PD - 97240A IRF6618PbF IRF6618TRPbF RoHs Compliant l Lead-Free (Qualified up to 260°C Reflow) l Application Specific MOSFETs l Ideal for CPU Core DC-DC Converters l Low Conduction Losses l High Cdv/dt Immunity l Low Profile (<0.7mm) l Dual Sided Cooling Compatible l Compatible with existing Surface Mount Techniques l DirectFET Power MOSFET VDSS VGS SX ST MQ RDS(on) 30V max ±20V max 2.2mΩ@ 10V 3.4mΩ@ 4.5V Qg tot 43nC Qgd Qgs2 Qrr Qoss Vgs(th) 15nC 4.0nC 46nC 28nC 1.64V DirectFET ISOMETRIC MT Applicable DirectFET Package/Layout Pad (see p.7, 8 for details) SQ RDS(on) MT MX Description The IRF6618PbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFET TM packaging to achieve the lowest on-state resistance in a package that has the footprint of a SO-8 and only 0.7 mm profile. The DirectFET package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques. Application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%. The IRF6618PbF balances industry leading on-state resistance while minimizing gate charge along with ultra low package inductance to reduce both conduction and switching losses. The reduced losses make this product ideal for high frequency/high efficiency DC-DC converters that power high current loads such as the latest generation of microprocessors. The IRF6618PbF has been optimized for parameters that are critical in synchronous buck converter’s SyncFET sockets. Absolute Maximum Ratings Parameter VDS Drain-to-Source Voltage Gate-to-Source Voltage VGS ID @ TC = 25°C ID @ TA = 25°C ID @ TA = 70°C IDM EAS IAR Continuous Drain Current, VGS @ 10V e e f Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V g h Typical RDS(on) (mΩ) 6 ID = 30A 5 4 T J = 125°C 3 2 T J = 25°C 1 0 2 Fig 1. 3 4 5 6 7 8 9 10 VGS, Gate -to -Source Voltage (V) Typical On-Resistance vs. Gate-to-Source Voltage VGS, Gate-to-Source Voltage (V) g Pulsed Drain Current Single Pulse Avalanche Energy Avalanche Current Max. Units 30 ±20 170 30 24 240 210 24 V A mJ A 6.0 ID= 24A 5.0 4.0 VDS= 24V VDS= 15V 3.0 2.0 1.0 0.0 0 10 20 30 40 50 60 QG Total Gate Charge (nC) Fig 2. Total Gate Charge vs. Gate-to-Source Voltage Notes: Click on this section to link to the appropriate technical paper. Click on this section to link to the DirectFET Website. Surface mounted on 1 in. square Cu board, steady state. www.irf.com TC measured with thermocouple mounted to top (Drain) of part. Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25°C, L = 0.75mH, RG = 25Ω, IAS = 24A. 1 08/17/07 IRF6618PbF Static @ TJ = 25°C (unless otherwise specified) Min. Typ. Max. BVDSS ∆ΒVDSS/∆TJ Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Parameter 30 ––– ––– 23 ––– ––– RDS(on) Static Drain-to-Source On-Resistance VGS(th) ∆VGS(th)/∆TJ Gate Threshold Voltage Gate Threshold Voltage Coefficient ––– ––– 1.35 ––– 1.7 ––– 1.64 -5.7 2.2 3.4 2.35 ––– ––– ––– ––– 5.0 1.0 150 IDSS Drain-to-Source Leakage Current ––– ––– ––– IGSS Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Forward Transconductance ––– ––– 100 ––– ––– ––– 100 -100 ––– Total Gate Charge Pre-Vth Gate-to-Source Charge Post-Vth Gate-to-Source Charge Gate-to-Drain Charge ––– ––– ––– ––– 43 12 4.0 15 65 ––– ––– 23 Qgodr Qsw Qoss Gate Charge Overdrive Switch Charge (Qgs2 + Qgd) Output Charge ––– ––– ––– 12 19 28 ––– ––– ––– RG td(on) tr Gate Resistance Turn-On Delay Time Rise Time ––– ––– ––– 1.0 21 71 2.2 ––– ––– td(off) tf Ciss Coss Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance ––– ––– ––– ––– 27 8.1 5640 1260 ––– ––– ––– ––– Crss Reverse Transfer Capacitance ––– 570 ––– gfs Qg Qgs1 Qgs2 Qgd Units Conditions V VGS = 0V, ID = 250µA mV/°C Reference to 25°C, ID = 1mA mΩ VGS = 10V, ID = 30A VGS = 4.5V, ID = 24A V VDS = VGS, ID = 250µA mV/°C i i µA nA S nC VDS = 30V, VGS = 0V VDS = 24V, VGS = 0V VDS = 24V, VGS = 0V, TJ = 150°C VGS = 20V VGS = -20V VDS = 15V, ID = 24A VDS = 15V VGS = 4.5V ID = 24A See Fig. 14 nC Ω VDS = 15V, VGS = 0V VDD = 15V, VGS = 4.5V ID = 24A ns pF i Clamped Inductive Load See Fig. 15 & 16 VGS = 0V VDS = 15V ƒ = 1.0MHz Diode Characteristics Min. Typ. Max. IS Continuous Source Current Parameter ––– ––– 89 ISM (Body Diode) Pulsed Source Current ––– ––– 240 VSD trr (Body Diode) Diode Forward Voltage Reverse Recovery Time ––– ––– 0.78 43 1.2 65 V ns Qrr Reverse Recovery Charge ––– 46 69 nC g Units Conditions MOSFET symbol A showing the integral reverse D G p-n junction diode. TJ = 25°C, IS = 24A, VGS = 0V TJ = 25°C, IF = 24A di/dt = 100A/µs See Fig. 17 i S i Notes: Repetitive rating; pulse width limited by max. junction temperature. Pulse width ≤ 400µs; duty cycle ≤ 2%. 2 www.irf.com IRF6618PbF Absolute Maximum Ratings Parameter e e f PD @TA = 25°C PD @TA = 70°C PD @TC = 25°C Power Dissipation Power Dissipation Power Dissipation Peak Soldering Temperature Operating Junction and Storage Temperature Range TP TJ TSTG Thermal Resistance Units 2.8 1.8 89 W 270 -40 to + 150 Parameter em km lm fm RθJA RθJA RθJA RθJC RθJ-PCB Max. Junction-to-Ambient Junction-to-Ambient Junction-to-Ambient Junction-to-Case Junction-to-PCB Mounted Linear Derating Factor e °C Typ. Max. Units ––– 12.5 20 ––– 1.0 45 ––– ––– 1.4 ––– °C/W 0.022 W/°C 100 Thermal Response ( Z thJA ) 10 1 D = 0.50 0.20 0.10 0.05 0.02 0.01 0.1 τJ 0.01 0.001 SINGLE PULSE ( THERMAL RESPONSE ) R1 R1 τJ τ1 R2 R2 R3 R3 R4 R4 τA τ2 τ1 τ2 τ3 τ3 τ4 τA τ4 Ci= τi/Ri Ci= τi/Ri Ri (°C/W) τi (sec) 0.6784 0.00086 17.299 0.57756 17.566 8.94 9.4701 106 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthja + Tc 0.0001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 10 100 t1 , Rectangular Pulse Duration (sec) Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient Notes: Used double sided cooling , mounting pad. Mounted on minimum footprint full size board with metalized Rθ is measured at TJ of approximately 90°C. back and with small clip heatsink. Surface mounted on 1 in. square Cu (still air). www.irf.com Mounted to a PCB with small clip heatsink (still air) Mounted on minimum footprint full size board with metalized back and with small clip heatsink (still air) 3 IRF6618PbF 1000 1000 100 BOTTOM VGS 10V 7.0V 4.5V 4.0V 3.5V 3.2V 2.9V 2.7V TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP BOTTOM VGS 10V 7.0V 4.5V 4.0V 3.5V 3.2V 2.9V 2.7V 100 2.7V 10 2.7V ≤60µs PULSE WIDTH ≤60µs PULSE WIDTH Tj = 25°C 1 Tj = 150°C 10 0.1 1 10 100 0.1 1 V DS, Drain-to-Source Voltage (V) 100 Fig 5. Typical Output Characteristics Fig 4. Typical Output Characteristics 1000 1.5 RDS(on) , Drain-to-Source On Resistance (Normalized) ID, Drain-to-Source Current (Α) 10 V DS, Drain-to-Source Voltage (V) 100 T J = 150°C T J = 25°C 10 1 VDS = 10V ≤60µs PULSE WIDTH 0.1 ID = 30A VGS = 10V 1.0 0.5 1.5 2.0 2.5 3.0 3.5 4.0 -60 -40 -20 0 T J , Junction Temperature (°C) VGS, Gate-to-Source Voltage (V) Fig 7. Normalized On-Resistance vs. Temperature Fig 6. Typical Transfer Characteristics 100000 20 40 60 80 100 120 140 160 180 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd C, Capacitance(pF) C oss = C ds + C gd 10000 Ciss Coss 1000 Crss 100 1 10 100 VDS, Drain-to-Source Voltage (V) Fig 8. Typical Capacitance vs. Drain-to-Source Voltage 4 www.irf.com IRF6618PbF 1000 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 1000.00 T J = 150°C 100.00 OPERATION IN THIS AREA LIMITED BY R DS(on) 100 10.00 T J = 25°C 1.00 VGS = 0V 0.4 0.6 0.8 1.0 10 1msec T C = 25°C Tj = 150°C Single Pulse 0 1.2 1 10 100 1000 VDS, Drain-to-Source Voltage (V) VSD, Source-to-Drain Voltage (V) Fig 9. Typical Source-Drain Diode Forward Voltage Fig 10. Maximum Safe Operating Area 180 2.5 VGS(th) Gate threshold Voltage (V) 160 140 ID, Drain Current (A) 10msec 1 0.10 0.2 100µsec 120 100 80 60 40 20 2.0 1.5 ID = 250µA 1.0 0.5 0.0 0 25 50 75 100 125 -75 150 -50 -25 0 25 50 75 100 125 150 T J , Temperature ( °C ) T C , Case Temperature (°C) Fig 12. Threshold Voltage vs. Temperature Fig 11. Maximum Drain Current vs. Case Temperature EAS , Single Pulse Avalanche Energy (mJ) 900 ID 9.3A 11A BOTTOM 24A 800 TOP 700 600 500 400 300 200 100 0 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) Fig 13. Maximum Avalanche Energy vs. Drain Current www.irf.com 5 IRF6618PbF Current Regulator Same Type as D.U.T. Id Vds 50KΩ Vgs .2µF 12V .3µF + V - DS D.U.T. Vgs(th) VGS 3mA IG ID Qgs1 Qgs2 Qgd Qgodr Current Sampling Resistors Fig 14a. Gate Charge Test Circuit Fig 14b. Gate Charge Waveform V(BR)DSS 15V DRIVER L VDS tp D.U.T V RGSG 20V + - VDD IAS tp A I AS 0.01Ω Fig 15b. Unclamped Inductive Waveforms Fig 15a. Unclamped Inductive Test Circuit LD VDS VDS 90% + VDD - 10% D.U.T VGS Pulse Width < 1µs Duty Factor < 0.1% Fig 16a. Switching Time Test Circuit 6 VGS td(on) tr td(off) tf Fig 16b. Switching Time Waveforms www.irf.com IRF6618PbF D.U.T Driver Gate Drive + + D.U.T. ISD Waveform Reverse Recovery Current + RG di/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test P.W. Period * • • • • D= VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer - - Period P.W. V DD + Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop InductorCurent Current Inductor - Ripple ≤ 5% * ISD VGS = 5V for Logic Level Devices Fig 17. Diode Reverse Recovery Test Circuit for N-Channel HEXFET® Power MOSFETs DirectFET Substrate and PCB Layout, MT Outline (Medium Size Can, T-Designation). Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs. G = GATE D = DRAIN S = SOURCE D S D G D www.irf.com S D 7 IRF6618PbF DirectFET Outline Dimension, MT Outline (Medium Size Can, T-Designation). Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs. DIMENSIONS METRIC MAX CODE MIN 6.35 A 6.25 5.05 B 4.80 3.95 C 3.85 0.45 D 0.35 0.82 E 0.78 0.92 F 0.88 1.82 G 1.78 1.02 H 0.98 0.67 J 0.63 1.01 K 0.88 2.63 L 2.46 M 0.616 0.676 R 0.020 0.080 0.17 P 0.08 IMPERIAL MIN 0.246 0.189 0.152 0.014 0.031 0.035 0.070 0.039 0.025 0.035 0.097 0.0235 0.0008 0.003 MAX 0.250 0.199 0.156 0.018 0.032 0.036 0.072 0.040 0.026 0.039 0.104 0.0274 0.0031 0.007 DirectFET Part Marking 8 www.irf.com IRF6618PbF DirectFET Tape & Reel Dimension (Showing component orientation) NOTE: Controlling dimensions in mm Std reel quantity is 4800 parts. (ordered as IRF6618TRPBF). For 1000 parts on 7" reel, order IRF6618TR1PBF STANDARD OPTION METRIC CODE MIN MAX A 330.0 N.C B 20.2 N.C C 12.8 13.2 D 1.5 N.C E 100.0 N.C F N.C 18.4 G 12.4 14.4 H 11.9 15.4 REEL DIMENSIONS (QTY 4800) TR1 OPTION (QTY 1000) IMPERIAL METRIC IMPERIAL MIN MAX MIN MAX MIN MAX 6.9 N.C 12.992 N.C 177.77 N.C 0.75 0.795 N.C 19.06 N.C N.C 0.53 0.50 0.504 13.5 0.520 12.8 0.059 0.059 N.C 1.5 N.C N.C 2.31 3.937 N.C 58.72 N.C N.C N.C N.C 0.53 N.C 0.724 13.50 0.47 0.488 N.C 11.9 0.567 12.01 0.47 0.469 N.C 11.9 12.01 0.606 LOADED TAPE FEED DIRECTION CODE A B C D E F G H DIMENSIONS METRIC IMPERIAL MIN MIN MAX MAX 0.311 0.319 7.90 8.10 0.154 3.90 0.161 4.10 0.469 11.90 12.30 0.484 0.215 5.45 0.219 5.55 0.201 5.10 5.30 0.209 0.256 6.50 0.264 6.70 0.059 1.50 N.C N.C 0.059 1.50 1.60 0.063 Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 08/2007 www.irf.com 9