IRF IRFS4010-7PPBF Hexfet power mosfet Datasheet

PD - 97343
IRFS4010-7PPbF
HEXFET® Power MOSFET
Applications
l High Efficiency Synchronous Rectification in SMPS
l Uninterruptible Power Supply
l High Speed Power Switching
l Hard Switched and High Frequency Circuits
D
G
S
VDSS
RDS(on) typ.
max.
ID
Benefits
l Improved Gate, Avalanche and Dynamic dV/dt
Ruggedness
l Fully Characterized Capacitance and Avalanche
SOA
l Enhanced body diode dV/dt and dI/dt Capability
l Lead-Free
100V
3.3mΩ
4.0mΩ
190A
D
S
G
S
S
S
S
D2Pak 7 Pin
G
D
S
Gate
Drain
Source
Absolute Maximum Ratings
Symbol
ID @ TC = 25°C
ID @ TC = 100°C
IDM
PD @TC = 25°C
VGS
dv/dt
TJ
TSTG
Parameter
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
Pulsed Drain Current c
Maximum Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Peak Diode Recovery e
Operating Junction and
Storage Temperature Range
Max.
Units
190
130
740
A
W
380
2.5
± 20
W/°C
V
26
-55 to + 175
V/ns
°C
300
Soldering Temperature, for 10 seconds
(1.6mm from case)
Mounting torque, 6-32 or M3 screw
10lbxin (1.1Nxm)
Avalanche Characteristics
EAS (Thermally limited)
IAR
EAR
Single Pulse Avalanche Energy d
Avalanche Current c
Repetitive Avalanche Energy f
330
See Fig. 14, 15, 22a, 22b,
mJ
A
mJ
Thermal Resistance
Symbol
RθJC
RθJA
www.irf.com
Parameter
Typ.
Max.
Units
Junction-to-Case jk
–––
°C/W
Junction-to-Ambient (PCB Mount) ij
–––
0.40
40
1
10/07/08
IRFS4010-7PPbF
Static @ TJ = 25°C (unless otherwise specified)
Symbol
Parameter
V(BR)DSS
∆V(BR)DSS/∆TJ
RDS(on)
VGS(th)
IDSS
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
Gate Threshold Voltage
Drain-to-Source Leakage Current
IGSS
RG(int)
Min. Typ. Max. Units
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
100
–––
–––
2.0
–––
–––
–––
–––
–––
0.11
3.3
–––
–––
–––
–––
–––
–––
–––
4.0
4.0
20
250
100
-100
Internal Gate Resistance
–––
2.1
–––
Conditions
V VGS = 0V, ID = 250µA
V/°C Reference to 25°C, ID = 5mAc
mΩ VGS = 10V, ID = 110A f
V VDS = VGS, ID = 250µA
µA VDS = 100V, VGS = 0V
VDS = 100V, VGS = 0V, TJ = 125°C
nA VGS = 20V
VGS = -20V
Ω
Dynamic @ TJ = 25°C (unless otherwise specified)
Symbol
gfs
Qg
Qgs
Qgd
Qsync
td(on)
tr
td(off)
tf
Ciss
Coss
Crss
Coss eff. (ER)
Coss eff. (TR)
Parameter
Min. Typ. Max. Units
Forward Transconductance
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Total Gate Charge Sync. (Qg - Qgd)
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
210
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Effective Output Capacitance (Energy Related)h –––
–––
Effective Output Capacitance (Time Related)g
–––
150
36
48
102
19
56
100
48
9830
650
260
730
740
–––
230
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
S
nC
ns
pF
Conditions
VDS = 25V, ID = 110A
ID = 110A
VDS = 50V
VGS = 10V f
ID = 110A, VDS =0V, VGS = 10V
VDD = 65V
ID = 110A
RG = 2.7Ω
VGS = 10V f
VGS = 0V
VDS = 50V
ƒ = 1.0MHz
VGS = 0V, VDS = 0V to 80V h
VGS = 0V, VDS = 0V to 80V g
Diode Characteristics
Symbol
IS
Parameter
Continuous Source Current
VSD
trr
(Body Diode)
Pulsed Source Current
(Body Diode)c
Diode Forward Voltage
Reverse Recovery Time
Qrr
Reverse Recovery Charge
IRRM
ton
Reverse Recovery Current
Forward Turn-On Time
ISM
Notes:
 Repetitive rating; pulse width limited by max. junction
temperature.
‚ Limited by TJmax, starting TJ = 25°C, L = 0.052mH
RG = 25Ω, IAS = 110A, VGS =10V. Part not recommended for use
above this value .
ƒ ISD ≤ 110A, di/dt ≤ 1310A/µs, VDD ≤ V(BR)DSS, TJ ≤ 175°C.
„ Pulse width ≤ 400µs; duty cycle ≤ 2%.
2
Min. Typ. Max. Units
–––
–––
186
–––
–––
740
A
Conditions
MOSFET symbol
showing the
integral reverse
D
G
p-n junction diode.
TJ = 25°C, IS = 110A, VGS = 0V f
TJ = 25°C
VR = 85V,
TJ = 125°C
IF = 110A
di/dt = 100A/µs f
TJ = 25°C
S
––– –––
1.3
V
–––
60
–––
ns
–––
67
–––
––– 150 –––
nC
TJ = 125°C
––– 180 –––
–––
4.7
–––
A TJ = 25°C
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
Coss eff. (TR) is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS.
† Coss eff. (ER) is a fixed capacitance that gives the same energy as
Coss while VDS is rising from 0 to 80% VDSS.
‡ When mounted on 1" square PCB (FR-4 or G-10 Material). For recom
mended footprint and soldering techniques refer to application note #AN-994.
ˆ Rθ is measured at TJ approximately 90°C.
‰ RθJC value shown is at time zero.
www.irf.com
IRFS4010-7PPbF
1000
1000
VGS
15V
10V
8.0V
7.0V
5.0V
4.5V
4.3V
4.0V
100
BOTTOM
10
BOTTOM
100
1
≤60µs PULSE WIDTH
Tj = 25°C
4.0V
4.0V
0.1
Tj = 175°C
1
10
100
0.1
V DS, Drain-to-Source Voltage (V)
1
10
100
V DS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
1000
100
T J = 175°C
T J = 25°C
10
1
VDS = 50V
≤60µs PULSE WIDTH
0.1
ID = 110A
VGS = 10V
2.0
(Normalized)
RDS(on) , Drain-to-Source On Resistance
2.5
1.5
1.0
0.5
2
3
4
5
6
7
-60 -40 -20 0 20 40 60 80 100120140160180
VGS , Gate-to-Source Voltage (V)
T J , Junction Temperature (°C)
Fig 3. Typical Transfer Characteristics
Fig 4. Normalized On-Resistance vs. Temperature
100000
14.0
VGS = 0V,
f = 1 MHZ
Ciss = Cgs + Cgd, C ds SHORTED
Crss = Cgd
ID= 110A
VGS, Gate-to-Source Voltage (V)
ID, Drain-to-Source Current (A)
≤60µs PULSE WIDTH
10
0.1
Coss = Cds + Cgd
C, Capacitance (pF)
VGS
15V
10V
8.0V
7.0V
5.0V
4.5V
4.3V
4.0V
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
Ciss
10000
Coss
1000
Crss
12.0
VDS= 80V
VDS= 50V
10.0
8.0
6.0
4.0
2.0
0.0
100
1
10
100
1000
VDS, Drain-to-Source Voltage (V)
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage
www.irf.com
0
25
50
75 100 125 150 175 200 225
QG, Total Gate Charge (nC)
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage
3
IRFS4010-7PPbF
10000
100
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
1000
T J = 175°C
10
T J = 25°C
1
OPERATION IN THIS AREA
LIMITED BY R DS(on)
1000
100µsec
100
10msec
1msec
10
DC
1
Tc = 25°C
Tj = 175°C
Single Pulse
VGS = 0V
0.1
0.1
0.0
0.5
1.0
1.5
1
VSD, Source-to-Drain Voltage (V)
180
ID, Drain Current (A)
160
140
120
100
80
60
40
20
0
75
100
125
150
175
V(BR)DSS , Drain-to-Source Breakdown Voltage (V)
200
50
6.0
Id = 5mA
120
115
110
105
100
95
-60 -40 -20 0 20 40 60 80 100120140160180
T J , Temperature ( °C )
Fig 10. Drain-to-Source Breakdown Voltage
EAS , Single Pulse Avalanche Energy (mJ)
1400
ID
21A
38A
BOTTOM 110A
TOP
1200
5.0
1000
4.0
Energy (µJ)
1000
125
T C , Case Temperature (°C)
Fig 9. Maximum Drain Current vs.
Case Temperature
3.0
2.0
1.0
0.0
800
600
400
200
0
0
10 20 30 40 50 60 70 80 90 100 110
VDS, Drain-to-Source Voltage (V)
Fig 11. Typical COSS Stored Energy
4
100
Fig 8. Maximum Safe Operating Area
Fig 7. Typical Source-Drain Diode
Forward Voltage
25
10
VDS, Drain-to-Source Voltage (V)
25
50
75
100
125
150
175
Starting T J , Junction Temperature (°C)
Fig 12. Maximum Avalanche Energy vs. DrainCurrent
www.irf.com
IRFS4010-7PPbF
Thermal Response ( Z thJC ) °C/W
1
D = 0.50
0.1
0.20
0.10
0.05
0.02
0.01
0.01
τJ
R1
R1
τJ
τ1
τ1
R2
R2
τ2
R3
R3
τC
τ
τ2
τ3
τ3
τ4
τ4
Ci= τi/Ri
Ci i/Ri
0.001
SINGLE PULSE
( THERMAL RESPONSE )
0.0001
1E-006
1E-005
Ri (°C/W)
R4
R4
τi (sec)
0.02001
0.000025
0.05145
0.000094
0.19436
0.002047
0.13433
0.012818
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case
1000
Avalanche Current (A)
Duty Cycle = Single Pulse
100
10
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ∆Tj = 150°C and
Tstart =25°C (Single Pulse)
0.01
0.05
0.10
1
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ∆Τ j = 25°C and
Tstart = 150°C.
0.1
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
Fig 14. Typical Avalanche Current vs.Pulsewidth
400
350
EAR , Avalanche Energy (mJ)
Notes on Repetitive Avalanche Curves , Figures 14, 15:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a temperature far in
excess of Tjmax. This is validated for every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.
4. PD (ave) = Average power dissipation per single avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase
during avalanche).
6. Iav = Allowable avalanche current.
7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as
25°C in Figure 14, 15).
tav = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)
TOP
Single Pulse
BOTTOM 1.0% Duty Cycle
ID = 110A
300
250
200
150
100
50
0
25
50
75
100
125
150
175
Starting T J , Junction Temperature (°C)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
Fig 15. Maximum Avalanche Energy vs. Temperature
www.irf.com
5
IRFS4010-7PPbF
30
4.0
3.5
3.0
IRR (A)
VGS(th) , Gate threshold Voltage (V)
4.5
ID = 250µA
2.5
ID = 1.0mA
ID = 1.0A
2.0
25
IF = 74A
V R = 85V
20
TJ = 25°C
TJ = 125°C
15
10
5
1.5
1.0
0
-75 -50 -25
0
25 50 75 100 125 150 175
0
200
T J , Temperature ( °C )
600
800
1000
Fig. 17 - Typical Recovery Current vs. dif/dt
Fig 16. Threshold Voltage vs. Temperature
30
1000
25
IF = 110A
V R = 85V
20
TJ = 25°C
TJ = 125°C
IF = 74A
V R = 85V
900
800
TJ = 25°C
TJ = 125°C
700
Q RR (A)
IRR (A)
400
diF /dt (A/µs)
15
10
600
500
400
300
5
200
0
100
0
200
400
600
800
1000
0
200
diF /dt (A/µs)
400
600
800
1000
diF /dt (A/µs)
Fig. 18 - Typical Recovery Current vs. dif/dt
Fig. 19 - Typical Stored Charge vs. dif/dt
1000
IF = 110A
V R = 85V
900
TJ = 25°C
TJ = 125°C
800
Q RR (A)
700
600
500
400
300
200
0
200
400
600
800
1000
diF /dt (A/µs)
6
Fig. 20 - Typical Stored Charge vs. dif/dt
www.irf.com
IRFS4010-7PPbF
Driver Gate Drive
D.U.T
ƒ
-
‚
-
-
„
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
+

RG
•
•
•
•
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
VDD
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
+
D=
Period
P.W.
+
+
-
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor
Current
Inductor Curent
ISD
Ripple ≤ 5%
* VGS = 5V for Logic Level Devices
Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
V(BR)DSS
15V
DRIVER
L
VDS
tp
D.U.T
RG
+
V
- DD
IAS
VGS
20V
A
0.01Ω
tp
I AS
Fig 22a. Unclamped Inductive Test Circuit
RD
VDS
Fig 22b. Unclamped Inductive Waveforms
VDS
90%
VGS
D.U.T.
RG
+
- VDD
V10V
GS
10%
VGS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
td(on)
Fig 23a. Switching Time Test Circuit
tr
t d(off)
Fig 23b. Switching Time Waveforms
Id
Current Regulator
Same Type as D.U.T.
Vds
Vgs
50KΩ
12V
tf
.2µF
.3µF
D.U.T.
+
V
- DS
Vgs(th)
VGS
3mA
IG
ID
Current Sampling Resistors
Fig 24a. Gate Charge Test Circuit
www.irf.com
Qgs1 Qgs2
Qgd
Qgodr
Fig 24b. Gate Charge Waveform
7
IRFS4010-7PPbF
D2Pak - 7 Pin Package Outline
Dimensions are shown in millimeters (inches)
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
8
www.irf.com
IRFS4010-7PPbF
D2Pak - 7 Pin Part Marking Information
14
D2Pak - 7 Pin Tape and Reel
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
www.irf.com
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 10/08
9
Similar pages