Pr E2G1050-17-X1 el im y 4-Bank ¥ 4,194,304-Word ¥ 4-Bit SYNCHRONOUS DYNAMIC RAM DESCRIPTION The MD56V62400/H is a 4-bank ¥ 4,194,304-word ¥ 4-bit synchronous dynamic RAM, fabricated in Oki's CMOS silicon-gate process technology. The device operates at 3.3 V. The inputs and outputs are LVTTL compatible. FEATURES • • • • • • • Silicon gate, quadruple polysilicon CMOS, 1-transistor memory cell 4-bank ¥ 4,194,304-word ¥ 4-bit configuration 3.3 V power supply, ±0.3 V tolerance Input : LVTTL compatible Output : LVTTL compatible Refresh : 4096 cycles/64 ms Programmable data transfer mode – CAS latency (2, 3) – Burst length (2, 4, 8) – Data scramble (sequential, interleave) • CBR auto-refresh, Self-refresh capability • Package: 54-pin 400 mil plastic TSOP (Type II) (TSOPII54-P-400-0.80-K) (Product : MD56V62400/H-xxTA) xx indicates speed rank. PRODUCT FAMILY Family Max. Frequency Access Time (Max.) tAC2 tAC3 100 MHz 9 ns 9 ns MD56V62400-12 83 MHz 14 ns 10 ns MD56V62400H-15 66 MHz 9 ns 9 ns MD56V62400-10 ar This version: Mar. 1998 MD56V62400/H in ¡ Semiconductor MD56V62400/H ¡ Semiconductor 1/28 ¡ Semiconductor MD56V62400/H PIN CONFIGURATION (TOP VIEW) VCC NC VCCQ NC DQ1 VSSQ NC NC VCCQ NC DQ2 VSSQ NC VCC NC WE CAS RAS CS A13/BA0 A12/BA1 A10 A0 A1 A2 A3 VCC 1 54 VSS 2 53 NC 3 52 VSSQ 4 51 NC 5 50 DQ4 6 49 VCCQ 7 48 NC 8 47 NC 9 46 VSSQ 10 45 NC 11 44 DQ3 12 43 VCCQ 13 42 NC 14 41 VSS 15 40 NC 16 39 DQM 17 38 CLK 18 37 CKE 19 36 NC 20 35 A11 21 34 A9 22 33 A8 23 32 A7 24 31 A6 25 30 A5 26 29 A4 27 28 VSS 54-Pin Plastic TSOP (II) (K Type) Pin Name Note: Function Pin Name Function CLK System Clock DQM Data Input/Output Mask CS Chip Select DQi Data Input/Output CKE Clock Enable VCC Power Supply (3.3 V) A0 - A11 Address VSS Ground (0 V) A12, A13 Bank Select Address VCCQ Data Output Power Supply (3.3 V) RAS Row Address Strobe VSSQ Data Output Ground (0 V) CAS Column Address Strobe NC No Connection WE Write Enable The same power supply voltage must be provided to every VCC pin and VCCQ pin. The same GND voltage level must be provided to every VSS pin and VSSQ pin. 2/28 ¡ Semiconductor MD56V62400/H PIN DESCRIPTION CLK Fetches all inputs at the "H" edge. CS Disables or enables device operation by asserting or deactivating all inputs except CLK, CKE and DQM. CKE Masks system clock to deactivate the subsequent CLK operation. If CKE is deactivated, system clock will be masked so that the subsequent CLK operation is deactivated. CKE should be asserted at least one cycle prior to a new command. Address Row & column multiplexed. Row address: RA0 – RA11 Column address: CA0 – CA9 A12, A13 (BA1, BA0) Bank Access pins. These pins are dedicated to select one of 4 banks. RAS CAS Functionality depends on the combination. For details, see the function truth table. WE DQM Masks the read data of two clocks later when DQM is set "H" at the "H" edge of the clock signal. Masks the write data of the same clock when DQM is set "H" at the "H" edge of the clock signal. DQi Data inputs/outputs are multiplexed on the same pin. 3/28 ¡ Semiconductor MD56V62400/H BLOCK DIAGRAM CS RAS CAS WE DQM A0 A13 CLOCK BUFFER Row Address Latches & Refresh Counter Command Decoding Logic Command Buffers Address Buffers Row Decoders Control Logic Mode Register Word Drivers Column Address Latches & Counter Latency & Burst controller Column Decoders Sense Amplifiers CLK CKE Memory Cells BANK A BANK B BANK C BANK D Input Buffers Input Data Register Output Buffers Output Data Register DQ1 - DQ4 4/28 ¡ Semiconductor MD56V62400/H ELECTRICAL CHARACTERISTICS Absolute Maximum Ratings (Voltages referenced to VSS) Parameter Symbol Rating Unit Voltage on Any Pin Relative to VSS VIN, VOUT –0.5 to VCC + 0.5 V VCC Supply Voltage VCC, VCCQ –0.5 to 4.6 V Storage Temperature Tstg –55 to 150 °C Power Dissipation PD* 1 W Short Circuit Current IOS 50 mA Operating Temperature Topr 0 to 70 °C *: Ta = 25°C Recommended Operating Conditions (Voltages referenced to VSS = 0 V) Parameter Symbol Min. Typ. Power Supply Voltage Max. Unit VCC, VCCQ 3.0 3.3 3.6 V Input High Voltage VIH 2.0 — VCC + 0.3 V Input Low Voltage VIL –0.3 — 0.8 V Capacitance Parameter Input Capacitance (A0 - A13) Input Capacitance (CLK, CKE, CS, RAS, CAS, WE, DQM) Input/Output Capacitance (DQ1 - DQ4) (VCC = 3.3 V ±0.3 V, Ta = 25°C, f = 1 MHz) Symbol Min. Max. Unit CIN1 2 5 pF CIN2 2 5 pF COUT 2 7 pF 5/28 ¡ Semiconductor MD56V62400/H DC Characteristics Condition Parameter Symbol Version H-15 Unit Note -10 -12 Min. Max.Min. Max. Min. Max. 2.4 — 2.4 — 2.4 — V CKE Others Output High Voltage VOH — IOH = –2 mA Output Low Voltage VOL — IOL = 2 mA Input Leakage Current ILI — — –10 10 –10 10 –10 10 mA Output Leakage Current ILO — — –10 10 –10 10 –10 10 mA Average Power Supply Current (Operating) ICC1 CKE ≥ VIH tCC = min tRC = min No Burst Power Supply Current (Stand by) ICC2 CKE ≥ VIH tCC = min Average Power ICC3S Supply Current (Clock Suspension) CKE £ VIL tCC = min Average Power Supply Current (Active Stand by) ICC3 CKE ≥ VIH Power Supply Current (Burst) ICC4 CKE ≥ VIH tCC = min — 130 — 110 — Power Supply Current (Auto-Refresh) Average Power Supply Current (Self-Refresh) ICC5 CKE ≥ VIH tCC = min tRC = min — 180 — 150 — 150 mA Average Power Supply Current (Power down) ICC7 Notes: ICC6 CKE £ VIL CKE £ VIL — 0.4 — 0.4 — 0.4 V — 110 — 95 — 90 mA 1, 2 — 40 — 35 — 30 mA 3 — 15 — 15 — 15 mA 2 — 75 — 65 — 55 mA 3 tCC = min 95 mA 1, 2 2 tCC = min — 2 — 2 — 2 mA — 2 — 2 — 2 mA tCC = min 1. Measured with outputs open. 2. The address and data can be changed once or left unchanged during one cycle. 3. The address and data can be changed once or left unchanged during two cycles. 6/28 ¡ Semiconductor MD56V62400/H Mode Set Address Keys CAS Latency Burst Type Burst Length A6 A5 A4 CL A3 BT A2 A1 A0 0 0 0 Reserved 0 Sequential 0 0 0 0 0 1 Reserved 1 Interleave 0 0 1 2 2 0 1 0 2 0 1 0 4 4 0 1 1 3 0 1 1 8 8 1 0 0 Reserved 1 0 0 Reserved Reserved 1 0 1 Reserved 1 0 1 Reserved Reserved 1 1 0 Reserved 1 1 0 Reserved Reserved 1 1 1 Reserved 1 1 1 Reserved Reserved Note: BT = 0 BT = 1 Reserved Reserved A7, A8, A9, A10, A11, A12 and A13 should stay "L" during mode set cycle. POWER ON SEQUENCE 1. With inputs in NOP state, turn on the power supply and start the system clock. 2. After the VCC voltage has reached the specified level, pause for 200 ms or more with the input kept in NOP state. 3. Issue the precharge all bank command. 4. Apply a CBR auto-refresh eight or more times. 5. Enter the mode register setting command. 7/28 ¡ Semiconductor MD56V62400/H AC Characteristics Parameter Clock Cycles Time Note 1, 2 Symbol CL = 3 CL = 2 tCC MD56V62400-10 MD56V62400-12 MD56V62400H-15 Unit Note Min. Max. Min. Max. Min. Max. 10 — 12 — 15 — ns 15 — 17.5 — 15 — ns — 9 — 10 — 9 ns 3, 4 — 9 — 14 — 9 ns 3, 4 Access Time from CL = 3 Clock CL = 2 tAC Clock "H" Pulse Time tCH 3 — 3 — 3 — ns Clock "L" Pulse Time tCL 3 — 3 — 3 — ns Input Setup Time tSI 3 — 3 — 3 — ns Input Hold Time tHI 1 — 1.5 — 1 — ns Output Low Impedance Time from Clock tOLZ 3 — 3 — 3 — ns Output High Impedance Time from Clock tOHZ — 8 — 10 — 8 ns Output Hold from Clock tOH 3 — 3 — 3 — ns RAS Cycle Time tRC 90 — 115 — 105 — ns RAS Precharge Time tRP 30 — 45 — 30 — ns RAS Active Time tRAS 60 105 70 105 70 105 ns RAS to CAS Delay Time tRCD 30 — 35 — 30 — ns Write Recovery Time tWR 15 — 24 — 15 — ns RAS to RAS Bank Active Delay Time tRRD 20 — 24 — 24 — ns Refresh Time tREF — 64 — 64 — 64 ms Power-down Exit Set-up Time tPDE tSI + 1 CLK — tSI + 1 CLK — tSI + 1 CLK — ns 3 — 3 — 3 ns — Input Level Transition Time tT CAS to CAS Delay Time (Min.) lCCD 1 1 1 Cycle Clock Disable Time from CKE lCKE 1 1 1 Cycle Data Output High Impedance Time from DQM lDOZ 2 2 2 Cycle Data Input Mask Time from DQM lDOD 0 0 0 Cycle Data Input Time from Write Command lDWD 0 0 0 Cycle Data Output High Impedance l Time from Precharge Command ROH 2 2 2 Cycle Active Command Input Time from Mode Register Set Command Input (Min.) lMRD 3 3 3 Cycle Write Command Input Time from Output lOWD 2 2 2 Cycle 3 8/28 ¡ Semiconductor MD56V62400/H Notes : 1. AC measurements assume that tT = 1 ns. 2. The reference level for timing of input signals is 1.4 V. 3. Output load. 1.4 V Z = 50 W 50 W Output 50 pF 4. The access time is defined at 1.4 V. 5. If tT is longer than 1 ns, then the reference level for timing of input signals is VIH and VIL. 9/28 , , ,, , ¡ Semiconductor MD56V62400/H TIMING WAVEFORM Read & Write Cycle (Same Bank) @ CAS Latency = 2, Burst Length = 4 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 CLK tRC CKE CS tRP RAS tRCD CAS ADDR Ra Ca0 Rb Cb0 A13 A12 A10 Ra Rb tOH DQ Qa0 Qa1 Qa2 Qa3 Db0 Db1 tOHZ tAC Db2 Db3 tWR WE DQM Row Active Read Command Row Active Write Command Precharge Command Precharge Command 10/28 ¡ Semiconductor MD56V62400/H Single Bit Read-Write-Read Cycle (Same Page) @ CAS Latency = 2, Burst Length = 4 tCH 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 CLK , ,, ,, tCC tCL High CKE CS tSI tHI RAS lCCD tHI tSI CAS tSI ADDR tSI tSI Ra Ca Cb tHI Cc tHI A13 A12 A10 Ra tAC DQ Qa tHI Db tOLZ Qc tSI tOH tOHZ lOWD tHI WE tSI DQM Row Active Write Command Read Command Precharge Command Read Command 11/28 ¡ Semiconductor *Notes: MD56V62400/H 1. When CS is set "High" at a clock transition from "Low" to "High", all inputs except CKE and DQM are invalid. 2. When issuing an active, read or write command, the bank is selected by A12 and A13. A12 A13 Active, read or write 0 0 Bank A 0 1 Bank B 1 0 Bank C 1 1 Bank D 3. The auto precharge function is enabled or disabled by the A10 input when the read or write command is issued. A10 A12 A13 0 0 0 After the end of burst, bank A holds the idle status. Operation 1 0 0 After the end of burst, bank A is precharged automatically. 0 0 1 After the end of burst, bank B holds the idle status. 1 0 1 After the end of burst, bank B is precharged automatically. 0 1 0 After the end of burst, bank C holds the idle status. 1 1 0 After the end of burst, bank C is precharged automatically. 0 1 1 After the end of burst, bank D holds the idle status. 1 1 1 After the end of burst, bank D is precharged automatically. 4. When issuing a precharge command, the bank to be precharged is selected by the A10, A12 and A13 inputs. A10 A12 A13 0 0 0 Bank A is precharged. 0 0 1 Bank B is precharged. Operation 0 1 0 Bank C is precharged. 0 1 1 Bank D is precharged. 1 X X All banks are precharged. 5. The input data and the write command are latched by the same clock (Write latency = 0). 6. The output is forced to high impedance by (1 CLK + tOHZ) after DQM entry. 12/28 ¡ Semiconductor MD56V62400/H ,, , , ,,, , , , , ,, Page Read & Write Cycle (Same Bank) @ CAS Latency = 2, Burst Length = 4 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 CLK High CKE CS Bank A Active RAS CAS lCCD ADDR Ca0 Cb0 Cc0 Cd0 A13 A12 A10 DQ Qa0 Qa1 Qb0 Qb1 Dc0 Dc1 lOWD Dd0 tWR *Note2 WE *Note1 DQM Read Command Read Command Write Command Write Command Precharge Command *Notes: 1. To write data before a burst read ends, DQM should be asserted three cycles prior to the write command to avoid bus contention. 2. To assert row precharge before a burst write ends, wait tWR after the last write data input. Input data during the precharge input cycle will be masked internally. 13/28 , , , ,, , , ¡ Semiconductor MD56V62400/H Read & Write Cycle with Auto Precharge @ Burst Length = 4 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 CLK High CKE CS RAS tRRD CAS ADDR RAa RDb CAa RAa RDb CDb A13 A12 A10 WE CAS Latency = 2 DQ QAa0 QAa1 QAa2 QAa3 DDb0 DDb1 DDb2 DDb3 A-Bank Precharge Start DQM CAS Latency = 3 DQ QAa0 QAa1 QAa2 QAa3 DDb0 DDb1 DDb2 DDb3 A-Bank Precharge Start tWR DQM Row Active (A-Bank) A Bank Read with Auto Precharge Row Active (D-Bank) D Bank Write with Auto Precharge D Bank Precharge Start Point 14/28 , , , , , , , ¡ Semiconductor MD56V62400/H Bank Interleave Random Row Read Cycle @ CAS Latency = 2, Burst Length = 4 0 CLK CKE CS 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 High tRC RAS CAS ADDR A13 A12 A10 DQ WE DQM tRRD RAa CAa RAa RCb CCb RCb Read Command (A-Bank) CAc RAc QAa0 QAa1 QAa2 QAa3 Row Active (A-Bank) RAc QCb0 QCb1 QCb2 QCb3 Read Command (C-Bank) Row Active (C-Bank) Precharge Command (A-Bank) QAc0 QAc1 QAc2 QAc3 Read Command (A-Bank) Precharge Command (C-Bank) Row Active (A-Bank) 15/28 ¡ Semiconductor MD56V62400/H Bank Interleave Random Row Write Cycle @ CAS Latency = 2, Burst Length = 4 , ,,,, , ,,, 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 CLK High CKE CS RAS CAS ADDR RAa CAa RBb CBb RAc CAc A13 A12 A10 RAa DQ RBb RAc DAa0 DAa1 DAa2 DAa3 DBb0 DBb1 DBb2 DBb3 DAc0 DAc1 WE DQM Row Active (A-Bank) Row Active (B-Bank) Write Command (A-Bank) Precharge Command (A-Bank) Write Command (B-Bank) Write Command (A-Bank) Row Active (A-Bank) Precharge Command (A-Bank) Precharge Command (B-Bank) 16/28 ,, , , , , ¡ Semiconductor MD56V62400/H Bank Interleave Page Read Cycle @ CAS Latency = 2, Burst Length = 4 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 CLK High CKE *Note1 CS RAS CAS ADDR RAa CAa RCb CCb CAc CCd CAe A13 A12 A10 RAa RCa DQ QAa0 QAa1 QAa2 QAa3 QCb0 QCb1 QCb2 QCb3 QAc0 QAc1 QCd0 QCd1 QAe0 QAe1 lROH WE DQM Row Active (A-Bank) Row Active (C-Bank) Read Command (A-Bank) *Note: Read Command (C-Bank) Read Command (C-Bank) Read Command (A-Bank) Precharge Command (A-Bank) Read Command (A-Bank) 1. CS is ignored when RAS, CAS and WE are high at the same cycle. 17/28 , ,, , , , ,, ,, ¡ Semiconductor MD56V62400/H Bank Interleave Page Write Cycle @ CAS Latency = 2, Burst Length = 4 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 CLK High CKE CS RAS CAS ADDR RBa CBa RDb CDb CBc CDd A13 A12 A10 RBa DQ RDb DBa0 DBa1 DBa2 DBa3 DDb0 DDb1 DDb2 DDb3 DBc0 DBc1 DDd0 WE DQM Row Active (B-Bank) Row Active (D-Bank) Write Command (B-Bank) Write Command (D-Bank) Write Command (D-Bank) Write Command (B-Bank) Precharge Command (All Banks) 18/28 ¡ Semiconductor MD56V62400/H , , , , , Bank Interleave Random Row Read/Write Cycle @ CAS Latency = 2, Burst Length = 4 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 CLK High CKE CS RAS CAS ADDR RAa CAa RCb CCb RAc CAc A13 A12 A10 RAa RCb DQ QAa0 QAa1 QAa2 QAa3 RAc DCb0 DCb1 DCb2 DCb3 QAc0 QAc1 QAc2 QAc3 WE DQM Row Active (A-Bank) Row Active (C-Bank) Read Command (A-Bank) Precharge Command (A-Bank) Write Command (C-Bank) Read Command (A-Bank) Row Active (A-Bank) 19/28 ¡ Semiconductor MD56V62400/H Bank Interleave Page Read/Write Cycle @ CAS Latency = 2, Burst Length = 4 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 CLK CKE CS RAS CAS ADDR A13 A12 A10 DQ WE DQM ,,, ,,, , High CAa0 CDb0 QAa0 QAa1 QAa2 QAa3 Read Command (A-Bank) CAc0 DDb0 DDb1 DDb2 DDb3 Write Command (D-Bank) QAc0 QAc1 QAc2 QAc3 Read Command (A-Bank) 20/28 ¡ Semiconductor MD56V62400/H Clock Suspension & DQM Operation Cycle @ CAS Latency = 2, Burst Length = 4 0 CKE CS RAS CAS ADDR A13 A12 A10 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 ¨ , , , , , , , , ,,, Ra ¨ CLK *Note1 *Note1 Ca Cb Cc Ra *Note2 DQ Qa0 Qa1 Qa2 Qb0 Qb1 tOHZ WE DQM Row Active Read Command *Notes: CLOCK Suspension Read DQM Read Command Dc0 tOHZ Read DQM Dc2 *Note3 Write DQM Write Command CLOCK Suspension Write DQM 1. When Clock Suspension is asserted, the next clock cycle is ignored. 2. When DQM is asserted, the read data after two clock cycles is masked. 3. When DQM is asserted, the write data in the same clock cycle is masked. 21/28 ¡ Semiconductor MD56V62400/H Read Interruption by Precharge Command @ Burst Length = 8 , , ,,,, ,, , ,, 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 CLK High CKE CS RAS CAS ADDR Ra Ca A13 A12 A10 Ra WE CAS Latency = 2 *Note1 DQ Qa0 Qa1 Qa2 Qa3 Qa4 Qa5 DQM CAS Latency = 3 *Note1 DQ Qa0 Qa1 Qa2 Qa3 Qa4 DQM Row Active *Note: Read Command Precharge Command 1. If row precharge is asserted before burst read ends, then the read data will not output after the second clock cycle of the precharge command. 22/28 , , , , , ¡ Semiconductor MD56V62400/H Power Down Mode @ CAS Latency = 2, Burst Length = 4 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 CLK tSI *Note1 tPDE *Note2 tSI tSI CKE CS RAS CAS Ra ADDR Ca A13 A12 Ra A10 DQ Qa0 Qa1 Qa2 WE DQM Row Active Power-down Entry *Notes: Power-down Exit Clock Suspention Entry Clock Suspention Exit Read Command Precharge Command 1. When all banks are in precharge state, and if CKE is set low, then the MD56V62400/H enters power-down mode and maintains the mode while CKE is low. 2. To release the circuit from power-down mode, CKE has to be set high for longer than tPDE (tSI + 1 CLK). 23/28 , ,,,, ,, , ¡ Semiconductor MD56V62400/H Self Refresh Cycle 0 CLK 1 2 tRC CKE tSI CS RAS CAS ADDR A13 A12 A10 DQ WE DQM Ra BS BS Ra Hi - Z Self Refresh Entry Hi - Z Self Refresh Exit Row Active 24/28 ¡ Semiconductor MD56V62400/H Auto Refresh Cycle Mode Register Set Cycle 0 CLK CKE CS 1 2 3 4 5 6 0 1 2 3 CAS ADDR DQ WE DQM 5 6 7 8 9 10 11 12 ,, ,,, , High High tRC lMRD RAS 4 key Ra Hi - Z MRS New Command Hi - Z Auto Refresh Auto Refresh 25/28 ¡ Semiconductor MD56V62400/H FUNCTION TRUTH TABLE (Table 1) (1/2) Current State1 CS RAS CAS WE BA Idle Row Active Read Write Action ADDR H X X X X X NOP L H H H X X NOP L H H L BA X ILLEGAL 2 L H L X BA CA ILLEGAL 2 L L H H BA RA Row Active L L H L BA A10 NOP 4 L L L H X X Auto-Refresh or Self-Refresh 5 L L L L L OP Code H X X X X X Mode Register Write NOP L H H X X X NOP L H L H BA CA, A10 Read L H L L BA CA, A10 Write L L H H BA RA ILLEGAL 2 L L H L BA A10 Precharge L L L X X X ILLEGAL H X X X X X NOP (Continue Row Active after Burst ends) L H H H X X NOP (Continue Row Active after Burst ends) L H H L BA X Reserved L H L H BA CA, A10 Term Burst, start new Burst Read L H L L BA CA, A10 Term Burst, start new Burst Write L L H H BA RA ILLEGAL 2 L L H L BA A10 Term Burst, execute Row Precharge L L L X X X ILLEGAL H X X X X X NOP (Continue Row Active after Burst ends) L H H H X X NOP (Continue Row Active after Burst ends) L H H L BA X Reserved (Term Burst) --> Row Active L H L H BA CA, A10 Term Burst, start new Burst Read L H L L BA CA, A10 Term Burst, start new Burst Write L L H H BA RA ILLEGAL 2 L L H L BA A10 Term Burst, execute Row Precharge L L L X X X ILLEGAL Read with H X X X X X NOP (Continue Burst to End and enter Row Precharge) Auto Precharge L H H H X X NOP (Continue Burst to End and enter Row Precharge) L H H L BA X ILLEGAL 2 L H L H BA CA, A10 ILLEGAL 2 L H L L X X L L H X BA RA, A10 L L L X X X ILLEGAL ILLEGAL ILLEGAL 2 Write with H X X X X X NOP (Continue Burst to End and enter Row Precharge) Auto Precharge L H H H X X NOP (Continue Burst to End and enter Row Precharge) L H H L BA X ILLEGAL 2 L H L H BA CA, A10 ILLEGAL 2 L H L L X X L L H X BA RA, A10 L L L X X X ILLEGAL ILLEGAL 2 ILLEGAL 26/28 ¡ Semiconductor MD56V62400/H FUNCTION TRUTH TABLE (Table 1) (2/2) Current State1 CS RAS CAS WE BA Precharge Write Recovery Row Active Refresh Action ADDR H X X X X X NOP --> Idle after tRP L H H H X X NOP --> Idle after tRP L H H L BA X ILLEGAL 2 L H L X BA CA ILLEGAL 2 L L H H BA RA ILLEGAL 2 L L H L BA A10 NOP 4 L L L X X X ILLEGAL H X X X X X NOP L H H H X X NOP L H H L BA X ILLEGAL 2 L H L X BA CA ILLEGAL 2 L L H H BA RA ILLEGAL 2 L L H L BA A10 ILLEGAL 2 L L L X X X ILLEGAL H X X X X X NOP --> Row Active after tRCD L H H H X X NOP --> Row Active after tRCD L H H L BA X ILLEGAL 2 L H L X BA CA ILLEGAL 2 L L H H BA RA ILLEGAL 2 L L H L BA A10 ILLEGAL 2 L L L X X X ILLEGAL H X X X X X NOP --> Idle after tRC L H H X X X NOP --> Idle after tRC L H L X X X ILLEGAL L L H X X X ILLEGAL L L L X X X ILLEGAL Mode Register H X X X X X NOP Access L H H H X X NOP L H H L X X ILLEGAL L H L X X X ILLEGAL L L X X X X ILLEGAL ABBREVIATIONS RA = Row Address CA = Column Address Notes: BA = Bank Address AP = Auto Precharge NOP = No OPeration command 1. All inputs are enabled when CKE is set high for at least 1 cycle prior to the inputs. 2. Illegal to bank in specified state, but may be legal in some cases depending on the state of bank selection. 3. Satisfy the timing of tCCD and tWR to prevent bus contention. 4. NOP to bank precharging or in idle state. Precharges activated bank by BA or A10. 5. Illegal if any bank is not idle. 27/28 ¡ Semiconductor MD56V62400/H FUNCTION TRUTH TABLE for CKE (Table 2) Current State (n) CKEn-1 Self Refresh Power Down CKEn CS RAS CAS WE H X X X X L H H X L H L H L H L H H L H L H L L H L L X L L X X X ADDR Action X X INVALID X X X Exit Self Refresh --> ABI H H X Exit Self Refresh --> ABI L X ILLEGAL X X ILLEGAL X X ILLEGAL X X NOP (Maintain Self Refresh) H X X X X X X INVALID L H H X X X X Exit Power Down --> ABI L H L H H H X Exit Power Down --> ABI L H L H H L X ILLEGAL L H L H L X X ILLEGAL L H L L X X X ILLEGAL 6 L L X X X X X NOP (Continue power down mode) H H X X X X X Refer to Table 1 H L H X X X X Enter Power Down H L L H H H X Enter Power Down H L L H H L X ILLEGAL H L L H L X X ILLEGAL H L L L H L X ILLEGAL H L L L L H X Enter Self Refresh H L L L L L X ILLEGAL L L X X X X X NOP Any State Other H H X X X X X Refer to Operations in Table 1 than Listed Above H L X X X X X Begin Clock Suspend Next Cycle L H X X X X X Enable Clock of Next Cycle L L X X X X X Continue Clock Suspension All Banks Idle 6 (ABI) Note: 6. Power-down and self refresh can be entered only when all the banks are in an idle state. 28/28