PD - 96901A IRFB3307 IRFS3307 IRFSL3307 Applications l High Efficiency Synchronous Rectification in SMPS l Uninterruptible Power Supply l High Speed Power Switching l Hard Switched and High Frequency Circuits Benefits l Improved Gate, Avalanche and Dynamic dV/dt Ruggedness l Fully Characterized Capacitance and Avalanche SOA l Enhanced body diode dV/dt and dI/dt Capability HEXFET® Power MOSFET VDSS RDS(on) typ. max. ID D G S G DS G DS D2Pak TO-220AB IRFB3307 75V 5.0m: 6.3m: 130A G DS TO-262 IRFSL3307 IRFS3307 Absolute Maximum Ratings Symbol ID @ TC = 25°C ID @ TC = 100°C IDM PD @TC = 25°C VGS dv/dt TJ TSTG Parameter Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current d Maximum Power Dissipation Linear Derating Factor Gate-to-Source Voltage Peak Diode Recovery f Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds (1.6mm from case) Mounting torque, 6-32 or M3 screw Max. Units 130c 91c 510 250 1.6 ± 20 11 -55 to + 175 A W W/°C V V/ns °C 300 10lbxin (1.1Nxm) Avalanche Characteristics EAS (Thermally limited) IAR EAR Single Pulse Avalanche Energy e Avalanche Currentc Repetitive Avalanche Energy g 270 See Fig. 14, 15, 16a, 16b mJ A mJ Thermal Resistance Symbol RθJC RθCS RθJA RθJA www.irf.com Parameter Junction-to-Case k Case-to-Sink, Flat Greased Surface , TO-220 Junction-to-Ambient, TO-220 k 2 Junction-to-Ambient (PCB Mount) , D Pak jk Typ. Max. ––– 0.50 ––– ––– 0.61 ––– 62 40 Units °C/W 1 11/04/04 IRFB3307/IRFS3307/IRFSL3307 Static @ TJ = 25°C (unless otherwise specified) Symbol Parameter V(BR)DSS ∆V(BR)DSS/∆TJ RDS(on) VGS(th) IDSS Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Drain-to-Source Leakage Current IGSS Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Gate Input Resistance RG Min. Typ. Max. Units 75 ––– ––– 2.0 ––– ––– ––– ––– ––– ––– ––– 0.069 ––– 5.0 6.3 ––– 4.0 ––– 20 ––– 250 ––– 200 ––– -200 1.5 ––– Conditions V VGS = 0V, ID = 250µA V/°C Reference to 25°C, ID = 1mAd mΩ VGS = 10V, ID = 75A g V VDS = VGS, ID = 150µA µA VDS = 75V, VGS = 0V VDS = 75V, VGS = 0V, TJ = 125°C nA VGS = 20V VGS = -20V Ω f = 1MHz, open drain Dynamic @ TJ = 25°C (unless otherwise specified) Symbol gfs Qg Qgs Qgd td(on) tr td(off) tf Ciss Coss Crss Coss eff. (ER) Coss eff. (TR) Parameter Min. Typ. Max. Units Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance 98 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Effective Output Capacitance (Energy Related) ––– Effective Output Capacitance (Time Related)h ––– ––– 120 35 46 26 120 51 63 5150 460 250 570 700 ––– 180 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– S nC ns pF Conditions VDS = 50V, ID = 75A ID = 75A VDS = 60V VGS = 10V g VDD = 48V ID = 75A RG = 3.9Ω VGS = 10V g VGS = 0V VDS = 50V ƒ = 1.0MHz VGS = 0V, VDS = 0V to 60V i, See Fig.11 VGS = 0V, VDS = 0V to 60V h, See Fig. 5 Diode Characteristics Symbol IS Parameter Min. Typ. Max. Units Continuous Source Current VSD trr (Body Diode) Pulsed Source Current (Body Diode)d Diode Forward Voltage Reverse Recovery Time Qrr Reverse Recovery Charge IRRM ton Reverse Recovery Current Forward Turn-On Time ISM ––– 130c A MOSFET symbol ––– ––– A showing the integral reverse 510 D G S p-n junction diode. ––– ––– 1.3 V TJ = 25°C, IS = 75A, VGS = 0V g VR = 64V, ––– 38 57 ns TJ = 25°C T = 125°C I ––– 46 69 J F = 75A = 100A/µs g di/dt ––– 65 98 nC TJ = 25°C TJ = 125°C ––– 86 130 ––– 2.8 ––– A TJ = 25°C Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) Notes: Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 75A. Repetitive rating; pulse width limited by max. junction temperature. Limited by TJmax, starting TJ = 25°C, L = 0.096mH RG = 25Ω, IAS = 75A, VGS =10V. Part not recommended for use above this value. ISD ≤ 75A, di/dt ≤ 530A/µs, VDD ≤ V(BR)DSS, TJ ≤ 175°C. Pulse width ≤ 400µs; duty cycle ≤ 2%. 2 Conditions ––– Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS. Coss eff. (ER) is a fixed capacitance that gives the same energy as Coss while VDS is rising from 0 to 80% VDSS. When mounted on 1" square PCB (FR-4 or G-10 Material). For recom mended footprint and soldering techniques refer to application note #AN-994. Rθ is measured at TJ approximately 90°C. www.irf.com IRFB3307/IRFS3307/IRFSL3307 1000 1000 ID, Drain-to-Source Current (A) 100 BOTTOM 10 TOP ID, Drain-to-Source Current (A) TOP VGS 15V 10V 8.0V 6.0V 5.5V 5.0V 4.8V 4.5V 100 1 4.5V 0.1 BOTTOM 4.5V 10 ≤60µs PULSE WIDTH ≤60µs PULSE WIDTH Tj = 175°C Tj = 25°C 0.01 0.1 1 10 1 100 0.1 1000 Fig 1. Typical Output Characteristics 10 100 1000 Fig 2. Typical Output Characteristics 1000 2.5 RDS(on) , Drain-to-Source On Resistance (Normalized) ID, Drain-to-Source Current (Α) 1 V DS, Drain-to-Source Voltage (V) V DS, Drain-to-Source Voltage (V) 100 T J = 175°C 10 T J = 25°C 1 VDS = 25V ≤60µs PULSE WIDTH 0.1 ID = 75A VGS = 10V 2.0 1.5 1.0 0.5 2 4 6 8 10 -60 -40 -20 0 Fig 4. Normalized On-Resistance vs. Temperature Fig 3. Typical Transfer Characteristics 100000 12.0 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd VGS, Gate-to-Source Voltage (V) ID= 75A C oss = C ds + C gd 10000 Ciss Coss 1000 20 40 60 80 100 120 140 160 180 T J , Junction Temperature (°C) VGS, Gate-to-Source Voltage (V) C, Capacitance(pF) VGS 15V 10V 8.0V 6.0V 5.5V 5.0V 4.8V 4.5V Crss 10.0 VDS= 60V VDS= 38V VDS= 15V 8.0 6.0 4.0 2.0 0.0 100 1 10 100 VDS, Drain-to-Source Voltage (V) Fig 5. Typical Capacitance vs. Drain-to-Source Voltage www.irf.com 0 20 40 60 80 100 120 140 QG Total Gate Charge (nC) Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage 3 IRFB3307/IRFS3307/IRFSL3307 10000 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 1000 T J = 175°C 100 T J = 25°C 10 OPERATION IN THIS AREA LIMITED BY R DS(on) 1000 10msec 100 1 1 ID, Drain Current (A) Limited By Package 100 80 60 40 20 0 50 75 100 125 150 175 V(BR)DSS , Drain-to-Source Breakdown Voltage (V) 140 25 100 Fig 8. Maximum Safe Operating Area Fig 7. Typical Source-Drain Diode Forward Voltage 120 10 VDS, Drain-to-Source Voltage (V) VSD, Source-to-Drain Voltage (V) 100 95 90 85 80 75 70 -60 -40 -20 0 20 40 60 80 100 120 140 160 180 T J , Temperature ( °C ) T C , Case Temperature (°C) Fig 10. Drain-to-Source Breakdown Voltage Fig 9. Maximum Drain Current vs. Case Temperature 1.4 EAS , Single Pulse Avalanche Energy (mJ) 1200 1.2 1.0 Energy (µJ) DC Tc = 25°C Tj = 175°C Single Pulse 0.1 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 0.8 0.6 0.4 0.2 0.0 ID 8.6A 12A BOTTOM 75A TOP 1000 800 600 400 200 0 0 10 20 30 40 50 60 70 VDS, Drain-to-Source Voltage (V) 4 100µsec 10 VGS = 0V 1 1msec Fig 11. Typical COSS Stored Energy 80 25 50 75 100 125 150 175 Starting T J , Junction Temperature (°C) Fig 12. Maximum Avalanche Energy vs. DrainCurrent www.irf.com IRFB3307/IRFS3307/IRFSL3307 1 Thermal Response ( Z thJC ) D = 0.50 0.20 0.1 0.10 0.05 0.02 0.01 0.01 τJ SINGLE PULSE ( THERMAL RESPONSE ) 0.001 R1 R1 τJ τ1 R2 R2 τ2 τ1 Ri (°C/W) τi (sec) 0.2911 0.000484 τC τ 0.3196 τ2 0.005529 Ci= τi/Ri Ci i/Ri Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.0001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case 1000 Avalanche Current (A) Duty Cycle = Single Pulse 100 Allowed avalanche Current vs avalanche pulsewidth, tav assuming ∆ Tj = 25°C due to avalanche losses 0.01 0.05 10 0.10 1 0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 14. Typical Avalanche Current vs.Pulsewidth EAR , Avalanche Energy (mJ) 300 Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 16a, 16b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 14, 15). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see Figures 13) TOP Single Pulse BOTTOM 1% Duty Cycle ID = 75A 250 200 150 100 50 0 25 50 75 100 125 150 175 Starting T J , Junction Temperature (°C) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav Fig 15. Maximum Avalanche Energy vs. Temperature www.irf.com 5 IRFB3307/IRFS3307/IRFSL3307 20 VGS(th) Gate threshold Voltage (V) 5.0 4.5 15 IRRM (A) 4.0 3.5 3.0 2.5 ID ID ID ID = 150µA = 250µA = 1.0mA = 1.0A 10 I = 30A F V = 64V R T = 25°C _____ J T = 125°C ---------J 5 2.0 1.5 -75 -50 -25 0 25 50 0 75 100 125 150 175 200 100 200 300 400 500 600 700 800 900 1000 T J , Temperature ( °C ) dif/dt (A/µs) Fig 16. Threshold Voltage vs. Temperature Fig. 17 - Typical Recovery Current vs. dif/dt 400 20 350 300 15 Qrr (nC) IRRM (A) 250 10 200 150 I = 45A F V = 64V R T = 25°C _____ J T = 125°C ---------J 5 I = 30A F V = 64V R T = 25°C _____ J T = 125°C ---------J 100 50 0 0 100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000 dif/dt (A/µs) dif/dt (A/µs) Fig. 18 - Typical Recovery Current vs. dif/dt Fig. 19 - Typical Stored Charge vs. dif/dt 400 350 300 Qrr (nC) 250 200 150 IF = 45A VR = 64V 100 TJ = 25°C _____ 50 TJ = 125°C ---------- 0 100 200 300 400 500 600 700 800 900 1000 dif/dt (A/µs) 6 Fig. 20 - Typical Stored Charge vs. dif/dt www.irf.com IRFB3307/IRFS3307/IRFSL3307 D.U.T Driver Gate Drive - - - * D.U.T. ISD Waveform Reverse Recovery Current + RG • • • • dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer + D= Period P.W. + + - Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Current Inductor Curent ISD Ripple ≤ 5% * VGS = 5V for Logic Level Devices Fig 20. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V(BR)DSS 15V DRIVER L VDS tp D.U.T RG + V - DD IAS VGS 20V tp A 0.01Ω I AS Fig 21a. Unclamped Inductive Test Circuit LD Fig 21b. Unclamped Inductive Waveforms VDS VDS 90% + VDD - 10% D.U.T VGS VGS Pulse Width < 1µs Duty Factor < 0.1% td(on) Fig 22a. Switching Time Test Circuit tr td(off) tf Fig 22b. Switching Time Waveforms Id Vds Vgs L DUT 0 VCC Vgs(th) 1K Qgs1 Qgs2 Fig 23a. Gate Charge Test Circuit www.irf.com Qgd Qgodr Fig 23b. Gate Charge Waveform 7 IRFB3307/IRFS3307/IRFSL3307 TO-220AB Package Outline Dimensions are shown in millimeters (inches) 2.87 (.113) 2.62 (.103) 10.54 (.415) 10.29 (.405) -B- 3.78 (.149) 3.54 (.139) 4.69 (.185) 4.20 (.165) -A- 1.32 (.052) 1.22 (.048) 6.47 (.255) 6.10 (.240) 4 15.24 (.600) 14.84 (.584) 1.15 (.045) MIN 1 2 3 14.09 (.555) 13.47 (.530) 4.06 (.160) 3.55 (.140) 3X 1.40 (.055) 3X 1.15 (.045) LEAD ASSIGNMENTS 1 - GATE 2 - DRAIN 3 - SOURCE 4 - DRAIN 0.93 (.037) 0.69 (.027) 0.36 (.014) 3X M B A M 0.55 (.022) 0.46 (.018) 2.92 (.115) 2.64 (.104) 2.54 (.100) 2X NOTES: 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 2 CONTROLLING DIMENSION : INCH 3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB. 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS. TO-220AB Part Marking Information (;$03/( 7+,6,6$1,5) /27&2'( $66(0%/('21:: ,17+($66(0%/</,1(& Note: "P" in assembly line position indicates "Lead-Free" ,17(51$7,21$/ 5(&7,),(5 /2*2 $66(0%/< /27&2'( 3$57180%(5 '$7(&2'( <($5 :((. /,1(& TO-220AB packages are not recommended for Surface Mount Application. 8 www.irf.com IRFB3307/IRFS3307/IRFSL3307 TO-262 Package Outline (Dimensions are shown in millimeters (inches)) IGBT 1- GATE 2- COLLECTOR 3- EMITTER 4- COLLECTOR TO-262 Part Marking Information (;$03/( 7+,6,6$1,5// /27&2'( $66(0%/('21:: ,17+($66(0%/</,1(& 1RWH3LQDVVHPEO\OLQH SRVLWLRQLQGLFDWHV/HDG)UHH ,17(51$7,21$/ 5(&7,),(5 /2*2 $66(0%/< /27&2'( 3$57180%(5 '$7(&2'( <($5 :((. /,1(& OR ,17(51$7,21$/ 5(&7,),(5 /2*2 $66(0%/< /27&2'( www.irf.com 3$57180%(5 '$7(&2'( 3 '(6,*1$7(6/($')5(( 352'8&7 237,21$/ <($5 :((. $ $66(0%/<6,7(&2'( 9 IRFB3307/IRFS3307/IRFSL3307 D2Pak Package Outline (Dimensions are shown in millimeters (inches)) D2Pak Part Marking Information 7+,6,6$1,5)6:,7+ /27&2'( $66(0%/('21:: ,17+($66(0%/</,1(/ 1RWH3LQDVVHPEO\OLQH SRVLWLRQLQGLFDWHV/HDG)UHH OR ,17(51$7,21$/ 5(&7,),(5 /2*2 )6 '$7(&2'( <($5 :((. /,1(/ $66(0%/< /27&2'( ,17(51$7,21$/ 5(&7,),(5 /2*2 $66(0%/< /27&2'( 10 3$57180%(5 3$57180%(5 )6 '$7(&2'( 3 '(6,*1$7(6/($')5(( 352'8&7 237,21$/ <($5 :((. $ $66(0%/<6,7(&2'( www.irf.com IRFB3307/IRFS3307/IRFSL3307 D2Pak Tape & Reel Information TRR 1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153) FEED DIRECTION 1.85 (.073) 1.60 (.063) 1.50 (.059) 11.60 (.457) 11.40 (.449) 1.65 (.065) 0.368 (.0145) 0.342 (.0135) 15.42 (.609) 15.22 (.601) 24.30 (.957) 23.90 (.941) TRL 1.75 (.069) 1.25 (.049) 10.90 (.429) 10.70 (.421) 4.72 (.136) 4.52 (.178) 16.10 (.634) 15.90 (.626) FEED DIRECTION 13.50 (.532) 12.80 (.504) 27.40 (1.079) 23.90 (.941) 4 330.00 (14.173) MAX. 60.00 (2.362) MIN. NOTES : 1. COMFORMS TO EIA-418. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION MEASURED @ HUB. 4. INCLUDES FLANGE DISTORTION @ OUTER EDGE. 26.40 (1.039) 24.40 (.961) 3 30.40 (1.197) MAX. 4 Data and specifications subject to change without notice. This product has been designed and qualified for the Automotive [Q101] market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 11/04 www.irf.com 11