ON MC10EL11 5.0 v ecl 1:2 differential fanout buffer Datasheet

MC10EL11, MC100EL11
5.0V ECL 1:2 Differential
Fanout Buffer
The MC10EL/100EL11 is a differential 1:2 fanout buffer. The device
is functionally similar to the E111 device but with higher performance
capabilities. The within-device skew and propagation delay is
significantly improved over the E111.
The differential inputs of the EL11 employ clamping circuitry to
maintain stability under open input conditions. If the inputs are left open
(pulled to VEE) the Q outputs will go LOW.
The 100 Series contains temperature compensation.
Features
•
•
•
•
•
•
www.onsemi.com
8
8
1
1
SOIC−8
D SUFFIX
CASE 751−07
265 ps Propagation Delay
5 ps Skew Between Outputs
TSSOP−8
DT SUFFIX
CASE 948R−02
PECL Mode Operating Range: VCC = 4.2 V to 5.7 with VEE = 0 V
NECL Mode Operating Range: VCC = 0 V with VEE = −4.2 V to −5.7 V
MARKING DIAGRAMS*
Internal Input Pulldown Resistors
These Devices are Pb-Free, Halogen Free and are RoHS Compliant
Q0
1
Q0
2
Q1
3
Q1
8
7
8
8
HEL11
ALYW
G
VCC
1
1
8
8
D
KEL11
ALYW
G
6
5
4
1
D
Table 1. PIN DESCRIPTION
FUNCTION
D, D
Q0, Q0; Q1, Q1
VCC
VEE
ECL Data Inputs
ECL Data Outputs
Positive Supply
Negative Supply
© Semiconductor Components Industries, LLC, 2016
July, 2016− Rev. 11
L
Y
W
M
G
KL11
ALYWG
G
= Wafer Lot
= Year
= Work Week
= Date Code
= Pb-Free Package
(Note: Microdot may be in either location)
*For additional marking information, refer to
Application Note AND8002/D.
Figure 1. Logic Diagram and Pinout Assignment
PIN
1
H = MC10
K = MC100
4Q = MC10
2E = MC100
A = Assembly Location
VEE
HL11
ALYWG
G
ORDERING INFORMATION
See detailed ordering and shipping information in the package
dimensions section on page 6 of this data sheet.
1
Publication Order Number:
MC10EL11/D
MC10EL11, MC100EL11
Table 2. ATTRIBUTES
Characteristics
Value
Internal Input Pulldown Resistor
75 KW
Internal Input Pullup Resistor
N/A
ESD Protection
Human Body Model
Machine Model
> 1 KV
> 100 V
Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1)
Pb-Free Pkg
SOIC−8
TSSOP−8
Level 1
Level 3
Flammability Rating
Oxygen Index: 28 to 34
UL 94 V−0 @ 0.125 in
Transistor Count
44
Meets or Exceeds JEDEC Spec EIA/JESD78 IC Latchup Test
1. For additional information, see Application Note AND8003/D.
Table 3. MAXIMUM RATINGS
Symbol
Rating
Unit
VCC
PECL Mode Power Supply
Parameter
VEE = 0 V
Condition 1
Condition 2
8
V
VEE
NECL Mode Power Supply
VCC = 0 V
−8
V
VI
PECL Mode Input Voltage
NECL Mode Input Voltage
VEE = 0 V
VCC = 0 V
6
−6
V
Iout
Output Current
Continuous
Surge
50
100
mA
VI ≤ VCC
VI ≥ VEE
TA
Operating Temperature Range
−40 to +85
°C
Tstg
Storage Temperature Range
−65 to +150
°C
qJA
Thermal Resistance (Junction-to-Ambient)
0 lfpm
500 lfpm
SOIC−8
190
130
°C/W
qJC
Thermal Resistance (Junction-to-Case)
Standard Board
SOIC−8
41 to 44
°C/W
qJA
Thermal Resistance (Junction-to-Ambient)
0 lfpm
500 lfpm
TSSOP−8
185
140
°C/W
qJC
Thermal Resistance (Junction-to-Case)
Standard Board
TSSOP−8
41 to 44 ± 5%
°C/W
Tsol
Wave Solder (Pb-Free)
<2 to 3 sec @ 260°C
265
°C
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality
should not be assumed, damage may occur and reliability may be affected.
1. JEDEC standard multilayer board − 2S2P (2 signal, 2 power)
www.onsemi.com
2
MC10EL11, MC100EL11
Table 4. 10EL SERIES PECL DC CHARACTERISTICS (VCC = 5.0 V; VEE = 0.0 V (Note 1))
−40°C
Symbol
Characteristic
Min
25°C
Typ
Max
26
31
Min
85°C
Typ
Max
26
31
Min
Typ
Max
Unit
26
31
mA
IEE
Power Supply Current
VOH
Output HIGH Voltage (Note 2)
3920
4010
4110
4020
4105
4190
4090
4185
4280
mV
VOL
Output LOW Voltage (Note 2)
3050
3200
3350
3050
3210
3370
3050
3227
3405
mV
VIH
Input HIGH Voltage (Single-Ended)
3770
4110
3870
4190
3940
4280
mV
VIL
Input LOW Voltage (Single-Ended)
3050
3500
3050
3520
3050
3555
mV
VIHCMR
Input HIGH Voltage Common Mode
Range (Differential) (Note 3)
2.5
4.6
2.5
4.6
2.5
4.6
V
150
mA
IIH
Input HIGH Current
IIL
Input LOW Current
150
0.5
150
0.5
0.3
mA
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit
values are applied individually under normal operating conditions and not valid simultaneously.
1. Input and output parameters vary 1:1 with VCC. VEE can vary +0.25 V / −0.5 V.
2. Outputs are terminated through a 50ĂW resistor to VCC − 2.0 V.
3. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential
input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between VPPmin
and 1 V.
Table 5. 10EL SERIES NECL DC CHARACTERISTICS (VCC = 0.0 V; VEE = −5.0 V (Note 1))
−40°C
Symbol
Characteristic
Typ
Max
26
31
Max
26
31
−1080
−990
−890
−980
−895
−810
Output LOW Voltage (Note 2)
−1950
−1800
−1650
−1950
−1790
VIH
Input HIGH Voltage (Single-Ended)
−1230
−890
VIL
Input LOW Voltage (Single-Ended)
−1950
VIHCMR
Input HIGH Voltage Common Mode
Range (Differential) (Note 3)
−2.5
Power Supply Current
VOH
Output HIGH Voltage (Note 2)
VOL
IIH
Input HIGH Current
IIL
Input LOW Current
Min
85°C
Typ
IEE
Min
25°C
Typ
Max
Unit
26
31
mA
−910
−815
−720
mV
−1630
−1950
−1773
−1595
mV
−1130
−810
−1060
−720
mV
−1500
−1950
−1480
−1950
−1445
mV
−0.4
−2.5
−0.4
−2.5
−0.4
V
150
mA
150
0.5
Min
150
0.5
0.3
mA
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit
values are applied individually under normal operating conditions and not valid simultaneously.
1. Input and output parameters vary 1:1 with VCC. VEE can vary +0.25 V / −0.5 V.
2. Outputs are terminated through a 50ĂW resistor to VCC − 2.0 V.
3. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential
input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between VPPmin
and 1 V.
www.onsemi.com
3
MC10EL11, MC100EL11
Table 6. 100EL SERIES PECL DC CHARACTERISTICS (VCC = 5.0 V; VEE = 0.0 V (Note 1))
−40°C
Symbol
Characteristic
Min
25°C
Typ
Max
26
31
Min
85°C
Typ
Max
26
31
Min
Typ
Max
Unit
30
36
mA
IEE
Power Supply Current
VOH
Output HIGH Voltage (Note 2)
3915
3995
4120
3975
4045
4120
3975
4050
4120
mV
VOL
Output LOW Voltage (Note 2)
3170
3305
3445
3190
3295
3380
3190
3295
3380
mV
VIH
Input HIGH Voltage (Single-Ended)
3835
4120
3835
4120
3835
4120
mV
VIL
Input LOW Voltage (Single-Ended)
3190
3525
3190
3525
3190
3525
mV
VIHCMR
Input HIGH Voltage Common Mode
Range (Differential) (Note 3)
2.5
4.6
2.5
4.6
2.5
4.6
V
150
mA
IIH
Input HIGH Current
IIL
Input LOW Current
150
0.5
150
0.5
0.5
mA
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit
values are applied individually under normal operating conditions and not valid simultaneously.
1. Input and output parameters vary 1:1 with VCC. VEE can vary +0.8 V / −0.5 V.
2. Outputs are terminated through a 50 W resistor to VCC − 2.0 V.
3. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential
input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between VPPmin
and 1 V.
Table 7. 100EL SERIES NECL DC CHARACTERISTICS (VCC = 0.0 V; VEE = −5.0 V (Note 1))
−40°C
Symbol
Characteristic
Min
Typ
25°C
Max
Min
Typ
85°C
Max
Min
Typ
Max
Unit
IEE
Power Supply Current
26
31
26
31
30
36
mA
VOH
Output HIGH Voltage (Note 2)
−1085
−1005
−880
−1025
−955
−880
−1025
−955
−880
mV
VOL
Output LOW Voltage (Note 2)
−1830
−1695
−1555
−1810
−1705
−1620
−1810
−1705
−1620
mV
VIH
Input HIGH Voltage (Single-Ended)
−1165
−880
−1165
−880
−1165
−880
mV
VIL
Input LOW Voltage (Single-Ended)
−1810
−1475
−1810
−1475
−1810
−1475
mV
VIHCMR
Input HIGH Voltage Common Mode
Range (Differential) (Note 3)
−2.5
−0.4
−2.5
−0.4
−2.5
−0.4
V
150
mA
IIH
Input HIGH Current
IIL
Input LOW Current
150
0.5
150
0.5
0.5
mA
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit
values are applied individually under normal operating conditions and not valid simultaneously.
1. Input and output parameters vary 1:1 with VCC. VEE can vary +0.8 V / −0.5 V.
2. Outputs are terminated through a 50 W resistor to VCC − 2.0 V.
3. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential
input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between VPPmin
and 1 V.
www.onsemi.com
4
MC10EL11, MC100EL11
Table 8. AC CHARACTERISTICS (VCC = 5.0 V; VEE = 0.0 V or VCC = 0.0 V; VEE = −5.0 V (Note 1))
−40°C
Symbol
Characteristic
Min
fmax
Maximum Toggle Frequency
tPLH
tPHL
Propagation Delay to Output
tSKEW
Within-Device Skew (Note 2)
Duty Cycle Skew (Note 3)
tJITTER
Random Clock Jitter (RMS)
VPP
tr
tf
25°C
Typ
Max
Min
85°C
Typ
Max
Min
Typ
Max
1.5
135
260
385
190
5
GHz
265
340
5
20
215
29*0
365
ps
5
20
ps
0.6
Input Swing (Note 4)
150
Output Rise/Fall Times Q
(20% − 80%)
100
1000
150
350
100
225
Unit
ps
225
1000
150
350
100
225
1000
mV
350
ps
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit
values are applied individually under normal operating conditions and not valid simultaneously.
1. 10 Series: VEE can vary +0.25 V / −0.5 V.
100 Series: VEE can vary +0.8 V / −0.5 V.
2. Within-device skew defined as identical transitions on similar paths through a device.
3. Duty cycle skew is the difference between a tPLH and tPHL propagation delay through a device.
4. VPP(min) is minimum input swing for which AC parameters guaranteed. The device has a DC gain of ≈ 40.
Q
Zo = 50 W
D
Receiver
Device
Driver
Device
Q
D
Zo = 50 W
50 W
50 W
VTT
VTT = VCC − 3.0 V
Figure 2. Typical Termination for Output Driver and Device Evaluation
(See Application Note AND8020/D − Termination of ECL Logic Devices.)
www.onsemi.com
5
MC10EL11, MC100EL11
ORDERING INFORMATION
Package
Shipping†
MC10EL11DG
SOIC−8
(Pb-Free)
98 Units / Rail
MC10EL11DR2G
SOIC−8
(Pb-Free)
2500 / Tape & Reel
MC10EL11DTG
TSSOP−8
(Pb-Free)
100 Units / Rail
MC100EL11DG
SOIC−8
(Pb-Free)
98 Units / Rail
MC100EL11DR2G
SOIC−8
(Pb-Free)
2500 / Tape & Reel
MC100EL11DTG
TSSOP−8
(Pb-Free)
100 Units / Rail
MC100EL11DTR2G
TSSOP−8
(Pb-Free)
2500 / Tape & Reel
Device
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
Resource Reference of Application Notes
AN1405/D
− ECL Clock Distribution Techniques
AN1406/D
− Designing with PECL (ECL at +5.0 V)
AN1503/D
− ECLinPSt I/O SPiCE Modeling Kit
AN1504/D
− Metastability and the ECLinPS Family
AN1568/D
− Interfacing Between LVDS and ECL
AN1672/D
− The ECL Translator Guide
AND8001/D
− Odd Number Counters Design
AND8002/D
− Marking and Date Codes
AND8020/D
− Termination of ECL Logic Devices
AND8066/D
− Interfacing with ECLinPS
AND8090/D
− AC Characteristics of ECL Devices
www.onsemi.com
6
MC10EL11, MC100EL11
PACKAGE DIMENSIONS
SOIC−8 NB
CASE 751−07
ISSUE AK
−X−
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A AND B DO NOT INCLUDE
MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)
PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 (0.005) TOTAL
IN EXCESS OF THE D DIMENSION AT
MAXIMUM MATERIAL CONDITION.
6. 751−01 THRU 751−06 ARE OBSOLETE. NEW
STANDARD IS 751−07.
A
8
5
S
B
0.25 (0.010)
M
Y
M
1
4
−Y−
K
G
C
N
DIM
A
B
C
D
G
H
J
K
M
N
S
X 45 _
SEATING
PLANE
−Z−
0.10 (0.004)
H
D
0.25 (0.010)
M
Z Y
S
X
M
J
S
SOLDERING FOOTPRINT*
1.52
0.060
7.0
0.275
4.0
0.155
0.6
0.024
1.270
0.050
SCALE 6:1
mm Ǔ
ǒinches
*For additional information on our Pb-Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
www.onsemi.com
7
MILLIMETERS
MIN
MAX
4.80
5.00
3.80
4.00
1.35
1.75
0.33
0.51
1.27 BSC
0.10
0.25
0.19
0.25
0.40
1.27
0_
8_
0.25
0.50
5.80
6.20
INCHES
MIN
MAX
0.189
0.197
0.150
0.157
0.053
0.069
0.013
0.020
0.050 BSC
0.004
0.010
0.007
0.010
0.016
0.050
0 _
8 _
0.010
0.020
0.228
0.244
MC10EL11, MC100EL11
PACKAGE DIMENSIONS
TSSOP−8
CASE 948R−02
ISSUE A
8x
0.15 (0.006) T U
0.10 (0.004)
S
2X
L/2
L
8
5
1
PIN 1
IDENT
0.15 (0.006) T U
K REF
M
T U
V
S
0.25 (0.010)
B
−U−
4
M
A
−V−
S
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH.
PROTRUSIONS OR GATE BURRS. MOLD FLASH
OR GATE BURRS SHALL NOT EXCEED 0.15
(0.006) PER SIDE.
4. DIMENSION B DOES NOT INCLUDE INTERLEAD
FLASH OR PROTRUSION. INTERLEAD FLASH OR
PROTRUSION SHALL NOT EXCEED 0.25 (0.010)
PER SIDE.
5. TERMINAL NUMBERS ARE SHOWN FOR
REFERENCE ONLY.
6. DIMENSION A AND B ARE TO BE DETERMINED
AT DATUM PLANE -W-.
S
F
DETAIL E
C
0.10 (0.004)
−T− SEATING
PLANE
D
−W−
G
DETAIL E
DIM
A
B
C
D
F
G
K
L
M
MILLIMETERS
MIN
MAX
2.90
3.10
2.90
3.10
0.80
1.10
0.05
0.15
0.40
0.70
0.65 BSC
0.25
0.40
4.90 BSC
0_
6_
INCHES
MIN
MAX
0.114
0.122
0.114
0.122
0.031
0.043
0.002
0.006
0.016
0.028
0.026 BSC
0.010
0.016
0.193 BSC
0_
6_
ECLinPS is a registered trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.
ON Semiconductor and
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.
ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent
coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein.
ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards,
regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer
application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not
designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification
in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized
application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such
claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This
literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: [email protected]
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81−3−5817−1050
www.onsemi.com
8
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative
MC10EL11/D
Similar pages