IRF IRFB3206GPBF Hexfetpower mosfet Datasheet

PD - 96200
IRFB3077GPbF
Applications
l High Efficiency Synchronous Rectification in SMPS
l Uninterruptible Power Supply
l High Speed Power Switching
l Hard Switched and High Frequency Circuits
Benefits
l Worldwide Best RDS(on) in TO-220
l Improved Gate, Avalanche and Dynamic dV/dt
Ruggedness
l Fully Characterized Capacitance and Avalanche
SOA
l Enhanced body diode dV/dt and dI/dt Capability
l Lead-Free
l Halogen-Free
HEXFET® Power MOSFET
D
G
S
VDSS
RDS(on) typ.
max.
ID (Silicon Limited)
75V
2.8m:
3.3m:
210A
ID (Package Limited)
120A
c
D
G
D
S
TO-220AB
IRFB3077GPbF
G
D
S
Gate
Drain
Source
Absolute Maximum Ratings
Symbol
ID @ TC = 25°C
ID @ TC = 100°C
ID @ TC = 25°C
IDM
PD @TC = 25°C
VGS
Parameter
Max.
210
150
120
850
370
2.5
± 20
2.5
-55 to + 175
d
Pulsed Drain Current
Maximum Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Peak Diode Recovery
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
(1.6mm from case)
Mounting torque, 6-32 or M3 screw
f
dV/dt
TJ
TSTG
Avalanche Characteristics
EAS (Thermally limited)
IAR
EAR
Single Pulse Avalanche Energy
Avalanche Current
Repetitive Avalanche Energy
d
e
d
Units
c
c
Continuous Drain Current, VGS @ 10V (Silicon Limited)
Continuous Drain Current, VGS @ 10V (Silicon Limited)
Continuous Drain Current, VGS @ 10V (Wire Bond Limited)
A
W
W/°C
V
V/ns
°C
300
x
x
10lbf in (1.1N m)
200
See Fig. 14, 15, 22a, 22b,
mJ
A
mJ
Thermal Resistance
Symbol
RθJC
RθCS
RθJA
www.irf.com
Parameter
j
Junction-to-Case
Case-to-Sink, Flat Greased Surface
Junction-to-Ambient
Typ.
Max.
Units
–––
0.50
–––
0.402
–––
62
°C/W
1
12/05/08
IRFB3077GPbF
Static @ TJ = 25°C (unless otherwise specified)
Symbol
Parameter
V(BR)DSS
∆V(BR)DSS/∆TJ
RDS(on)
VGS(th)
IDSS
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
Gate Threshold Voltage
Drain-to-Source Leakage Current
IGSS
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Gate Input Resistance
RG
Min. Typ. Max. Units
75
–––
–––
2.0
–––
–––
–––
–––
–––
––– –––
0.091 –––
2.8
3.3
–––
4.0
–––
20
––– 250
––– 100
––– -100
1.2
–––
Conditions
V VGS = 0V, ID = 250µA
V/°C Reference to 25°C, ID = 5mA
mΩ VGS = 10V, ID = 75A
V VDS = VGS, ID = 250µA
VDS = 75V, VGS = 0V
µA
VDS = 75V, VGS = 0V, TJ = 125°C
VGS = 20V
nA
VGS = -20V
Ω f = 1MHz, open drain
d
g
Dynamic @ TJ = 25°C (unless otherwise specified)
Symbol
gfs
Qg
Qgs
Qgd
td(on)
tr
td(off)
tf
Ciss
Coss
Crss
Coss eff. (ER)
Coss eff. (TR)
Parameter
Min. Typ. Max. Units
Forward Transconductance
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Effective Output Capacitance (Energy Related)
Effective Output Capacitance (Time Related)
h
i
160
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
160
37
42
25
87
69
95
9400
820
350
1090
1260
–––
220
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
S
nC
ns
Conditions
VDS = 50V, ID = 75A
ID = 75A
VDS = 38V
VGS = 10V
VDD = 38V
ID = 75A
RG = 2.1Ω
VGS = 10V
VGS = 0V
VDS = 50V
ƒ = 1.0MHz,See Fig. 5
VGS = 0V, VDS = 0V to 60V
VGS = 0V, VDS = 0V to 60V
g
g
pF
i, See Fig.11
h,
Diode Characteristics
Symbol
IS
Parameter
Continuous Source Current
VSD
trr
(Body Diode)
Pulsed Source Current
(Body Diode)
Diode Forward Voltage
Reverse Recovery Time
Qrr
Reverse Recovery Charge
IRRM
ton
Reverse Recovery Current
Forward Turn-On Time
ISM
d
Min. Typ. Max. Units
–––
–––
–––
–––
210
c
850
Conditions
MOSFET symbol
A
showing the
integral reverse
D
G
S
p-n junction diode.
––– –––
1.3
V TJ = 25°C, IS = 75A, VGS = 0V
TJ = 25°C
VR = 64V,
–––
42
63
ns
T
=
125°C
I
–––
50
75
J
F = 75A
di/dt
= 100A/µs
TJ = 25°C
–––
59
89
nC
TJ = 125°C
–––
86
130
–––
2.5
–––
A TJ = 25°C
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
g
g
Notes:
 Calculated continuous current based on maximum allowable junction
Pulse width ≤ 400µs; duty cycle ≤ 2%.
temperature. Bond wire current limit is 120A. Note that current
† Coss eff. (TR) is a fixed capacitance that gives the same charging time
limitations arising from heating of the device leads may occur with
as Coss while VDS is rising from 0 to 80% VDSS.
some lead mounting arrangements.
‡ Coss eff. (ER) is a fixed capacitance that gives the same energy as
‚ Repetitive rating; pulse width limited by max. junction
Coss while VDS is rising from 0 to 80% VDSS .
temperature.
ˆ Rθ is measured at TJ approximately 90°C
ƒ Limited by TJmax, starting TJ = 25°C, L = 0.028mH
RG = 25Ω, IAS = 120A, VGS =10V. Part not recommended for use
above this value.
„ ISD ≤ 75A, di/dt ≤ 400A/µs, VDD ≤ V(BR)DSS, TJ ≤ 175°C.
2
www.irf.com
IRFB3077GPbF
1000
1000
BOTTOM
VGS
15V
10V
8.0V
6.0V
5.5V
5.0V
4.8V
4.5V
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
VGS
15V
10V
8.0V
6.0V
5.5V
5.0V
4.8V
4.5V
100
4.5V
BOTTOM
4.5V
100
≤ 60µs PULSE WIDTH
Tj = 175°C
≤ 60µs PULSE WIDTH
Tj = 25°C
10
10
0.1
1
10
0.1
100
Fig 1. Typical Output Characteristics
100
Fig 2. Typical Output Characteristics
1000
2.5
100
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID, Drain-to-Source Current(Α)
10
VDS , Drain-to-Source Voltage (V)
VDS, Drain-to-Source Voltage (V)
TJ = 175°C
TJ = 25°C
10
VDS = 25V
≤ 60µs PULSE WIDTH
1
2.0
3.0
4.0
5.0
6.0
7.0
ID = 75A
VGS = 10V
2.0
1.5
1.0
0.5
8.0
-60 -40 -20 0
VGS, Gate-to-Source Voltage (V)
16000
VGS, Gate-to-Source Voltage (V)
Coss = Cds + Cgd
Ciss
8000
4000
Coss
Crss
10
100
VDS , Drain-to-Source Voltage (V)
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage
www.irf.com
ID= 75A
VDS = 60V
VDS= 38V
VDS= 17V
16
12
8
4
0
0
1
Fig 4. Normalized On-Resistance vs. Temperature
20
VGS = 0V,
f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
12000
20 40 60 80 100 120 140 160 180
TJ , Junction Temperature (°C)
Fig 3. Typical Transfer Characteristics
C, Capacitance (pF)
1
0
40
80
120
160
200
240
280
QG Total Gate Charge (nC)
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage
3
IRFB3077GPbF
10000
ID, Drain-to-Source Current (A)
ISD , Reverse Drain Current (A)
1000.0
TJ = 175°C
100.0
10.0
TJ = 25°C
1.0
OPERATION IN THIS AREA
LIMITED BY R DS(on)
1000
100µsec
100
1msec
LIMITED BY PACKAGE
10
10msec
1
VGS = 0V
0.1
0.1
0.0
0.4
0.8
1.2
1.6
0.1
2.0
LIMITED BY PACKAGE
ID, Drain Current (A)
200
160
120
80
40
0
75
100
125
150
175
V(BR)DSS , Drain-to-Source Breakdown Voltage
240
50
100.0
100
90
80
70
-60 -40 -20 0
TC, Case Temperature (°C)
20 40 60 80 100 120 140 160 180
TJ , Junction Temperature (°C)
Fig 9. Maximum Drain Current vs.
Case Temperature
Fig 10. Drain-to-Source Breakdown Voltage
EAS, Single Pulse Avalanche Energy (mJ)
3.0
2.5
2.0
Energy (µJ)
10.0
Fig 8. Maximum Safe Operating Area
Fig 7. Typical Source-Drain Diode
Forward Voltage
25
1.0
VDS , Drain-toSource Voltage (V)
VSD, Source-to-Drain Voltage (V)
1.5
1.0
0.5
0.0
1000
I D
22A
40A
BOTTOM 120A
TOP
800
600
400
200
0
0
20
40
60
VDS, Drain-to-Source Voltage (V)
Fig 11. Typical COSS Stored Energy
4
DC
Tc = 25°C
Tj = 175°C
Single Pulse
80
25
50
75
100
125
150
175
Starting TJ, Junction Temperature (°C)
Fig 12. Maximum Avalanche Energy Vs. DrainCurrent
www.irf.com
IRFB3077GPbF
1
Thermal Response ( ZthJC )
D = 0.50
0.1
0.20
0.10
0.05
0.01
0.02
0.01
τJ
τJ
τ1
R2
R2
τ2
τ1
τ2
R3
R3
τ3
τC
τ
τ3
Ri (°C/W) τi (sec)
0.0766 0.000083
0.1743 0.000995
0.1513
Ci= τi/Ri
Ci i/Ri
SINGLE PULSE
( THERMAL RESPONSE )
0.001
R1
R1
0.007038
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.0001
1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case
1000
Avalanche Current (A)
Duty Cycle = Single Pulse
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ∆Tj = 150°C and
Tstart =25°C (Single Pulse)
100
0.01
0.05
0.10
10
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ∆Τ j = 25°C and
Tstart = 150°C.
1
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
Fig 14. Typical Avalanche Current vs.Pulsewidth
EAR , Avalanche Energy (mJ)
240
Notes on Repetitive Avalanche Curves , Figures 14, 15:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a temperature far in
excess of Tjmax. This is validated for every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.
4. PD (ave) = Average power dissipation per single avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase
during avalanche).
6. Iav = Allowable avalanche current.
7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as
25°C in Figure 14, 15).
tav = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)
TOP
Single Pulse
BOTTOM 1% Duty Cycle
ID = 120A
200
160
120
80
40
0
25
50
75
100
125
150
175
Starting TJ , Junction Temperature (°C)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
Fig 15. Maximum Avalanche Energy vs. Temperature
www.irf.com
5
IRFB3077GPbF
24
ID = 1.0A
ID = 1.0mA
ID = 250µA
20
3.0
16
IRRM - (A)
VGS(th) Gate threshold Voltage (V)
4.0
2.0
12
8
IF = 30A
VR = 64V
4
1.0
-75 -50 -25
0
25
50
75
TJ = 125°C
TJ = 25°C
0
100 125 150 175
100 200 300 400 500 600 700 800 900 1000
TJ , Temperature ( °C )
dif / dt - (A / µs)
Fig 16. Threshold Voltage Vs. Temperature
Fig. 17 - Typical Recovery Current vs. dif/dt
24
400
20
300
QRR - (nC)
IRRM - (A)
16
12
8
4
IF = 45A
VR = 64V
200
IF = 30A
VR = 64V
100
TJ = 125°C
TJ = 125°C
TJ = 25°C
TJ = 25°C
0
0
100 200 300 400 500 600 700 800 900 1000
100 200 300 400 500 600 700 800 900 1000
dif / dt - (A / µs)
dif / dt - (A / µs)
Fig. 19 - Typical Stored Charge vs. dif/dt
Fig. 18 - Typical Recovery Current vs. dif/dt
400
QRR - (nC)
300
200
100
IF = 45A
VR = 64V
TJ = 125°C
0
TJ = 25°C
100 200 300 400 500 600 700 800 900 1000
dif / dt - (A / µs)
6
Fig. 20 - Typical Stored Charge vs. dif/dt
www.irf.com
IRFB3077GPbF
D.U.T
Driver Gate Drive
ƒ
-
‚
„
-
-
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
+

RG
•
•
•
•
dv/dt controlled by RG
Driver same type as D.U.T.
I SD controlled by Duty Factor "D"
D.U.T. - Device Under Test
VDD
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
+
D=
Period
P.W.
+
+
-
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor
Current
Inductor Curent
ISD
Ripple ≤ 5%
* VGS = 5V for Logic Level Devices
Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
V(BR)DSS
15V
D.U.T
RG
VGS
20V
DRIVER
L
VDS
tp
+
V
- DD
IAS
tp
A
0.01Ω
I AS
Fig 22a. Unclamped Inductive Test Circuit
LD
Fig 22b. Unclamped Inductive Waveforms
VDS
VDS
90%
+
VDD -
10%
D.U.T
VGS
VGS
Pulse Width < 1µs
Duty Factor < 0.1%
td(on)
Fig 23a. Switching Time Test Circuit
tr
td(off)
tf
Fig 23b. Switching Time Waveforms
Id
Vds
Vgs
L
DUT
0
VCC
Vgs(th)
1K
Qgs1 Qgs2
Fig 24a. Gate Charge Test Circuit
www.irf.com
Qgd
Qgodr
Fig 24b. Gate Charge Waveform
7
IRFB3077GPbF
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
TO-220AB Part Marking Information
(;$03/( 7+,6,6$1,5)%*3%)
1RWH*VXIIL[LQSDUWQXPEHU
LQGLFDWHV+DORJHQ)UHH
1RWH3LQDVVHPEO\OLQHSRVLWLRQ
LQGLFDWHV/HDG)UHH
,17(51$7,21$/
5(&7,),(5
/2*2
$66(0%/<
/27&2'(
3$57180%(5
'$7(&2'(
< /$67',*,72)
&$/(1'$5<($5
:: :25.:((.
; )$&725<&2'(
TO-220AB packages are not recommended for Surface Mount Application.
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
8
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 12/2008
www.irf.com
Similar pages