D-page 65 dsPIC33F/PIC24H PROGRAMMING SPECIFICATION 5.10 Verify Code Memory and Configuration Word 5.11 The verify step involves reading back the code memory space and comparing it against the copy held in the programmer’s buffer. The Configuration registers are verified with the rest of the code. The verify process is shown in the flowchart in Figure 5-8. Memory reads occur a single byte at a time, so two bytes must be read to compare against the word in the programmer’s buffer. Refer to Section 5.8 “Reading Code Memory” for implementation details of reading code memory. Note: Because the Configuration registers include the device code protection bit, code memory should be verified immediately after writing if code protection is enabled. This is because the device will not be readable or verifiable if a device Reset occurs after the code-protect bit in the FGS Configuration register has been cleared. FIGURE 5-8: VERIFY CODE MEMORY FLOW Start Set TBLPTR = 0 Reading the Application ID Word The Application ID Word is stored at address 0x8007F0 in executive code memory. To read this memory location, you must use the SIX control code to move this program memory location to the VISI register. Then, the REGOUT control code must be used to clock the contents of the VISI register out of the device. The corresponding control and instruction codes that must be serially transmitted to the device to perform this operation are shown in Table 5-11. After the programmer has clocked out the Application ID Word, it must be inspected. If the application ID has the value 0xBB, the programming executive is resident in memory and the device can be programmed using the mechanism described in Section 3.0 “Device Programming – Enhanced ICSP”. However, if the application ID has any other value, the programming executive is not resident in memory; it must be loaded to memory before the device can be programmed. The procedure for loading the programming executive to memory is described in Section 6.0 “Programming the Programming Executive to Memory”. 5.12 Exiting ICSP Mode Exiting Program/Verify mode is done by removing VIH from MCLR, as shown in Figure 5-9. The only requirement for exit is that an interval P16 should elapse between the last clock and program signals on PGC and PGD before removing VIH. FIGURE 5-9: EXITING ICSP™ MODE P16 Read Low Byte with Post-Increment P17 VIH MCLR VDD Read High Byte with Post-Increment Does Word = Expect Data? PGD No VIH PGC Failure, Report Error PGD = Input Yes No All code memory verified? Yes Done DS70152D-page 66 Preliminary © 2007 Microchip Technology Inc. dsPIC33F/PIC24H PROGRAMMING SPECIFICATION TABLE 5-11: Command (Binary) SERIAL INSTRUCTION EXECUTION FOR READING THE APPLICATION ID WORD Data (Hex) Description Step 1: Exit Reset vector. 0000 0000 0000 0000 000000 000000 040200 000000 NOP NOP GOTO NOP 0x200 Step 2: Initialize TBLPAG and the read pointer (W0) for TBLRD instruction. 0000 0000 0000 0000 0000 0000 0000 0000 200800 880190 205FE0 207841 000000 BA0890 000000 000000 MOV MOV MOV MOV NOP TBLRDL NOP NOP #0x80, W0 W0, TBLPAG #0x5BE, W0 #VISI, W1 [W0], [W1] Step 3: Output the VISI register using the REGOUT command. 0001 <VISI> © 2007 Microchip Technology Inc. Clock out contents of the VISI register Preliminary DS70152D-page 67 dsPIC33F/PIC24H PROGRAMMING SPECIFICATION 6.0 PROGRAMMING THE PROGRAMMING EXECUTIVE TO MEMORY 6.1 Overview Storing the programming executive to executive memory is similar to normal programming of code memory. Namely, the executive memory must first be erased, and then the programming executive must be programmed 64 words at a time. This control flow is summarized in Table 6-1. If it is determined that the programming executive is not present in executive memory (as described in Section 3.2 “Confirming the Presence of the Programming Executive”), it must be programmed into executive memory using ICSP, as described in Section 5.0 “Device Programming – ICSP”. TABLE 6-1: Command (Binary) PROGRAMMING THE PROGRAMMING EXECUTIVE Data (Hex) Description Step 1: Exit Reset vector and erase executive memory. 0000 0000 0000 0000 000000 000000 040200 000000 NOP NOP GOTO NOP 0x200 Step 2: Initialize the NVMCON to erase a page of executive memory. 0000 0000 24072A 883B0A MOV MOV #0x4042, W10 W10, NVMCON Step 3: Initiate the erase cycle, wait for erase to complete and make sure WR bit is clear. 0000 0000 0000 - A8E761 000000 000000 - BSET NVMCON, #15 NOP NOP Externally time ‘P12’ msec (see Section TABLE 8-1: “AC/DC Characteristics and Timing Requirements”) to allow sufficient time for the Page Erase operation to complete. 0000 0000 0000 0001 807600 887840 000000 <VISI> MOV NVMCON, W0 MOV W0, VISI NOP Clock out contents of VISI register. Repeat until the WR bit is clear. Step 4: Repeat Step 3 four times to erase all four pages of executive memory. Step 5: Initialize the NVMCON to program 64 instruction words. 0000 0000 24001A 883B0A MOV MOV #0x4001, W10 W10, NVMCON Step 6: Initialize TBLPAG and the write pointer (W7). 0000 0000 0000 0000 DS70152D-page 68 200800 880190 EB0380 000000 MOV MOV CLR NOP #0x80, W0 W0, TBLPAG W7 Preliminary © 2007 Microchip Technology Inc. dsPIC33F/PIC24H PROGRAMMING SPECIFICATION TABLE 6-1: Command (Binary) PROGRAMMING THE PROGRAMMING EXECUTIVE (CONTINUED) Data (Hex) Description Step 7: Load W0:W5 with the next 4 words of packed programming executive code and initialize W6 for programming. Programming starts from the base of executive memory (0x800000) using W6 as a read pointer and W7 as a write pointer. 0000 0000 0000 0000 0000 0000 2<LSW0>0 2<MSB1:MSB0>1 2<LSW1>2 2<LSW2>3 2<MSB3:MSB2>4 2<LSW3>5 MOV MOV MOV MOV MOV MOV #<LSW0>, W0 #<MSB1:MSB0>, W1 #<LSW1>, W2 #<LSW2>, W3 #<MSB3:MSB2>, W4 #<LSW3>, W5 Step 8: Set the read pointer (W6) and load the (next four write) latches. 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 EB0300 000000 BB0BB6 000000 000000 BBDBB6 000000 000000 BBEBB6 000000 000000 BB1BB6 000000 000000 BB0BB6 000000 000000 BBDBB6 000000 000000 BBEBB6 000000 000000 BB1BB6 000000 000000 CLR W6 NOP TBLWTL [W6++], NOP NOP TBLWTH.B[W6++], NOP NOP TBLWTH.B[W6++], NOP NOP TBLWTL [W6++], NOP NOP TBLWTL [W6++], NOP NOP TBLWTH.B[W6++], NOP NOP TBLWTH.B[W6++], NOP NOP TBLWTL [W6++], NOP NOP [W7] [W7++] [++W7] [W7++] [W7] [W7++] [++W7] [W7++] Step 9: Repeat Steps 7-8 sixteen times to load the write latches for the 64 instructions. Step 10: Initiate the programming cycle. 0000 0000 0000 A8E761 000000 000000 BSET NOP NOP NVMCON, #15 Step 11: Wait for the Row Program operation to complete. - - 0000 0000 0000 0001 807600 887840 000000 <VISI> © 2007 Microchip Technology Inc. Externally time ‘P13’ msec (see Section TABLE 8-1: “AC/DC Characteristics and Timing Requirements”) to allow sufficient time for the Page Erase operation to complete. MOV NVMCON, W0 MOV W0, VISI NOP Clock out contents of VISI register. Repeat until the WR bit is clear. Preliminary DS70152D-page 69 dsPIC33F/PIC24H PROGRAMMING SPECIFICATION TABLE 6-1: Command (Binary) PROGRAMMING THE PROGRAMMING EXECUTIVE (CONTINUED) Data (Hex) Description Step 12: Reset the device internal PC. 0000 0000 040200 000000 GOTO NOP 0x200 Step 13: Repeat Steps 7-12 until all 32 rows of executive memory have been programmed. DS70152D-page 70 Preliminary © 2007 Microchip Technology Inc. dsPIC33F/PIC24H PROGRAMMING SPECIFICATION 6.2 Programming Verification After the programming executive has been programmed to executive memory using ICSP, it must be verified. Verification is performed by reading out the contents of executive memory and comparing it with the image of the programming executive stored in the programmer. TABLE 6-2: Command (Binary) Reading the contents of executive memory can be performed using the same technique described in Section 5.8 “Reading Code Memory”. A procedure for reading executive memory is shown in Table 6-2. Note that in Step 2, the TBLPAG register is set to 0x80, such that executive memory may be read. READING EXECUTIVE MEMORY Data (Hex) Description Step 1: Exit the Reset vector. 0000 0000 0000 0000 000000 000000 040200 000000 NOP NOP GOTO NOP 0x200 Step 2: Initialize TBLPAG and the read pointer (W6) for TBLRD instruction. 0000 0000 0000 200800 880190 EB0300 MOV MOV CLR #0x80, W0 W0, TBLPAG W6 Step 3: Initialize the write pointer (W7) to point to the VISI register. 0000 207847 MOV #VISI, W7 Step 4: Read and clock out the contents of the next two locations of executive memory through the VISI register using the REGOUT command. 0000 0000 0000 0000 0001 0000 0000 0000 0001 000000 BA1B96 000000 000000 <VISI> BA9BB6 000000 000000 <VISI> NOP TBLRDL [W6], [W7] NOP NOP Clock out contents of VISI register TBLRDH [W6++], [W7] NOP NOP Clock out contents of VISI register Step 5: Reset the device internal PC. 0000 0000 040200 000000 GOTO NOP 0x200 Step 6: Repeat Steps 4-5 until all 2048 instruction words of executive memory are read. © 2007 Microchip Technology Inc. Preliminary DS70152D-page 71 dsPIC33F/PIC24H PROGRAMMING SPECIFICATION 7.0 DEVICE ID TABLE 7-1: The device ID region of memory can be used to determine mask, variant and manufacturing information about the chip. The device ID region is 2 x 16-bits and it can be read using the READC command. This region of memory is read-only and can also be read when code protection is enabled. Table 7-1 shows the device ID for each device, Table 7-2 shows the Device ID registers and Table 7-3 describes the bit field of each register. DS70152D-page 72 DEVICE IDs Device DEVID DEVREV dsPIC33FJ64GP206 0xC1 0x3000 dsPIC33FJ64GP306 0xCD 0x3000 dsPIC33FJ64GP310 0xCF 0x3000 dsPIC33FJ64GP706 0xD5 0x3000 dsPIC33FJ64GP708 0xD6 0x3000 dsPIC33FJ64GP710 0xD7 0x3000 dsPIC33FJ128GP206 0xD9 0x3000 dsPIC33FJ128GP306 0xE5 0x3000 dsPIC33FJ128GP310 0xE7 0x3000 dsPIC33FJ128GP706 0xED 0x3000 dsPIC33FJ128GP708 0xEE 0x3000 dsPIC33FJ128GP710 0xEF 0x3000 dsPIC33FJ256GP506 0xF5 0x3000 dsPIC33FJ256GP510 0xF7 0x3000 dsPIC33FJ256GP710 0xFF 0x3000 dsPIC33FJ64MC506 0x89 0x3000 dsPIC33FJ64MC508 0x8A 0x3000 dsPIC33FJ64MC510 0x8B 0x3000 dsPIC33FJ64MC706 0x91 0x3000 dsPIC33FJ64MC710 0x97 0x3000 dsPIC33FJ128MC506 0xA1 0x3000 dsPIC33FJ128MC510 0xA3 0x3000 dsPIC33FJ128MC706 0xA9 0x3000 dsPIC33FJ128MC708 0xAE 0x3000 dsPIC33FJ128MC710 0xAF 0x3000 dsPIC33FJ256MC510 0xB7 0x3000 dsPIC33FJ256MC710 0xBF 0x3000 PIC24HJ64GP206 0x41 0x3000 PIC24HJ64GP210 0x47 0x3000 PIC24HJ64GP506 0x49 0x3000 PIC24HJ64GP510 0x4B 0x3000 PIC24HJ128GP206 0x5D 0x3000 PIC24HJ128GP210 0x5F 0x3000 PIC24HJ128GP306 0x65 0x3000 PIC24HJ128GP310 0x67 0x3000 PIC24HJ128GP506 0x61 0x3000 PIC24HJ128GP510 0x63 0x3000 PIC24HJ256GP206 0x71 0x3000 PIC24HJ256GP210 0x73 0x3000 PIC24HJ256GP610 0x7B 0x3000 dsPIC33FJ12GP201 0x802 0x3000 dsPIC33FJ12GP202 0x803 0x3000 dsPIC33FJ12MC201 0x800 0x3000 dsPIC33FJ12MC202 0x801 0x3000 PIC24HJ12GP201 0x80A 0x3000 PIC24HJ12GP202 0x80B 0x3000 Preliminary © 2007 Microchip Technology Inc. dsPIC33F/PIC24H PROGRAMMING SPECIFICATION TABLE 7-2: dsPIC33F/PIC24H PROGRAMMING SPECIFICATION DEVICE ID REGISTERS Bit Address Name 15 0xFF0000 DEVID 0xFF0002 DEVREV TABLE 7-3: Bit Field 14 13 12 11 10 9 8 7 6 5 MASK<9:0> PROC<3:0> 4 3 2 1 0 VARIANT<5:0> REV<5:0> DOT<5:0> DEVICE ID BITS DESCRIPTION Register Description MASK<9:0> DEVID Encodes the MASKSET ID of the device. VARIANT<5:0> DEVID Encodes the VARIANT derived from MASKSET of the device. PROC<3:0> DEVREV Encodes the process of the device. REV<5:0> DEVREV Encodes the major revision number of the device. DOT<5:0> DEVREV Encodes the minor revision number of the device. © 2007 Microchip Technology Inc. Preliminary DS70152D-page 73 dsPIC33F/PIC24H PROGRAMMING SPECIFICATION 8.0 AC/DC CHARACTERISTICS AND TIMING REQUIREMENTS Table 8-1 lists AC/DC characteristics and timing requirements. TABLE 8-1: AC/DC CHARACTERISTICS AND TIMING REQUIREMENTS Standard Operating Conditions Operating Temperature: –40°C-85°C. Programming at 25°C is recommended. Param Symbol No. D111 Characteristic VDD Supply Voltage During Programming Min Max Units VDDCORE 3.60 V Conditions Normal programming(1) D112 IPP Programming Current on MCLR — 5 μA D113 IDDP Supply Current During Programming — 2 mA D031 VIL Input Low Voltage VSS 0.2 VDD V D041 VIH Input High Voltage 0.8 VDD VDD V D080 VOL Output Low Voltage — 0.6 V IOL = 8.5 mA @ 3.6V D090 VOH Output High Voltage VDD – 0.7 — V IOH = -3.0 mA @ 3.6V D012 CIO Capacitive Loading on I/O pin (PGD) — 50 pF To meet AC specifications D013 CF Filter Capacitor Value on VCAP 1 10 μF Required for controller core P1 TPGC Serial Clock (PGC) Period 136 — ns P1A TPGCL Serial Clock (PGC) Low Time 40 — ns P1B TPGCH Serial Clock (PGC) High Time 40 — ns ns P2 TSET1 Input Data Setup Time to Serial Clock ↓ 15 — P3 THLD1 Input Data Hold Time from PGC ↓ 15 — ns P4 TDLY1 Delay between 4-bit Command and Command Operand 40 — ns P4A TDLY1A Delay between Command Operand and Next 4-bit Command 40 — ns P5 TDLY2 Delay between Last PGC ↓ of Command to First PGC ↑ of Read of Data Word 20 — ns P6 TSET2 VDD ↑ Setup Time to MCLR ↑ 100 — ns P7 THLD2 Input Data Hold Time from MCLR ↑ 25 — ms P8 TDLY3 Delay between Last PGC ↓ of Command Byte to PGD ↑ by Programming Executive 12 — μs P9a TDLY4 Programming Executive Command Processing Time 10 — μs P9b TDLY5 Delay between PGD ↓ by Programming Executive to PGD Released by Programming Executive 15 23 μs P10 TDLY6 PGC Low Time After Programming 400 — ns P11 TDLY7 Bulk Erase Time 200 — ms P12 TDLY8 Page Erase Time 20 — ms P13 TDLY9 Row Programming Time 1.5 — ms P14 TR MCLR Rise Time to Enter ICSP mode — 1.0 μs P15 TVALID Data Out Valid from PGC ↑ 10 — ns P16 TDLY10 Delay between Last PGC ↓ and MCLR ↓ 0 — s P17 THLD3 MCLR ↓ to VDD ↓ — 100 ns Note 1: VDD must also be supplied to the AVDD pins during programming. AVDD and AVSS should always be within ±0.3V of VDD and VSS, respectively. DS70152D-page 74 Preliminary © 2007 Microchip Technology Inc. dsPIC33F/PIC24H PROGRAMMING SPECIFICATION TABLE 8-1: AC/DC CHARACTERISTICS AND TIMING REQUIREMENTS (CONTINUED) Standard Operating Conditions Operating Temperature: –40°C-85°C. Programming at 25°C is recommended. Param Symbol No. Characteristic Min Max Units P18 TKEY1 Delay from First MCLR ↓ to First PGC ↑ for Key Sequence on PGD 40 — ns P19 TKEY2 Delay from Last PGC ↓ for Key Sequence on PGD to Second MCLR ↑ 25 — ns P20 TDLY11 Maximum Wait Time for Configuration Register Programming 25 ms Conditions Note 1: VDD must also be supplied to the AVDD pins during programming. AVDD and AVSS should always be within ±0.3V of VDD and VSS, respectively. © 2007 Microchip Technology Inc. Preliminary DS70152D-page 75 dsPIC33F/PIC24H PROGRAMMING SPECIFICATION NOTES: DS70152D-page 76 Preliminary © 2007 Microchip Technology Inc. dsPIC33F/PIC24H PROGRAMMING SPECIFICATION APPENDIX A: REVISION HISTORY Revision C (June 2006) • Added code protection Configuration register descriptions • Added information about Unit ID • Added ERASES, ERASEG and ERASEC programming executive commands • Added checksum computation equation Revision D (March 2007) • Added information specific to the dsPIC33FJ12GP201/202, dsPIC33FJ12MC201/ 202 and PIC24HJ12GP201/202 devices in several sections, including pinout diagrams, program memory sizes and Device ID values • Added specific checksum computations for all dsPIC33F and PIC24H devices • Updated ICSP bulk/page erase and row/byte program code examples to show externally timed operation (waiting for specific delay periods) • Added the P20 timing characteristic • Updated timing characteristics and references to the timing characteristics • Updated the ICSP code examples © 2007 Microchip Technology Inc. Preliminary DS70152D-page 77 dsPIC33F/PIC24H PROGRAMMING SPECIFICATION NOTES: DS70152D-page 78 Preliminary © 2007 Microchip Technology Inc. Note the following details of the code protection feature on Microchip devices: • Microchip products meet the specification contained in their particular Microchip Data Sheet. • Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions. • There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property. • Microchip is willing to work with the customer who is concerned about the integrity of their code. • Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.” Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act. Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights. Trademarks The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KEELOQ, KEELOQ logo, microID, MPLAB, PIC, PICmicro, PICSTART, PRO MATE, PowerSmart, rfPIC, and SmartShunt are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. AmpLab, FilterLab, Linear Active Thermistor, Migratable Memory, MXDEV, MXLAB, PS logo, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, PICkit, PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB, rfPICDEM, Select Mode, Smart Serial, SmartTel, Total Endurance, UNI/O, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. SQTP is a service mark of Microchip Technology Incorporated in the U.S.A. All other trademarks mentioned herein are property of their respective companies. © 2007, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved. Printed on recycled paper. Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona, Gresham, Oregon and Mountain View, California. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified. © 2007 Microchip Technology Inc. Preliminary DS70152D-page 79 WORLDWIDE SALES AND SERVICE AMERICAS ASIA/PACIFIC ASIA/PACIFIC EUROPE Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://support.microchip.com Web Address: www.microchip.com Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Habour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 India - Bangalore Tel: 91-80-4182-8400 Fax: 91-80-4182-8422 India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632 Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829 India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513 France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122 Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44 Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455 Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088 Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075 Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924 Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260 Kokomo Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387 Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445 Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509 Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755 China - Beijing Tel: 86-10-8528-2100 Fax: 86-10-8528-2104 Korea - Gumi Tel: 82-54-473-4301 Fax: 82-54-473-4302 China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889 China - Fuzhou Tel: 86-591-8750-3506 Fax: 86-591-8750-3521 Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934 China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431 Malaysia - Penang Tel: 60-4-646-8870 Fax: 60-4-646-5086 China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205 Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069 China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066 Singapore Tel: 65-6334-8870 Fax: 65-6334-8850 China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393 Taiwan - Hsin Chu Tel: 886-3-572-9526 Fax: 886-3-572-6459 China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760 Taiwan - Kaohsiung Tel: 886-7-536-4818 Fax: 886-7-536-4803 China - Shunde Tel: 86-757-2839-5507 Fax: 86-757-2839-5571 Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102 China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118 Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350 Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781 Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340 Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91 UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820 China - Xian Tel: 86-29-8833-7250 Fax: 86-29-8833-7256 12/08/06 DS70152D-page 80 Preliminary © 2007 Microchip Technology Inc.