ON NLV74HC74ADG Dual d flip-flop with set and reset Datasheet

MC74HC74A
Dual D Flip-Flop with Set
and Reset
High−Performance Silicon−Gate CMOS
The MC74HC74A is identical in pinout to the LS74. The device
inputs are compatible with standard CMOS outputs; with pullup
resistors, they are compatible with LSTTL outputs.
This device consists of two D flip−flops with individual Set, Reset,
and Clock inputs. Information at a D−input is transferred to the
corresponding Q output on the next positive going edge of the clock
input. Both Q and Q outputs are available from each flip−flop. The Set
and Reset inputs are asynchronous.
•
TSSOP−14
DT SUFFIX
CASE 948G
SOIC−14 NB
D SUFFIX
CASE 751A
PIN ASSIGNMENT
Features
•
•
•
•
•
•
•
•
http://onsemi.com
Output Drive Capability: 10 LSTTL Loads
Outputs Directly Interface to CMOS, NMOS, and TTL
Operating Voltage Range: 2.0 to 6.0 V
Low Input Current: 1.0 mA
High Noise Immunity Characteristic of CMOS Devices
In Compliance with the JEDEC Standard No. 7.0 A Requirements
Chip Complexity: 128 FETs or 32 Equivalent Gates
NLV Prefix for Automotive and Other Applications Requiring
Unique Site and Control Change Requirements; AEC−Q100
Qualified and PPAP Capable
These Devices are Pb−Free, Halogen Free and are RoHS Compliant
RESET 1
1
14
VCC
DATA 1
2
13
RESET 2
CLOCK 1
3
12
DATA 2
SET 1
4
11
CLOCK 2
Q1
5
10
SET 2
Q1
6
9
Q2
GND
7
8
Q2
MARKING DIAGRAMS
14
HC74AG
AWLYWW
LOGIC DIAGRAM
RESET 1
DATA 1
CLOCK 1
SET 1
RESET 2
DATA 2
CLOCK 2
SET 2
1
1
2
5
3
6
SOIC−14 NB
Q1
Q1
14
HC
74A
ALYWG
G
4
13
1
12
9
11
8
TSSOP−14
Q2
A
L, WL
Y, YY
W, WW
G or G
Q2
10
PIN 14 = VCC
PIN 7 = GND
= Assembly Location
= Wafer Lot
= Year
= Work Week
= Pb−Free Package
(Note: Microdot may be in either location)
ORDERING INFORMATION
See detailed ordering and shipping information in the package
dimensions section on page 4 of this data sheet.
© Semiconductor Components Industries, LLC, 2014
August, 2014 − Rev. 14
1
Publication Order Number:
MC74HC74A/D
MC74HC74A
FUNCTION TABLE
Inputs
Outputs
Set Reset Clock Data
L
H
L
H
H
H
H
H
H
L
L
H
H
H
H
H
X
X
X
L
H
X
X
X
H
L
X
X
X
Q
Q
H
L
L
H
H*
H*
H
L
L
H
No Change
No Change
No Change
*Both outputs will remain high as long as Set
and Reset are low, but the output states are
unpredictable if Set and Reset go high
simultaneously.
MAXIMUM RATINGS
Symbol
Parameter
Value
Unit
–0.5 to + 7.0
V
DC Input Voltage (Referenced to GND)
–0.5 to VCC + 0.5
V
DC Output Voltage (Referenced to GND)
VCC
DC Supply Voltage (Referenced to GND)
Vin
Vout
–0.5 to VCC + 0.5
V
Iin
DC Input Current, per Pin
±20
mA
mA
Iout
DC Output Current, per Pin
±25
ICC
DC Supply Current, VCC and GND Pins
±50
mA
PD
Power Dissipation in Still Air,
500
450
mW
Tstg
Storage Temperature
–65 to +150
_C
TL
Lead Temperature, 1 mm from Case for 10 Seconds
(SOIC or TSSOP Package)
SOIC Package†
TSSOP Package†
_C
260
300
This device contains protection
circuitry to guard against damage
due to high static voltages or electric
fields. However, precautions must
be taken to avoid applications of any
voltage higher than maximum rated
voltages to this high−impedance circuit. For proper operation, Vin and
Vout should be constrained to the
range GND v (Vin or Vout) v VCC.
Unused inputs must always be
tied to an appropriate logic voltage
level (e.g., either GND or VCC).
Unused outputs must be left open.
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of
these limits are exceeded, device functionality should not be assumed, damage may occur and
reliability may be affected.
†Derating: SOIC Package: –7 mW/_C from 65_ to 125_C
TSSOP Package: −6.1 mW/_C from 65_ to 125_C
RECOMMENDED OPERATING CONDITIONS
Symbol
VCC
Vin, Vout
Parameter
DC Supply Voltage (Referenced to GND)
DC Input Voltage, Output Voltage (Referenced to GND)
TA
Operating Temperature, All Package Types
tr, tf
Input Rise and Fall Time
(Figures 1, 2, 3)
VCC = 2.0 V
VCC = 3.0 V
VCC = 4.5 V
VCC = 6.0 V
Min
Max
Unit
2.0
6.0
V
0
VCC
V
–55
+125
_C
0
0
0
0
1000
600
500
400
ns
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond
the Recommended Operating Ranges limits may affect device reliability.
http://onsemi.com
2
MC74HC74A
DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)
Guaranteed Limit
Symbol
Parameter
Test Conditions
VCC
V
–55 to
25_C
v 85_C
v 125_C
Unit
VIH
Minimum High−Level Input
Voltage
Vout = 0.1 V or VCC – 0.1 V
|Iout| v 20 mA
2.0
3.0
4.5
6.0
1.5
2.1
3.15
4.2
1.5
2.1
3.15
4.2
1.5
2.1
3.15
4.2
V
VIL
Maximum Low−Level Input
Voltage
Vout = 0.1 V or VCC – 0.1 V
|Iout| v 20 mA
2.0
3.0
4.5
6.0
0.5
0.9
1.35
1.8
0.5
0.9
1.35
1.8
0.5
0.9
1.35
1.8
V
VOH
Minimum High−Level Output
Voltage
Vin = VIH or VIL
|Iout| v 20 mA
2.0
4.5
6.0
1.9
4.4
5.9
1.9
4.4
5.9
1.9
4.4
5.9
V
3.0
4.5
6.0
2.48
3.98
5.48
2.34
3.84
5.34
2.2
3.7
5.2
2.0
4.5
6.0
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
3.0
4.5
6.0
0.26
0.26
0.26
0.33
0.33
0.33
0.4
0.4
0.4
Vin = VIH or VIL
VOL
|Iout| v 2.4 mA
|Iout| v 4.0 mA
|Iout| v 5.2 mA
Vin = VIH or VIL
|Iout| v 20 mA
Maximum Low−Level Output
Voltage
Vin = VIH or VIL
|Iout| v 2.4 mA
|Iout| v 4.0 mA
|Iout| v 5.2 mA
V
Iin
Maximum Input Leakage Current
Vin = VCC or GND
6.0
±0.1
±1.0
±1.0
mA
ICC
Maximum Quiescent Supply
Current (per Package)
Vin = VCC or GND
Iout = 0 mA
6.0
2.0
20
80
mA
VCC
V
– 55 to
25_C
AC ELECTRICAL CHARACTERISTICS (CL = 50 pF, Input tr = tf = 6.0 ns)
Guaranteed Limit
v 85_C
v 125_C
Unit
fmax
Maximum Clock Frequency (50% Duty Cycle)
(Figures 1 and 4)
2.0
3.0
4.5
6.0
6.0
15
30
35
4.8
10
24
28
4.0
8.0
20
24
MHz
tPLH,
tPHL
Maximum Propagation Delay, Clock to Q or Q
(Figures 1 and 4)
2.0
3.0
4.5
6.0
100
75
20
17
125
90
25
21
150
120
30
26
ns
tPLH,
tPHL
Maximum Propagation Delay, Set or Reset to Q or Q
(Figures 2 and 4)
2.0
3.0
4.5
6.0
105
80
21
18
130
95
26
22
160
130
32
27
ns
tTLH,
tTHL
Maximum Output Transition Time, Any Output
(Figures 1 and 4)
2.0
3.0
4.5
6.0
75
30
15
13
95
40
19
16
110
55
22
19
ns
Cin
Maximum Input Capacitance
—
10
10
10
pF
CPD
Power Dissipation Capacitance (Per Flip−Flop)*
Symbol
Parameter
Typical @ 25°C, VCC = 5.0 V
32
* Used to determine the no−load dynamic power consumption: P D = CPD VCC
http://onsemi.com
3
2f
+ ICC VCC .
pF
MC74HC74A
TIMING REQUIREMENTS (Input tr = tf = 6.0 ns)
Guaranteed Limit
Symbol
Parameter
VCC
V
–55 to
25_C
v 85_C
v 125_C
Unit
tsu
Minimum Setup Time, Data to Clock
(Figure 3)
2.0
3.0
4.5
6.0
80
35
16
14
100
45
20
17
120
55
24
20
ns
th
Minimum Hold Time, Clock to Data
(Figure 3)
2.0
3.0
4.5
6.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
ns
trec
Minimum Recovery Time, Set or Reset Inactive to Clock
(Figure 2)
2.0
3.0
4.5
6.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
ns
tw
Minimum Pulse Width, Clock
(Figure 1)
2.0
3.0
4.5
6.0
60
25
12
10
75
30
15
13
90
40
18
15
ns
tw
Minimum Pulse Width, Set or Reset
(Figure 2)
2.0
3.0
4.5
6.0
60
25
12
10
75
30
15
13
90
40
18
15
ns
tr, tf
Maximum Input Rise and Fall Times
(Figures 1, 2, 3)
2.0
3.0
4.5
6.0
1000
800
500
400
1000
800
500
400
1000
800
500
400
ns
ORDERING INFORMATION
Package
Shipping†
MC74HC74ADG
SOIC−14 NB
(Pb−Free)
55 Units / Rail
NLV74HC74ADG*
SOIC−14 NB
(Pb−Free)
55 Units / Rail
MC74HC74ADR2G
SOIC−14 NB
(Pb−Free)
2500 / Tape & Reel
NLV74HC74ADR2G*
SOIC−14 NB
(Pb−Free)
2500 / Tape & Reel
MC74HC74ADTR2G
TSSOP−14
(Pb−Free)
2500 / Tape & Reel
NLV74HC74ADTR2G*
TSSOP−14
(Pb−Free)
2500 / Tape & Reel
Device
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC−Q100 Qualified and PPAP
Capable.
http://onsemi.com
4
MC74HC74A
SWITCHING WAVEFORMS
tf
CLOCK
tw
tr
VCC
90%
50%
10%
tw
SET OR
RESET
GND
Q or Q
GND
tPHL
50%
Q OR Q
1/fmax
tPHL
tPLH
tPLH
90%
50%
10%
50%
Q OR Q
tTLH
VCC
50%
tTHL
trec
VCC
50%
CLOCK
GND
Figure 1.
Figure 2.
TEST POINT
VALID
VCC
DATA
OUTPUT
50%
DEVICE
UNDER
TEST
GND
tsu
th
VCC
CL*
50%
CLOCK
GND
*Includes all probe and jig capacitance
Figure 3.
SET
Figure 4.
4, 10
2, 12
5, 9
Q
DATA
3, 11
CLOCK
6, 8
Q
1, 13
RESET
Figure 5. EXPANDED LOGIC DIAGRAM
http://onsemi.com
5
MC74HC74A
PACKAGE DIMENSIONS
TSSOP−14
CASE 948G
ISSUE B
14X K REF
0.10 (0.004)
0.15 (0.006) T U
M
T U
V
S
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A DOES NOT INCLUDE MOLD
FLASH, PROTRUSIONS OR GATE BURRS.
MOLD FLASH OR GATE BURRS SHALL NOT
EXCEED 0.15 (0.006) PER SIDE.
4. DIMENSION B DOES NOT INCLUDE
INTERLEAD FLASH OR PROTRUSION.
INTERLEAD FLASH OR PROTRUSION SHALL
NOT EXCEED 0.25 (0.010) PER SIDE.
5. DIMENSION K DOES NOT INCLUDE
DAMBAR PROTRUSION. ALLOWABLE
DAMBAR PROTRUSION SHALL BE 0.08
(0.003) TOTAL IN EXCESS OF THE K
DIMENSION AT MAXIMUM MATERIAL
CONDITION.
6. TERMINAL NUMBERS ARE SHOWN FOR
REFERENCE ONLY.
7. DIMENSION A AND B ARE TO BE
DETERMINED AT DATUM PLANE −W−.
S
S
N
2X
14
L/2
0.25 (0.010)
8
M
B
−U−
L
PIN 1
IDENT.
F
7
1
0.15 (0.006) T U
N
S
DETAIL E
K
A
−V−
ÉÉÉ
ÇÇÇ
ÇÇÇ
ÉÉÉ
K1
J J1
SECTION N−N
−W−
C
0.10 (0.004)
−T− SEATING
PLANE
D
H
G
DETAIL E
DIM
A
B
C
D
F
G
H
J
J1
K
K1
L
M
MILLIMETERS
MIN
MAX
4.90
5.10
4.30
4.50
−−−
1.20
0.05
0.15
0.50
0.75
0.65 BSC
0.50
0.60
0.09
0.20
0.09
0.16
0.19
0.30
0.19
0.25
6.40 BSC
0_
8_
SOLDERING FOOTPRINT
7.06
1
0.65
PITCH
14X
0.36
14X
1.26
DIMENSIONS: MILLIMETERS
http://onsemi.com
6
INCHES
MIN MAX
0.193 0.200
0.169 0.177
−−− 0.047
0.002 0.006
0.020 0.030
0.026 BSC
0.020 0.024
0.004 0.008
0.004 0.006
0.007 0.012
0.007 0.010
0.252 BSC
0_
8_
MC74HC74A
PACKAGE DIMENSIONS
SOIC−14 NB
CASE 751A−03
ISSUE K
D
A
B
14
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE PROTRUSION
SHALL BE 0.13 TOTAL IN EXCESS OF AT
MAXIMUM MATERIAL CONDITION.
4. DIMENSIONS D AND E DO NOT INCLUDE
MOLD PROTRUSIONS.
5. MAXIMUM MOLD PROTRUSION 0.15 PER
SIDE.
8
A3
E
H
L
1
0.25
M
DETAIL A
7
B
13X
M
b
0.25
M
C A
S
B
S
e
DETAIL A
h
A
X 45 _
M
A1
C
SEATING
PLANE
DIM
A
A1
A3
b
D
E
e
H
h
L
M
MILLIMETERS
MIN
MAX
1.35
1.75
0.10
0.25
0.19
0.25
0.35
0.49
8.55
8.75
3.80
4.00
1.27 BSC
5.80
6.20
0.25
0.50
0.40
1.25
0_
7_
INCHES
MIN
MAX
0.054 0.068
0.004 0.010
0.008 0.010
0.014 0.019
0.337 0.344
0.150 0.157
0.050 BSC
0.228 0.244
0.010 0.019
0.016 0.049
0_
7_
SOLDERING FOOTPRINT*
6.50
14X
1.18
1
1.27
PITCH
14X
0.58
DIMENSIONS: MILLIMETERS
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
ON Semiconductor and the
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.
SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed
at www.onsemi.com/site/pdf/Patent−Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation
or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and
specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets
and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each
customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended,
or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which
the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or
unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable
copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: [email protected]
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81−3−5817−1050
http://onsemi.com
7
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative
MC74HC74A/D
Similar pages