PD - 96200 IRFB3077GPbF Applications l High Efficiency Synchronous Rectification in SMPS l Uninterruptible Power Supply l High Speed Power Switching l Hard Switched and High Frequency Circuits Benefits l Worldwide Best RDS(on) in TO-220 l Improved Gate, Avalanche and Dynamic dV/dt Ruggedness l Fully Characterized Capacitance and Avalanche SOA l Enhanced body diode dV/dt and dI/dt Capability l Lead-Free l Halogen-Free HEXFET® Power MOSFET D G S VDSS RDS(on) typ. max. ID (Silicon Limited) 75V 2.8m: 3.3m: 210A ID (Package Limited) 120A c D G D S TO-220AB IRFB3077GPbF G D S Gate Drain Source Absolute Maximum Ratings Symbol ID @ TC = 25°C ID @ TC = 100°C ID @ TC = 25°C IDM PD @TC = 25°C VGS Parameter Max. 210 150 120 850 370 2.5 ± 20 2.5 -55 to + 175 d Pulsed Drain Current Maximum Power Dissipation Linear Derating Factor Gate-to-Source Voltage Peak Diode Recovery Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds (1.6mm from case) Mounting torque, 6-32 or M3 screw f dV/dt TJ TSTG Avalanche Characteristics EAS (Thermally limited) IAR EAR Single Pulse Avalanche Energy Avalanche Current Repetitive Avalanche Energy d e d Units c c Continuous Drain Current, VGS @ 10V (Silicon Limited) Continuous Drain Current, VGS @ 10V (Silicon Limited) Continuous Drain Current, VGS @ 10V (Wire Bond Limited) A W W/°C V V/ns °C 300 x x 10lbf in (1.1N m) 200 See Fig. 14, 15, 22a, 22b, mJ A mJ Thermal Resistance Symbol RθJC RθCS RθJA www.irf.com Parameter j Junction-to-Case Case-to-Sink, Flat Greased Surface Junction-to-Ambient Typ. Max. Units ––– 0.50 ––– 0.402 ––– 62 °C/W 1 12/05/08 IRFB3077GPbF Static @ TJ = 25°C (unless otherwise specified) Symbol Parameter V(BR)DSS ∆V(BR)DSS/∆TJ RDS(on) VGS(th) IDSS Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Drain-to-Source Leakage Current IGSS Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Gate Input Resistance RG Min. Typ. Max. Units 75 ––– ––– 2.0 ––– ––– ––– ––– ––– ––– ––– 0.091 ––– 2.8 3.3 ––– 4.0 ––– 20 ––– 250 ––– 100 ––– -100 1.2 ––– Conditions V VGS = 0V, ID = 250µA V/°C Reference to 25°C, ID = 5mA mΩ VGS = 10V, ID = 75A V VDS = VGS, ID = 250µA VDS = 75V, VGS = 0V µA VDS = 75V, VGS = 0V, TJ = 125°C VGS = 20V nA VGS = -20V Ω f = 1MHz, open drain d g Dynamic @ TJ = 25°C (unless otherwise specified) Symbol gfs Qg Qgs Qgd td(on) tr td(off) tf Ciss Coss Crss Coss eff. (ER) Coss eff. (TR) Parameter Min. Typ. Max. Units Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Effective Output Capacitance (Energy Related) Effective Output Capacitance (Time Related) h i 160 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– 160 37 42 25 87 69 95 9400 820 350 1090 1260 ––– 220 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– S nC ns Conditions VDS = 50V, ID = 75A ID = 75A VDS = 38V VGS = 10V VDD = 38V ID = 75A RG = 2.1Ω VGS = 10V VGS = 0V VDS = 50V ƒ = 1.0MHz,See Fig. 5 VGS = 0V, VDS = 0V to 60V VGS = 0V, VDS = 0V to 60V g g pF i, See Fig.11 h, Diode Characteristics Symbol IS Parameter Continuous Source Current VSD trr (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Qrr Reverse Recovery Charge IRRM ton Reverse Recovery Current Forward Turn-On Time ISM d Min. Typ. Max. Units ––– ––– ––– ––– 210 c 850 Conditions MOSFET symbol A showing the integral reverse D G S p-n junction diode. ––– ––– 1.3 V TJ = 25°C, IS = 75A, VGS = 0V TJ = 25°C VR = 64V, ––– 42 63 ns T = 125°C I ––– 50 75 J F = 75A di/dt = 100A/µs TJ = 25°C ––– 59 89 nC TJ = 125°C ––– 86 130 ––– 2.5 ––– A TJ = 25°C Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) g g Notes: Calculated continuous current based on maximum allowable junction Pulse width ≤ 400µs; duty cycle ≤ 2%. temperature. Bond wire current limit is 120A. Note that current Coss eff. (TR) is a fixed capacitance that gives the same charging time limitations arising from heating of the device leads may occur with as Coss while VDS is rising from 0 to 80% VDSS. some lead mounting arrangements. Coss eff. (ER) is a fixed capacitance that gives the same energy as Repetitive rating; pulse width limited by max. junction Coss while VDS is rising from 0 to 80% VDSS . temperature. Rθ is measured at TJ approximately 90°C Limited by TJmax, starting TJ = 25°C, L = 0.028mH RG = 25Ω, IAS = 120A, VGS =10V. Part not recommended for use above this value. ISD ≤ 75A, di/dt ≤ 400A/µs, VDD ≤ V(BR)DSS, TJ ≤ 175°C. 2 www.irf.com IRFB3077GPbF 1000 1000 BOTTOM VGS 15V 10V 8.0V 6.0V 5.5V 5.0V 4.8V 4.5V TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 15V 10V 8.0V 6.0V 5.5V 5.0V 4.8V 4.5V 100 4.5V BOTTOM 4.5V 100 ≤ 60µs PULSE WIDTH Tj = 175°C ≤ 60µs PULSE WIDTH Tj = 25°C 10 10 0.1 1 10 0.1 100 Fig 1. Typical Output Characteristics 100 Fig 2. Typical Output Characteristics 1000 2.5 100 RDS(on) , Drain-to-Source On Resistance (Normalized) ID, Drain-to-Source Current(Α) 10 VDS , Drain-to-Source Voltage (V) VDS, Drain-to-Source Voltage (V) TJ = 175°C TJ = 25°C 10 VDS = 25V ≤ 60µs PULSE WIDTH 1 2.0 3.0 4.0 5.0 6.0 7.0 ID = 75A VGS = 10V 2.0 1.5 1.0 0.5 8.0 -60 -40 -20 0 VGS, Gate-to-Source Voltage (V) 16000 VGS, Gate-to-Source Voltage (V) Coss = Cds + Cgd Ciss 8000 4000 Coss Crss 10 100 VDS , Drain-to-Source Voltage (V) Fig 5. Typical Capacitance vs. Drain-to-Source Voltage www.irf.com ID= 75A VDS = 60V VDS= 38V VDS= 17V 16 12 8 4 0 0 1 Fig 4. Normalized On-Resistance vs. Temperature 20 VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd 12000 20 40 60 80 100 120 140 160 180 TJ , Junction Temperature (°C) Fig 3. Typical Transfer Characteristics C, Capacitance (pF) 1 0 40 80 120 160 200 240 280 QG Total Gate Charge (nC) Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage 3 IRFB3077GPbF 10000 ID, Drain-to-Source Current (A) ISD , Reverse Drain Current (A) 1000.0 TJ = 175°C 100.0 10.0 TJ = 25°C 1.0 OPERATION IN THIS AREA LIMITED BY R DS(on) 1000 100µsec 100 1msec LIMITED BY PACKAGE 10 10msec 1 VGS = 0V 0.1 0.1 0.0 0.4 0.8 1.2 1.6 0.1 2.0 LIMITED BY PACKAGE ID, Drain Current (A) 200 160 120 80 40 0 75 100 125 150 175 V(BR)DSS , Drain-to-Source Breakdown Voltage 240 50 100.0 100 90 80 70 -60 -40 -20 0 TC, Case Temperature (°C) 20 40 60 80 100 120 140 160 180 TJ , Junction Temperature (°C) Fig 9. Maximum Drain Current vs. Case Temperature Fig 10. Drain-to-Source Breakdown Voltage EAS, Single Pulse Avalanche Energy (mJ) 3.0 2.5 2.0 Energy (µJ) 10.0 Fig 8. Maximum Safe Operating Area Fig 7. Typical Source-Drain Diode Forward Voltage 25 1.0 VDS , Drain-toSource Voltage (V) VSD, Source-to-Drain Voltage (V) 1.5 1.0 0.5 0.0 1000 I D 22A 40A BOTTOM 120A TOP 800 600 400 200 0 0 20 40 60 VDS, Drain-to-Source Voltage (V) Fig 11. Typical COSS Stored Energy 4 DC Tc = 25°C Tj = 175°C Single Pulse 80 25 50 75 100 125 150 175 Starting TJ, Junction Temperature (°C) Fig 12. Maximum Avalanche Energy Vs. DrainCurrent www.irf.com IRFB3077GPbF 1 Thermal Response ( ZthJC ) D = 0.50 0.1 0.20 0.10 0.05 0.01 0.02 0.01 τJ τJ τ1 R2 R2 τ2 τ1 τ2 R3 R3 τ3 τC τ τ3 Ri (°C/W) τi (sec) 0.0766 0.000083 0.1743 0.000995 0.1513 Ci= τi/Ri Ci i/Ri SINGLE PULSE ( THERMAL RESPONSE ) 0.001 R1 R1 0.007038 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.0001 1E-006 1E-005 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case 1000 Avalanche Current (A) Duty Cycle = Single Pulse Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆Tj = 150°C and Tstart =25°C (Single Pulse) 100 0.01 0.05 0.10 10 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆Τ j = 25°C and Tstart = 150°C. 1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 14. Typical Avalanche Current vs.Pulsewidth EAR , Avalanche Energy (mJ) 240 Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 16a, 16b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 14, 15). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see Figures 13) TOP Single Pulse BOTTOM 1% Duty Cycle ID = 120A 200 160 120 80 40 0 25 50 75 100 125 150 175 Starting TJ , Junction Temperature (°C) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav Fig 15. Maximum Avalanche Energy vs. Temperature www.irf.com 5 IRFB3077GPbF 24 ID = 1.0A ID = 1.0mA ID = 250µA 20 3.0 16 IRRM - (A) VGS(th) Gate threshold Voltage (V) 4.0 2.0 12 8 IF = 30A VR = 64V 4 1.0 -75 -50 -25 0 25 50 75 TJ = 125°C TJ = 25°C 0 100 125 150 175 100 200 300 400 500 600 700 800 900 1000 TJ , Temperature ( °C ) dif / dt - (A / µs) Fig 16. Threshold Voltage Vs. Temperature Fig. 17 - Typical Recovery Current vs. dif/dt 24 400 20 300 QRR - (nC) IRRM - (A) 16 12 8 4 IF = 45A VR = 64V 200 IF = 30A VR = 64V 100 TJ = 125°C TJ = 125°C TJ = 25°C TJ = 25°C 0 0 100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000 dif / dt - (A / µs) dif / dt - (A / µs) Fig. 19 - Typical Stored Charge vs. dif/dt Fig. 18 - Typical Recovery Current vs. dif/dt 400 QRR - (nC) 300 200 100 IF = 45A VR = 64V TJ = 125°C 0 TJ = 25°C 100 200 300 400 500 600 700 800 900 1000 dif / dt - (A / µs) 6 Fig. 20 - Typical Stored Charge vs. dif/dt www.irf.com IRFB3077GPbF D.U.T Driver Gate Drive - - - * D.U.T. ISD Waveform Reverse Recovery Current + RG • • • • dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer + D= Period P.W. + + - Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Current Inductor Curent ISD Ripple ≤ 5% * VGS = 5V for Logic Level Devices Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V(BR)DSS 15V D.U.T RG VGS 20V DRIVER L VDS tp + V - DD IAS tp A 0.01Ω I AS Fig 22a. Unclamped Inductive Test Circuit LD Fig 22b. Unclamped Inductive Waveforms VDS VDS 90% + VDD - 10% D.U.T VGS VGS Pulse Width < 1µs Duty Factor < 0.1% td(on) Fig 23a. Switching Time Test Circuit tr td(off) tf Fig 23b. Switching Time Waveforms Id Vds Vgs L DUT 0 VCC Vgs(th) 1K Qgs1 Qgs2 Fig 24a. Gate Charge Test Circuit www.irf.com Qgd Qgodr Fig 24b. Gate Charge Waveform 7 IRFB3077GPbF TO-220AB Package Outline Dimensions are shown in millimeters (inches) TO-220AB Part Marking Information (;$03/( 7+,6,6$1,5)%*3%) 1RWH*VXIIL[LQSDUWQXPEHU LQGLFDWHV+DORJHQ)UHH 1RWH3LQDVVHPEO\OLQHSRVLWLRQ LQGLFDWHV/HDG)UHH ,17(51$7,21$/ 5(&7,),(5 /2*2 $66(0%/< /27&2'( 3$57180%(5 '$7(&2'( < /$67',*,72) &$/(1'$5<($5 :: :25.:((. ; )$&725<&2'( TO-220AB packages are not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/ Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. 8 IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 12/2008 www.irf.com