IRF IRFS3307 Hexfet power mosfet Datasheet

PD - 96901A
IRFB3307
IRFS3307
IRFSL3307
Applications
l High Efficiency Synchronous Rectification in SMPS
l Uninterruptible Power Supply
l High Speed Power Switching
l Hard Switched and High Frequency Circuits
Benefits
l Improved Gate, Avalanche and Dynamic dV/dt
Ruggedness
l Fully Characterized Capacitance and Avalanche
SOA
l Enhanced body diode dV/dt and dI/dt Capability
HEXFET® Power MOSFET
VDSS
RDS(on) typ.
max.
ID
D
G
S
G DS
G DS
D2Pak
TO-220AB
IRFB3307
75V
5.0m:
6.3m:
130A
G DS
TO-262
IRFSL3307
IRFS3307
Absolute Maximum Ratings
Symbol
ID @ TC = 25°C
ID @ TC = 100°C
IDM
PD @TC = 25°C
VGS
dv/dt
TJ
TSTG
Parameter
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
Pulsed Drain Current d
Maximum Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Peak Diode Recovery f
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
(1.6mm from case)
Mounting torque, 6-32 or M3 screw
Max.
Units
130c
91c
510
250
1.6
± 20
11
-55 to + 175
A
W
W/°C
V
V/ns
°C
300
10lbxin (1.1Nxm)
Avalanche Characteristics
EAS (Thermally limited)
IAR
EAR
Single Pulse Avalanche Energy e
Avalanche Currentc
Repetitive Avalanche Energy g
270
See Fig. 14, 15, 16a, 16b
mJ
A
mJ
Thermal Resistance
Symbol
RθJC
RθCS
RθJA
RθJA
www.irf.com
Parameter
Junction-to-Case k
Case-to-Sink, Flat Greased Surface , TO-220
Junction-to-Ambient, TO-220 k
2
Junction-to-Ambient (PCB Mount) , D Pak jk
Typ.
Max.
–––
0.50
–––
–––
0.61
–––
62
40
Units
°C/W
1
11/04/04
IRFB3307/IRFS3307/IRFSL3307
Static @ TJ = 25°C (unless otherwise specified)
Symbol
Parameter
V(BR)DSS
∆V(BR)DSS/∆TJ
RDS(on)
VGS(th)
IDSS
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
Gate Threshold Voltage
Drain-to-Source Leakage Current
IGSS
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Gate Input Resistance
RG
Min. Typ. Max. Units
75
–––
–––
2.0
–––
–––
–––
–––
–––
––– –––
0.069 –––
5.0
6.3
–––
4.0
–––
20
––– 250
––– 200
––– -200
1.5
–––
Conditions
V VGS = 0V, ID = 250µA
V/°C Reference to 25°C, ID = 1mAd
mΩ VGS = 10V, ID = 75A g
V VDS = VGS, ID = 150µA
µA VDS = 75V, VGS = 0V
VDS = 75V, VGS = 0V, TJ = 125°C
nA VGS = 20V
VGS = -20V
Ω f = 1MHz, open drain
Dynamic @ TJ = 25°C (unless otherwise specified)
Symbol
gfs
Qg
Qgs
Qgd
td(on)
tr
td(off)
tf
Ciss
Coss
Crss
Coss eff. (ER)
Coss eff. (TR)
Parameter
Min. Typ. Max. Units
Forward Transconductance
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
98
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Effective Output Capacitance (Energy Related) –––
Effective Output Capacitance (Time Related)h –––
–––
120
35
46
26
120
51
63
5150
460
250
570
700
–––
180
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
S
nC
ns
pF
Conditions
VDS = 50V, ID = 75A
ID = 75A
VDS = 60V
VGS = 10V g
VDD = 48V
ID = 75A
RG = 3.9Ω
VGS = 10V g
VGS = 0V
VDS = 50V
ƒ = 1.0MHz
VGS = 0V, VDS = 0V to 60V i, See Fig.11
VGS = 0V, VDS = 0V to 60V h, See Fig. 5
Diode Characteristics
Symbol
IS
Parameter
Min. Typ. Max. Units
Continuous Source Current
VSD
trr
(Body Diode)
Pulsed Source Current
(Body Diode)d
Diode Forward Voltage
Reverse Recovery Time
Qrr
Reverse Recovery Charge
IRRM
ton
Reverse Recovery Current
Forward Turn-On Time
ISM
––– 130c
A
MOSFET symbol
–––
–––
A
showing the
integral reverse
510
D
G
S
p-n junction diode.
––– –––
1.3
V TJ = 25°C, IS = 75A, VGS = 0V g
VR = 64V,
–––
38
57
ns TJ = 25°C
T
=
125°C
I
–––
46
69
J
F = 75A
= 100A/µs g
di/dt
–––
65
98
nC TJ = 25°C
TJ = 125°C
–––
86
130
–––
2.8
–––
A TJ = 25°C
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
Notes:
 Calculated continuous current based on maximum allowable junction
temperature. Package limitation current is 75A.
‚ Repetitive rating; pulse width limited by max. junction
temperature.
ƒ Limited by TJmax, starting TJ = 25°C, L = 0.096mH
RG = 25Ω, IAS = 75A, VGS =10V. Part not recommended for use
above this value.
„ ISD ≤ 75A, di/dt ≤ 530A/µs, VDD ≤ V(BR)DSS, TJ ≤ 175°C.
Pulse width ≤ 400µs; duty cycle ≤ 2%.
2
Conditions
–––
† Coss eff. (TR) is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS.
‡ Coss eff. (ER) is a fixed capacitance that gives the same energy as
Coss while VDS is rising from 0 to 80% VDSS.
ˆ When mounted on 1" square PCB (FR-4 or G-10 Material). For recom
mended footprint and soldering techniques refer to application note #AN-994.
‰ Rθ is measured at TJ approximately 90°C.
www.irf.com
IRFB3307/IRFS3307/IRFSL3307
1000
1000
ID, Drain-to-Source Current (A)
100
BOTTOM
10
TOP
ID, Drain-to-Source Current (A)
TOP
VGS
15V
10V
8.0V
6.0V
5.5V
5.0V
4.8V
4.5V
100
1
4.5V
0.1
BOTTOM
4.5V
10
≤60µs PULSE WIDTH
≤60µs PULSE WIDTH
Tj = 175°C
Tj = 25°C
0.01
0.1
1
10
1
100
0.1
1000
Fig 1. Typical Output Characteristics
10
100
1000
Fig 2. Typical Output Characteristics
1000
2.5
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID, Drain-to-Source Current (Α)
1
V DS, Drain-to-Source Voltage (V)
V DS, Drain-to-Source Voltage (V)
100
T J = 175°C
10
T J = 25°C
1
VDS = 25V
≤60µs PULSE WIDTH
0.1
ID = 75A
VGS = 10V
2.0
1.5
1.0
0.5
2
4
6
8
10
-60 -40 -20 0
Fig 4. Normalized On-Resistance vs. Temperature
Fig 3. Typical Transfer Characteristics
100000
12.0
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
C rss = C gd
VGS, Gate-to-Source Voltage (V)
ID= 75A
C oss = C ds + C gd
10000
Ciss
Coss
1000
20 40 60 80 100 120 140 160 180
T J , Junction Temperature (°C)
VGS, Gate-to-Source Voltage (V)
C, Capacitance(pF)
VGS
15V
10V
8.0V
6.0V
5.5V
5.0V
4.8V
4.5V
Crss
10.0
VDS= 60V
VDS= 38V
VDS= 15V
8.0
6.0
4.0
2.0
0.0
100
1
10
100
VDS, Drain-to-Source Voltage (V)
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage
www.irf.com
0
20
40
60
80
100
120
140
QG Total Gate Charge (nC)
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage
3
IRFB3307/IRFS3307/IRFSL3307
10000
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
1000
T J = 175°C
100
T J = 25°C
10
OPERATION IN THIS AREA
LIMITED BY R DS(on)
1000
10msec
100
1
1
ID, Drain Current (A)
Limited By Package
100
80
60
40
20
0
50
75
100
125
150
175
V(BR)DSS , Drain-to-Source Breakdown Voltage (V)
140
25
100
Fig 8. Maximum Safe Operating Area
Fig 7. Typical Source-Drain Diode Forward Voltage
120
10
VDS, Drain-to-Source Voltage (V)
VSD, Source-to-Drain Voltage (V)
100
95
90
85
80
75
70
-60 -40 -20 0
20 40 60 80 100 120 140 160 180
T J , Temperature ( °C )
T C , Case Temperature (°C)
Fig 10. Drain-to-Source Breakdown Voltage
Fig 9. Maximum Drain Current vs. Case Temperature
1.4
EAS , Single Pulse Avalanche Energy (mJ)
1200
1.2
1.0
Energy (µJ)
DC
Tc = 25°C
Tj = 175°C
Single Pulse
0.1
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0.8
0.6
0.4
0.2
0.0
ID
8.6A
12A
BOTTOM 75A
TOP
1000
800
600
400
200
0
0
10
20
30
40
50
60
70
VDS, Drain-to-Source Voltage (V)
4
100µsec
10
VGS = 0V
1
1msec
Fig 11. Typical COSS Stored Energy
80
25
50
75
100
125
150
175
Starting T J , Junction Temperature (°C)
Fig 12. Maximum Avalanche Energy vs. DrainCurrent
www.irf.com
IRFB3307/IRFS3307/IRFSL3307
1
Thermal Response ( Z thJC )
D = 0.50
0.20
0.1
0.10
0.05
0.02
0.01
0.01
τJ
SINGLE PULSE
( THERMAL RESPONSE )
0.001
R1
R1
τJ
τ1
R2
R2
τ2
τ1
Ri (°C/W) τi (sec)
0.2911 0.000484
τC
τ
0.3196
τ2
0.005529
Ci= τi/Ri
Ci i/Ri
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.0001
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case
1000
Avalanche Current (A)
Duty Cycle = Single Pulse
100
Allowed avalanche Current vs
avalanche pulsewidth, tav
assuming ∆ Tj = 25°C due to
avalanche losses
0.01
0.05
10
0.10
1
0.1
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
Fig 14. Typical Avalanche Current vs.Pulsewidth
EAR , Avalanche Energy (mJ)
300
Notes on Repetitive Avalanche Curves , Figures 14, 15:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a temperature far in
excess of Tjmax. This is validated for every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.
4. PD (ave) = Average power dissipation per single avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase
during avalanche).
6. Iav = Allowable avalanche current.
7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as
25°C in Figure 14, 15).
tav = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)
TOP
Single Pulse
BOTTOM 1% Duty Cycle
ID = 75A
250
200
150
100
50
0
25
50
75
100
125
150
175
Starting T J , Junction Temperature (°C)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
Fig 15. Maximum Avalanche Energy vs. Temperature
www.irf.com
5
IRFB3307/IRFS3307/IRFSL3307
20
VGS(th) Gate threshold Voltage (V)
5.0
4.5
15
IRRM (A)
4.0
3.5
3.0
2.5
ID
ID
ID
ID
= 150µA
= 250µA
= 1.0mA
= 1.0A
10
I = 30A
F
V = 64V
R
T = 25°C _____
J
T = 125°C ---------J
5
2.0
1.5
-75 -50 -25
0
25
50
0
75 100 125 150 175 200
100 200 300 400 500 600 700 800 900 1000
T J , Temperature ( °C )
dif/dt (A/µs)
Fig 16. Threshold Voltage vs. Temperature
Fig. 17 - Typical Recovery Current vs. dif/dt
400
20
350
300
15
Qrr (nC)
IRRM (A)
250
10
200
150
I = 45A
F
V = 64V
R
T = 25°C _____
J
T = 125°C ---------J
5
I = 30A
F
V = 64V
R
T = 25°C _____
J
T = 125°C ---------J
100
50
0
0
100 200 300 400 500 600 700 800 900 1000
100 200 300 400 500 600 700 800 900 1000
dif/dt (A/µs)
dif/dt (A/µs)
Fig. 18 - Typical Recovery Current vs. dif/dt
Fig. 19 - Typical Stored Charge vs. dif/dt
400
350
300
Qrr (nC)
250
200
150
IF = 45A
VR = 64V
100
TJ = 25°C _____
50
TJ = 125°C ----------
0
100 200 300 400 500 600 700 800 900 1000
dif/dt (A/µs)
6
Fig. 20 - Typical Stored Charge vs. dif/dt
www.irf.com
IRFB3307/IRFS3307/IRFSL3307
D.U.T
Driver Gate Drive
ƒ
-
‚
„
-
-
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
+

RG
•
•
•
•
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
VDD
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
+
D=
Period
P.W.
+
+
-
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor
Current
Inductor Curent
ISD
Ripple ≤ 5%
* VGS = 5V for Logic Level Devices
Fig 20. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
V(BR)DSS
15V
DRIVER
L
VDS
tp
D.U.T
RG
+
V
- DD
IAS
VGS
20V
tp
A
0.01Ω
I AS
Fig 21a. Unclamped Inductive Test Circuit
LD
Fig 21b. Unclamped Inductive Waveforms
VDS
VDS
90%
+
VDD -
10%
D.U.T
VGS
VGS
Pulse Width < 1µs
Duty Factor < 0.1%
td(on)
Fig 22a. Switching Time Test Circuit
tr
td(off)
tf
Fig 22b. Switching Time Waveforms
Id
Vds
Vgs
L
DUT
0
VCC
Vgs(th)
1K
Qgs1 Qgs2
Fig 23a. Gate Charge Test Circuit
www.irf.com
Qgd
Qgodr
Fig 23b. Gate Charge Waveform
7
IRFB3307/IRFS3307/IRFSL3307
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
2.87 (.113)
2.62 (.103)
10.54 (.415)
10.29 (.405)
-B-
3.78 (.149)
3.54 (.139)
4.69 (.185)
4.20 (.165)
-A-
1.32 (.052)
1.22 (.048)
6.47 (.255)
6.10 (.240)
4
15.24 (.600)
14.84 (.584)
1.15 (.045)
MIN
1
2
3
14.09 (.555)
13.47 (.530)
4.06 (.160)
3.55 (.140)
3X
1.40 (.055)
3X
1.15 (.045)
LEAD ASSIGNMENTS
1 - GATE
2 - DRAIN
3 - SOURCE
4 - DRAIN
0.93 (.037)
0.69 (.027)
0.36 (.014)
3X
M
B A M
0.55 (.022)
0.46 (.018)
2.92 (.115)
2.64 (.104)
2.54 (.100)
2X
NOTES:
1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982.
2 CONTROLLING DIMENSION : INCH
3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB.
4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.
TO-220AB Part Marking Information
(;$03/( 7+,6,6$1,5)
/27&2'(
$66(0%/('21::
,17+($66(0%/</,1(&
Note: "P" in assembly line
position indicates "Lead-Free"
,17(51$7,21$/
5(&7,),(5
/2*2
$66(0%/<
/27&2'(
3$57180%(5
'$7(&2'(
<($5 :((.
/,1(&
TO-220AB packages are not recommended for Surface Mount Application.
8
www.irf.com
IRFB3307/IRFS3307/IRFSL3307
TO-262 Package Outline (Dimensions are shown in millimeters (inches))
IGBT
1- GATE
2- COLLECTOR
3- EMITTER
4- COLLECTOR
TO-262 Part Marking Information
(;$03/( 7+,6,6$1,5//
/27&2'(
$66(0%/('21::
,17+($66(0%/</,1(&
1RWH3LQDVVHPEO\OLQH
SRVLWLRQLQGLFDWHV/HDG)UHH
,17(51$7,21$/
5(&7,),(5
/2*2
$66(0%/<
/27&2'(
3$57180%(5
'$7(&2'(
<($5 :((.
/,1(&
OR
,17(51$7,21$/
5(&7,),(5
/2*2
$66(0%/<
/27&2'(
www.irf.com
3$57180%(5
'$7(&2'(
3 '(6,*1$7(6/($')5((
352'8&7 237,21$/
<($5 :((.
$ $66(0%/<6,7(&2'(
9
IRFB3307/IRFS3307/IRFSL3307
D2Pak Package Outline (Dimensions are shown in millimeters (inches))
D2Pak Part Marking Information
7+,6,6$1,5)6:,7+
/27&2'(
$66(0%/('21::
,17+($66(0%/</,1(/
1RWH3LQDVVHPEO\OLQH
SRVLWLRQLQGLFDWHV/HDG)UHH
OR
,17(51$7,21$/
5(&7,),(5
/2*2
)6
'$7(&2'(
<($5 :((.
/,1(/
$66(0%/<
/27&2'(
,17(51$7,21$/
5(&7,),(5
/2*2
$66(0%/<
/27&2'(
10
3$57180%(5
3$57180%(5
)6
'$7(&2'(
3 '(6,*1$7(6/($')5((
352'8&7 237,21$/
<($5 :((.
$ $66(0%/<6,7(&2'(
www.irf.com
IRFB3307/IRFS3307/IRFSL3307
D2Pak Tape & Reel Information
TRR
1.60 (.063)
1.50 (.059)
4.10 (.161)
3.90 (.153)
FEED DIRECTION 1.85 (.073)
1.60 (.063)
1.50 (.059)
11.60 (.457)
11.40 (.449)
1.65 (.065)
0.368 (.0145)
0.342 (.0135)
15.42 (.609)
15.22 (.601)
24.30 (.957)
23.90 (.941)
TRL
1.75 (.069)
1.25 (.049)
10.90 (.429)
10.70 (.421)
4.72 (.136)
4.52 (.178)
16.10 (.634)
15.90 (.626)
FEED DIRECTION
13.50 (.532)
12.80 (.504)
27.40 (1.079)
23.90 (.941)
4
330.00
(14.173)
MAX.
60.00 (2.362)
MIN.
NOTES :
1. COMFORMS TO EIA-418.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION MEASURED @ HUB.
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.
26.40 (1.039)
24.40 (.961)
3
30.40 (1.197)
MAX.
4
Data and specifications subject to change without notice.
This product has been designed and qualified for the Automotive [Q101] market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 11/04
www.irf.com
11
Similar pages