IRF IRF6618PBF Ideal for cpu core dc-dc converter Datasheet

PD - 97240A
IRF6618PbF
IRF6618TRPbF
RoHs Compliant 
l Lead-Free (Qualified up to 260°C Reflow)
l Application Specific MOSFETs
l Ideal for CPU Core DC-DC Converters
l Low Conduction Losses
l High Cdv/dt Immunity
l Low Profile (<0.7mm)
l Dual Sided Cooling Compatible 
l Compatible with existing Surface Mount Techniques 
l
DirectFET™ Power MOSFET ‚
VDSS
VGS
SX
ST
MQ
RDS(on)
30V max ±20V max 2.2mΩ@ 10V 3.4mΩ@ 4.5V
Qg
tot
43nC
Qgd
Qgs2
Qrr
Qoss
Vgs(th)
15nC
4.0nC
46nC
28nC
1.64V
DirectFET™ ISOMETRIC
MT
Applicable DirectFET Package/Layout Pad (see p.7, 8 for details)
SQ
RDS(on)
MT
MX
Description
The IRF6618PbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFET TM packaging to achieve
the lowest on-state resistance in a package that has the footprint of a SO-8 and only 0.7 mm profile. The DirectFET package is compatible
with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering
techniques. Application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows
dual sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%.
The IRF6618PbF balances industry leading on-state resistance while minimizing gate charge along with ultra low package inductance to
reduce both conduction and switching losses. The reduced losses make this product ideal for high frequency/high efficiency DC-DC
converters that power high current loads such as the latest generation of microprocessors. The IRF6618PbF has been optimized for
parameters that are critical in synchronous buck converter’s SyncFET sockets.
Absolute Maximum Ratings
Parameter
VDS
Drain-to-Source Voltage
Gate-to-Source Voltage
VGS
ID @ TC = 25°C
ID @ TA = 25°C
ID @ TA = 70°C
IDM
EAS
IAR
Continuous Drain Current, VGS @ 10V
e
e
f
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
g
h
Typical RDS(on) (mΩ)
6
ID = 30A
5
4
T J = 125°C
3
2
T J = 25°C
1
0
2
Fig 1.
3
4
5
6
7
8
9
10
VGS, Gate -to -Source Voltage (V)
Typical On-Resistance vs. Gate-to-Source Voltage
VGS, Gate-to-Source Voltage (V)
g
Pulsed Drain Current
Single Pulse Avalanche Energy
Avalanche Current
Max.
Units
30
±20
170
30
24
240
210
24
V
A
mJ
A
6.0
ID= 24A
5.0
4.0
VDS= 24V
VDS= 15V
3.0
2.0
1.0
0.0
0
10
20
30
40
50
60
QG Total Gate Charge (nC)
Fig 2. Total Gate Charge vs. Gate-to-Source Voltage
Notes:
 Click on this section to link to the appropriate technical paper.
‚ Click on this section to link to the DirectFET Website.
ƒ Surface mounted on 1 in. square Cu board, steady state.
www.irf.com
„ TC measured with thermocouple mounted to top (Drain) of part.
Repetitive rating; pulse width limited by max. junction temperature.
† Starting TJ = 25°C, L = 0.75mH, RG = 25Ω, IAS = 24A.
1
08/17/07
IRF6618PbF
Static @ TJ = 25°C (unless otherwise specified)
Min.
Typ.
Max.
BVDSS
∆ΒVDSS/∆TJ
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
Parameter
30
–––
–––
23
–––
–––
RDS(on)
Static Drain-to-Source On-Resistance
VGS(th)
∆VGS(th)/∆TJ
Gate Threshold Voltage
Gate Threshold Voltage Coefficient
–––
–––
1.35
–––
1.7
–––
1.64
-5.7
2.2
3.4
2.35
–––
–––
–––
–––
5.0
1.0
150
IDSS
Drain-to-Source Leakage Current
–––
–––
–––
IGSS
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Forward Transconductance
–––
–––
100
–––
–––
–––
100
-100
–––
Total Gate Charge
Pre-Vth Gate-to-Source Charge
Post-Vth Gate-to-Source Charge
Gate-to-Drain Charge
–––
–––
–––
–––
43
12
4.0
15
65
–––
–––
23
Qgodr
Qsw
Qoss
Gate Charge Overdrive
Switch Charge (Qgs2 + Qgd)
Output Charge
–––
–––
–––
12
19
28
–––
–––
–––
RG
td(on)
tr
Gate Resistance
Turn-On Delay Time
Rise Time
–––
–––
–––
1.0
21
71
2.2
–––
–––
td(off)
tf
Ciss
Coss
Turn-Off Delay Time
Fall Time
Input Capacitance
Output Capacitance
–––
–––
–––
–––
27
8.1
5640
1260
–––
–––
–––
–––
Crss
Reverse Transfer Capacitance
–––
570
–––
gfs
Qg
Qgs1
Qgs2
Qgd
Units
Conditions
V
VGS = 0V, ID = 250µA
mV/°C Reference to 25°C, ID = 1mA
mΩ VGS = 10V, ID = 30A
VGS = 4.5V, ID = 24A
V
VDS = VGS, ID = 250µA
mV/°C
i
i
µA
nA
S
nC
VDS = 30V, VGS = 0V
VDS = 24V, VGS = 0V
VDS = 24V, VGS = 0V, TJ = 150°C
VGS = 20V
VGS = -20V
VDS = 15V, ID = 24A
VDS = 15V
VGS = 4.5V
ID = 24A
See Fig. 14
nC
Ω
VDS = 15V, VGS = 0V
VDD = 15V, VGS = 4.5V
ID = 24A
ns
pF
i
Clamped Inductive Load
See Fig. 15 & 16
VGS = 0V
VDS = 15V
ƒ = 1.0MHz
Diode Characteristics
Min.
Typ.
Max.
IS
Continuous Source Current
Parameter
–––
–––
89
ISM
(Body Diode)
Pulsed Source Current
–––
–––
240
VSD
trr
(Body Diode)
Diode Forward Voltage
Reverse Recovery Time
–––
–––
0.78
43
1.2
65
V
ns
Qrr
Reverse Recovery Charge
–––
46
69
nC
g
Units
Conditions
MOSFET symbol
A
showing the
integral reverse
D
G
p-n junction diode.
TJ = 25°C, IS = 24A, VGS = 0V
TJ = 25°C, IF = 24A
di/dt = 100A/µs
See Fig. 17
i
S
i
Notes:
Repetitive rating; pulse width limited by max. junction temperature.
‡ Pulse width ≤ 400µs; duty cycle ≤ 2%.
2
www.irf.com
IRF6618PbF
Absolute Maximum Ratings
Parameter
e
e
f
PD @TA = 25°C
PD @TA = 70°C
PD @TC = 25°C
Power Dissipation
Power Dissipation
Power Dissipation
Peak Soldering Temperature
Operating Junction and
Storage Temperature Range
TP
TJ
TSTG
Thermal Resistance
Units
2.8
1.8
89
W
270
-40 to + 150
Parameter
em
km
lm
fm
RθJA
RθJA
RθJA
RθJC
RθJ-PCB
Max.
Junction-to-Ambient
Junction-to-Ambient
Junction-to-Ambient
Junction-to-Case
Junction-to-PCB Mounted
Linear Derating Factor
e
°C
Typ.
Max.
Units
–––
12.5
20
–––
1.0
45
–––
–––
1.4
–––
°C/W
0.022
W/°C
100
Thermal Response ( Z thJA )
10
1
D = 0.50
0.20
0.10
0.05
0.02
0.01
0.1
τJ
0.01
0.001
SINGLE PULSE
( THERMAL RESPONSE )
R1
R1
τJ
τ1
R2
R2
R3
R3
R4
R4
τA
τ2
τ1
τ2
τ3
τ3
τ4
τA
τ4
Ci= τi/Ri
Ci= τi/Ri
Ri (°C/W)
τi (sec)
0.6784
0.00086
17.299
0.57756
17.566
8.94
9.4701
106
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthja + Tc
0.0001
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
10
100
t1 , Rectangular Pulse Duration (sec)
Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient
Notes:
‰ Used double sided cooling , mounting pad.
Š Mounted on minimum footprint full size board with metalized
‹ Rθ is measured at TJ of approximately 90°C.
back and with small clip heatsink.
ƒ Surface mounted on 1 in. square Cu
(still air).
www.irf.com
‰ Mounted to a PCB with
small clip heatsink (still air)
Š Mounted on minimum
footprint full size board with
metalized back and with small
clip heatsink (still air)
3
IRF6618PbF
1000
1000
100
BOTTOM
VGS
10V
7.0V
4.5V
4.0V
3.5V
3.2V
2.9V
2.7V
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
BOTTOM
VGS
10V
7.0V
4.5V
4.0V
3.5V
3.2V
2.9V
2.7V
100
2.7V
10
2.7V
≤60µs PULSE WIDTH
≤60µs PULSE WIDTH
Tj = 25°C
1
Tj = 150°C
10
0.1
1
10
100
0.1
1
V DS, Drain-to-Source Voltage (V)
100
Fig 5. Typical Output Characteristics
Fig 4. Typical Output Characteristics
1000
1.5
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID, Drain-to-Source Current (Α)
10
V DS, Drain-to-Source Voltage (V)
100
T J = 150°C
T J = 25°C
10
1
VDS = 10V
≤60µs PULSE WIDTH
0.1
ID = 30A
VGS = 10V
1.0
0.5
1.5
2.0
2.5
3.0
3.5
4.0
-60 -40 -20 0
T J , Junction Temperature (°C)
VGS, Gate-to-Source Voltage (V)
Fig 7. Normalized On-Resistance vs. Temperature
Fig 6. Typical Transfer Characteristics
100000
20 40 60 80 100 120 140 160 180
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
C rss = C gd
C, Capacitance(pF)
C oss = C ds + C gd
10000
Ciss
Coss
1000
Crss
100
1
10
100
VDS, Drain-to-Source Voltage (V)
Fig 8. Typical Capacitance vs.
Drain-to-Source Voltage
4
www.irf.com
IRF6618PbF
1000
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
1000.00
T J = 150°C
100.00
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100
10.00
T J = 25°C
1.00
VGS = 0V
0.4
0.6
0.8
1.0
10
1msec
T C = 25°C
Tj = 150°C
Single Pulse
0
1.2
1
10
100
1000
VDS, Drain-to-Source Voltage (V)
VSD, Source-to-Drain Voltage (V)
Fig 9. Typical Source-Drain Diode Forward Voltage
Fig 10. Maximum Safe Operating Area
180
2.5
VGS(th) Gate threshold Voltage (V)
160
140
ID, Drain Current (A)
10msec
1
0.10
0.2
100µsec
120
100
80
60
40
20
2.0
1.5
ID = 250µA
1.0
0.5
0.0
0
25
50
75
100
125
-75
150
-50
-25
0
25
50
75
100
125
150
T J , Temperature ( °C )
T C , Case Temperature (°C)
Fig 12. Threshold Voltage vs. Temperature
Fig 11. Maximum Drain Current vs.
Case Temperature
EAS , Single Pulse Avalanche Energy (mJ)
900
ID
9.3A
11A
BOTTOM 24A
800
TOP
700
600
500
400
300
200
100
0
25
50
75
100
125
150
Starting T J , Junction Temperature (°C)
Fig 13. Maximum Avalanche Energy
vs. Drain Current
www.irf.com
5
IRF6618PbF
Current Regulator
Same Type as D.U.T.
Id
Vds
50KΩ
Vgs
.2µF
12V
.3µF
+
V
- DS
D.U.T.
Vgs(th)
VGS
3mA
IG
ID
Qgs1 Qgs2
Qgd
Qgodr
Current Sampling Resistors
Fig 14a. Gate Charge Test Circuit
Fig 14b. Gate Charge Waveform
V(BR)DSS
15V
DRIVER
L
VDS
tp
D.U.T
V
RGSG
20V
+
- VDD
IAS
tp
A
I AS
0.01Ω
Fig 15b. Unclamped Inductive Waveforms
Fig 15a. Unclamped Inductive Test Circuit
LD
VDS
VDS
90%
+
VDD -
10%
D.U.T
VGS
Pulse Width < 1µs
Duty Factor < 0.1%
Fig 16a. Switching Time Test Circuit
6
VGS
td(on)
tr
td(off)
tf
Fig 16b. Switching Time Waveforms
www.irf.com
IRF6618PbF
D.U.T
Driver Gate Drive
+
ƒ
+
‚
„
D.U.T. ISD Waveform
Reverse
Recovery
Current
+
RG
di/dt controlled by RG
Driver same type as D.U.T.
I SD controlled by Duty Factor "D"
D.U.T. - Device Under Test
P.W.
Period
*

•
•
•
•
D=
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
-
-
Period
P.W.
V DD
+
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
InductorCurent
Current
Inductor
-
Ripple ≤ 5%
*
ISD
VGS = 5V for Logic Level Devices
Fig 17. Diode Reverse Recovery Test Circuit for N-Channel
HEXFET® Power MOSFETs
DirectFET™ Substrate and PCB Layout, MT Outline ƒ
(Medium Size Can, T-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.
This includes all recommendations for stencil and substrate designs.
G = GATE
D = DRAIN
S = SOURCE
D
S
D
G
D
www.irf.com
S
D
7
IRF6618PbF
DirectFET™ Outline Dimension, MT Outline
(Medium Size Can, T-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.
This includes all recommendations for stencil and substrate designs.
DIMENSIONS
METRIC
MAX
CODE MIN
6.35
A
6.25
5.05
B
4.80
3.95
C
3.85
0.45
D
0.35
0.82
E
0.78
0.92
F
0.88
1.82
G
1.78
1.02
H
0.98
0.67
J
0.63
1.01
K
0.88
2.63
L
2.46
M
0.616 0.676
R
0.020 0.080
0.17
P
0.08
IMPERIAL
MIN
0.246
0.189
0.152
0.014
0.031
0.035
0.070
0.039
0.025
0.035
0.097
0.0235
0.0008
0.003
MAX
0.250
0.199
0.156
0.018
0.032
0.036
0.072
0.040
0.026
0.039
0.104
0.0274
0.0031
0.007
DirectFET™ Part Marking
8
www.irf.com
IRF6618PbF
DirectFET™ Tape & Reel Dimension (Showing component orientation)
NOTE: Controlling dimensions in mm
Std reel quantity is 4800 parts. (ordered as IRF6618TRPBF). For 1000 parts on 7"
reel, order IRF6618TR1PBF
STANDARD OPTION
METRIC
CODE
MIN
MAX
A
330.0
N.C
B
20.2
N.C
C
12.8
13.2
D
1.5
N.C
E
100.0
N.C
F
N.C
18.4
G
12.4
14.4
H
11.9
15.4
REEL DIMENSIONS
(QTY 4800)
TR1 OPTION (QTY 1000)
IMPERIAL
METRIC
IMPERIAL
MIN
MAX
MIN
MAX
MIN
MAX
6.9
N.C
12.992 N.C
177.77 N.C
0.75
0.795
N.C
19.06
N.C
N.C
0.53
0.50
0.504
13.5
0.520
12.8
0.059
0.059
N.C
1.5
N.C
N.C
2.31
3.937
N.C
58.72
N.C
N.C
N.C
N.C
0.53
N.C
0.724
13.50
0.47
0.488
N.C
11.9
0.567
12.01
0.47
0.469
N.C
11.9
12.01
0.606
LOADED TAPE FEED DIRECTION
CODE
A
B
C
D
E
F
G
H
DIMENSIONS
METRIC
IMPERIAL
MIN
MIN
MAX
MAX
0.311
0.319
7.90
8.10
0.154
3.90
0.161
4.10
0.469
11.90
12.30
0.484
0.215
5.45
0.219
5.55
0.201
5.10
5.30
0.209
0.256
6.50
0.264
6.70
0.059
1.50
N.C
N.C
0.059
1.50
1.60
0.063
Data and specifications subject to change without notice.
This product has been designed and qualified for the Consumer market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 08/2007
www.irf.com
9
Similar pages