LINER LT1014ISW Quad precision op amp (lt1014) dual precision op amp (lt1013) Datasheet

LT1013/LT1014
Quad Precision Op Amp (LT1014)
Dual Precision Op Amp (LT1013)
DESCRIPTIO
U
FEATURES
■
■
■
■
■
■
■
■
■
Single Supply Operation
Input Voltage Range Extends to Ground
Output Swings to Ground while Sinking Current
Pin Compatible to 1458 and 324 with Precision Specs
Guaranteed Offset Voltage: 150μV Max
Guaranteed Low Drift: 2μV/°C Max
Guaranteed Offset Current: 0.8nA Max
Guaranteed High Gain
5mA Load Current: 1.5 Million Min
17mA Load Current: 0.8 Million Min
Guaranteed Low Supply Current: 500μA Max
Low Voltage Noise, 0.1Hz to 10Hz: 0.55μVp-p
Low Current Noise—Better than 0P-07, 0.07pA/√Hz
U
APPLICATIO S
■
■
■
■
■
The LT ®1014 is the first precision quad operational amplifier
which directly upgrades designs in the industry standard
14-pin DIP LM324/LM348/OP-11/4156 pin configuration.
It is no longer necessary to compromise specifications,
while saving board space and cost, as compared to single
operational amplifiers.
The LT1014’s low offset voltage of 50μV, drift of 0.3μV/°C,
offset current of 0.15nA, gain of 8 million, common mode
rejection of 117dB and power supply rejection of 120dB
qualify it as four truly precision operational amplifiers.
Particularly important is the low offset voltage, since no
offset null terminals are provided in the quad configuration. Although supply current is only 350μA per amplifier,
a new output stage design sources and sinks in excess of
20mA of load current, while retaining high voltage gain.
Similarly, the LT1013 is the first precision dual op amp in
the 8-pin industry standard configuration, upgrading the
performance of such popular devices as the MC1458/
1558, LM158 and OP-221. The LT1013’s specifications
are similar to (even somewhat better than) the LT1014’s.
Battery-Powered Precision Instrumentation
Strain Gauge Signal Conditioners
Thermocouple Amplifiers
Instrumentation Amplifiers
4mA–20mA Current Loop Transmitters
Multiple Limit Threshold Detection
Active Filters
Multiple Gain Blocks
Both the LT1013 and LT1014 can be operated off a single
5V power supply: input common mode range includes
ground; the output can also swing to within a few millivolts
of ground. Crossover distortion, so apparent on previous
single-supply designs, is eliminated. A full set of specifications is provided with ±15V and single 5V supplies.
, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.
All other trademarks are the property of their respective owners.
U
TYPICAL APPLICATIO
LT1014 Distribution of Offset Voltage
3 Channel Thermocouple Thermometer
1M
4k
700
3k
299k
+5V
+5V
14
+
12
–
13
YSI 44007
5kΩ
AT 25°C
1684Ω
2
–
3
+
4
LT1014
1
OUTPUT A
10mV/°C
11
LT1014
260Ω
1.8k
1M
NUMBER OF UNITS
LT1004
1.2V
VS = ±15V
TA = 25°C
425 LT1014s
(1700 OP AMPS)
500 TESTED FROM
THREE RUNS
400 J PACKAGE
600
300
200
100
4k
USE TYPE K THERMOCOUPLES. ALL RESISTORS = 1% FILM.
COLD JUNCTION COMPENSATION ACCURATE
TO ±1°C FROM 0°C
60°C.
USE 4TH AMPLIFIER FOR OUTPUT C.
6
–
LT1014
5
+
7
OUTPUT B
10mV/°C
0
100
–300 –200 –100
0
200
INPUT OFFSET VOLTAGE (μV)
300
1013/14 TA02
10134fc
1
LT1013/LT1014
W W
U
W
ABSOLUTE
AXI U RATI GS
(Note 1)
Supply Voltage ...................................................... ±22V
Differential Input Voltage ....................................... ±30V
Input Voltage ............... Equal to Positive Supply Voltage
............5V Below Negative Supply Voltage
Output Short-Circuit Duration .......................... Indefinite
Storage Temperature Range
All Grades ......................................... – 65°C to 150°C
Lead Temperature (Soldering, 10 sec.)................. 300°C
Operating Temperature Range
LT1013AM/LT1013M/
LT1014AM/LT1014M ...................... – 55 °C to 125°C
LT1013AC/LT1013C/LT1013D
LT1014AC/LT1014C/LT1014D ................. 0°C to 70°C
LT1013I/ LT1014I ............................... – 40°C to 85°C
U
W
U
PACKAGE/ORDER I FOR ATIO
TOP VIEW
–INA
LT1013DS8
LT1013IS8
2
7
OUTA
+INB 3
+
6
V+
–INB 4
–
5
OUTB
TOP VIEW
–
B
+
V– 4
8
V+
7
OUTPUT B
6
–IN B
5
+IN B
N8 PACKAGE
8-LEAD PDIP
TJMAX = 150°C, θJA = 130°C/W
J8 PACKAGE
8-LEAD CERDIP
TJMAX = 150°C, θJA = 100°C/W
ORDER PART
NUMBER
LT1014DSW
LT1014ISW
13 V –
+IN B 5
12 +IN C
–IN B 6
11 –IN C
10 OUTPUT C
NC 8
9
NC
PART MARKING
SW PACKAGE
16-LEAD PLASTIC SO
LT1014DSW
LT1014ISW
TJMAX = 150°C, θJA = 130°C/W
ORDER PART
NUMBER
+IN A 3
14 +IN D
V+ 4
1013
1013I
TJMAX = 150°C, θJA = 190°C/W
–
+A
15 –IN D
+IN A 3
PART MARKING
NOTE: THIS PIN CONFIGURATION DIFFERS FROM
THE STANDARD 8-PIN DUAL-IN-LINE CONFIGURATION
–IN A 2
–IN A 2
OUTPUT B 7
S8 PACKAGE
8-LEAD PLASTIC SO
OUTPUT A 1
16 OUTPUT D
TOP VIEW
OUTPUT A
1
–IN A
2
+IN A
3
LT1013ACN8
LT1013CN8
LT1013DN8
LT1013IN8
V+
4
+IN B
5
–IN B
6
OUTPUT B
7
LT1013AMJ8
LT1013MJ8
LT1013ACJ8
LT1013CJ8
14 OUTPUT D
–
+A
D
+
8
+
V–
OUTPUT A 1
–
–
+INA 1
TOP VIEW
ORDER PART
NUMBER
13 –IN D
LT1014ACN
LT1014CN
LT1014DN
LT1014IN
12 +IN D
11
+
B
–
ORDER PART
NUMBER
V–
+ 10 +IN C
C
– 9 –IN C
8
OUTPUT C
LT1014AMJ
LT1014MJ
LT1014ACJ
LT1014CJ
N PACKAGE
14-LEAD PDIP
TJMAX = 150°C, θJA = 100°C/W
J PACKAGE
14-LEAD CERDIP
TJMAX = 150°C, θJA = 100°C/W
OBSOLETE PACKAGE
OBSOLETE PACKAGE
Consider the N or S8 Packages for Alternate Source
Consider the N or SW Packages for Alternate Source
TOP VIEW
ORDER PART
NUMBER
V+
8
7 OUTPUT B
OUTPUT A 1
OBSOLETE PACKAGE
A
B
+ – 6 –IN B
–IN A 2 – +
Consider the N or S8 (not N8) Packages for Alternate Source
+IN A 3
5 +IN B
4
V –(CASE)
H PACKAGE
8-LEAD TO-5 METAL CAN
LT1013AMH
LT1013MH
LT1013ACH
LT1013CH
TJMAX = 150°C, θJA = 150°C/W, θJC = 45°C/W
Consult LTC Marketing for parts specified with wider operating temperature ranges.
10134fc
2
LT1013/LT1014
ELECTRICAL CHARACTERISTICS
TA = 25°C. VS = ±15V, VCM = 0V unless otherwise noted.
CONDITIONS
LT1013
LT1014
LT1013D/I, LT1014D/I
MIN
—
—
—
LT1013C/D/I/M
LT1014C/D/I/M
TYP
60
60
200
MAX
300
300
800
UNITS
μV
μV
μV
—
0.5
—
μV/Mo.
SYMBOL
VOS
PARAMETER
Input Offset Voltage
—
0.4
—
ISO
Long Term Input Offset Voltage
Stability
Input Offset Current
—
0.15
0.8
—
0.2
1.5
nA
IB
en
Input Bias Current
Input Noise Voltage
0.1Hz to 10Hz
—
—
12
0.55
20
—
—
—
15
0.55
30
—
nA
μVp-p
en
Input Noise Voltage Density
in
Input Noise Current Density
fO = 10Hz
fO = 1000Hz
fO = 10Hz
—
—
—
24
22
0.07
—
—
—
—
—
—
24
22
0.07
—
—
—
nV/√Hz
nV/√Hz
pA/√Hz
100
—
400
5
—
—
70
—
300
4
—
—
MΩ
GΩ
VO = ±10V, RL = 2k
VO = ±10V, RL = 600Ω
1.5
0.8
+13.5
– 15.0
8.0
2.5
+13.8
– 15.3
—
—
—
—
1.2
0.5
+13.5
– 15.0
7.0
2.0
+13.8
– 15.3
—
—
—
—
V/μV
V/μV
V
V
Input Resistance – Differential
(Note 2)
Common Mode
AVOL
Large Signal Voltage Gain
Input Voltage Range
MIN
—
—
—
LT1013AM/AC
LT1014AM/AC
TYP
MAX
40
150
50
180
—
—
CMRR
PSRR
Common Mode Rejection Ratio
Power Supply Rejection Ratio
VCM = + 13.5V, – 15.0V
VS = ±2V to ±18V
100
103
117
120
—
—
97
100
114
117
—
—
dB
dB
VOUT
Channel Separation
Output Voltage Swing
VO = ±10V, RL = 2k
RL = 2k
123
±13
140
±14
—
—
120
±12.5
137
±14
—
—
dB
V
IS
Slew Rate
Supply Current
Per Amplifier
0.2
—
0.4
0.35
—
0.50
0.2
—
0.4
0.35
—
0.55
V/μs
mA
LT1013C/D/I/M
LT1014C/D/I/M
MIN
TYP
MAX
UNITS
TA = 25°C. V S+ = + 5V, V S– = 0V, VOUT = 1.4V, VCM = 0V unless otherwise noted
SYMBOL
PARAMETER
CONDITIONS
VOS
Input Offset Voltage
LT1013
LT1014
LT1013D/I, LT1014D/I
IOS
Input Offset Current
IB
AVOL
Input Bias Current
Large Signal Voltage Gain
VO = 5mV to 4V, RL = 500Ω
Input Voltage Range
VOUT
Output Voltage Swing
Output Low, No Load
Output Low, 600Ω to Ground
Output Low, ISINK = 1mA
Output High, No Load
Output High, 600Ω to Ground
IS
Supply Current
Per Amplifier
LT1013AM/AC
LT1014AM/AC
MIN
TYP
MAX
—
—
—
—
60
70
—
0.2
250
280
—
1.3
—
—
—
—
90
90
250
0.3
450
450
950
2.0
μV
μV
μV
nA
—
—
15
1.0
35
—
—
—
18
1.0
50
—
nA
V/μV
+ 3.5
0
—
—
—
4.0
3.4
+ 3.8
– 0.3
15
5
220
4.4
4.0
—
—
25
10
350
—
—
+3.5
0
—
—
—
4.0
3.4
+ 3.8
– 0.3
15
5
220
4.4
4.0
—
—
25
10
350
—
—
V
V
mV
mV
mV
V
V
—
0.31
0.45
—
0.32
0.50
mA
10134fc
3
LT1013/LT1014
ELECTRICAL CHARACTERISTICS
The ● denotes the specifications which apply over the temperature range
– 55°C ≤ TA ≤ 125°C. V S = ±15V, VCM = 0V unless otherwise noted.
SYMBOL PARAMETER
VOS
Input Offset Voltage
IOS
Input Offset Voltage Drift
Input Offset Current
CONDITIONS
VS = + 5V, 0V; VO = + 1.4V
– 55°C ≤ TA ≤ 100°C
VCM = 0.1V, TA = 125°C
VCM = 0V, TA = 125°C
(Note 3)
VS = + 5V, 0V; VO = +1.4V
IB
AVOL
CMRR
PSRR
VOUT
IS
Input Bias Current
Large Signal Voltage Gain
Common Mode Rejection
Power Supply Rejection
Ratio
Output Voltage Swing
Supply Current
Per Amplifier
VS = + 5V, 0V; VO = +1.4V
VO = ±10V, RL = 2k
VCM = +13.0V, – 14.9V
VS = ±2V to ±18V
RL = 2k
VS = +5V, 0V
RL = 600Ω to Ground
Output Low
Output High
VS = +5V, 0V; VO = +1.4V
LT1013AM
MIN TYP MAX
● —
80
300
●
●
—
—
—
—
—
—
—
—
0.5
97
100
●
±12 ±13.8
●
●
●
●
●
●
●
●
●
●
●
—
3.2
—
—
80
120
250
0.4
0.3
0.6
15
20
2.0
114
117
6
3.8
0.38
0.34
MIN
—
LT1014AM
TYP MAX
90
350
450
450
900
2.0
2.5
6.0
30
80
—
—
—
—
—
—
—
—
—
—
—
0.4
96
100
—
±12 ±13.8
15
—
0.60
0.55
—
3.2
—
—
90
150
300
0.4
0.3
0.7
15
25
2.0
114
117
6
3.8
0.38
0.34
480
480
960
2.0
2.8
7.0
30
90
—
—
—
—
15
—
0.60
0.55
LT1013M/LT1014M
MIN TYP MAX UNITS
—
110 550
μV
—
—
—
—
—
—
—
—
0.25
94
97
100
200
400
0.5
0.4
0.9
18
28
2.0
113
116
±11.5 ±13.8
—
3.1
—
—
6
3.8
0.38
0.34
750
μV
750
μV
1500
μV
2.5 μV/°C
5.0
nA
10.0
nA
45
nA
120
nA
—
V/μV
—
dB
—
dB
—
18
—
0.7
0.65
V
mV
V
mA
mA
10134fc
4
LT1013/LT1014
ELECTRICAL CHARACTERISTICS
The ● denotes the specifications which apply over the temperature range
–40°C ≤ TA ≤ 85°C for LT1013I, LT1014I, 0°C ≤ TA ≤ 70°C for LT1013C, LT1013D, LT1014C, LT1014D. VS = ±15V, VCM = 0V unless
otherwise noted.
SYMBOL PARAMETER
VOS
Input Offset Voltage
IOS
Average Input Offset
Voltage Drift
Input Offset Current
CONDITIONS
LT1013D/I, LT1014D/I
VS = +5V, 0V; VO = 1.4V
LT1013D/I, LT1014D/I
VS = +5V, 0V; VO = 1.4V
(Note 3)
LT1013D/I, LT1014D/I
AVOL
CMRR
PSRR
VOUT
IS
LT1013C/D/I
LT1014C/D/I
MIN TYP MAX UNITS
—
80
400
μV
—
230 1000
μV
—
110 570
μV
●
●
—
0.3
—
0.2
0.4
13
18
5.0
116
—
2.0
—
1.5
3.5
25
55
—
—
—
—
—
—
—
—
—
1.0
98
—
0.3
—
0.2
0.4
13
20
5.0
116
—
2.0
—
1.7
4.0
25
60
—
—
—
—
—
—
—
—
—
0.7
94
280
0.4
0.7
0.3
0.5
16
24
4.0
113
VS = ±2V to ±18V
●
101
119
—
101
119
—
97
116
RL = 2k
VS = +5V, 0V; RL = 600Ω
Output Low
Output High
● ±12.5 ±13.9
Input Bias Current
Large Signal Voltage Gain
Common Mode Rejection
Ratio
Power Supply Rejection
Ratio
Output Voltage Swing
LT1014AC
MIN TYP MAX
—
65
270
—
—
—
—
85
380
—
—
—
—
—
—
—
1.0
98
VS = +5V, 0V; VO = 1.4V
IB
LT1013AC
MIN TYP MAX
● —
55
240
● —
—
—
● —
75
350
VS = +5V, 0V; VO = 1.4V
VO = ±10V, RL = 2k
VCM = +13.0V, – 15.0V
Supply Current per Amplifier
VS = +5V, 0V; VO = 1.4V
●
●
●
●
●
●
●
●
●
●
●
—
3.3
—
—
6
3.9
0.36
0.32
—
13
—
0.55
0.50
±12.5 ±13.9
—
3.3
—
—
6
3.9
0.36
0.32
—
13
—
0.55
0.50
±12.0 ±13.9
—
3.2
—
—
6
3.9
0.37
0.34
1200
μV
2.5 μV/°C
5.0 μV/°C
2.8
nA
6.0
nA
38
nA
90
nA
—
V/μV
—
dB
—
dB
—
V
13
—
0.60
0.55
mV
V
mA
mA
Note 1: Stresses beyond those listed under Absolute Maximum Ratings
may cause permanent damage to the device. Exposure to any Absolute
Rating condition for extended periods may affect device reliability
and lifetime.
Note 2: This parameter is guaranteed by design and is not tested. Typical
parameters are defined as the 60% yield of parameter distributions of
individual amplifiers; i.e., out of 100 LT1014s (or 100 LT1013s) typically
240 op amps (or 120 ) will be better than the indicated specification.
Note 3: This parameter is not 100% tested.
10134fc
5
LT1013/LT1014
U W
TYPICAL PERFOR A CE CHARACTERISTICS
Offset Voltage Drift with
Temperature of Representative
Units
Warm-Up Drift
10
INPUT OFFSET VOLTAGE (mV)
100
0
–100
5
VS = 5V, 0V, –55°C TO 125°C
VS = ±15V, 0V, –55°C TO 125°C
1
VS = 5V, 0V, 25°C
0.1
RS
VS = ±15V, 0V, 25°C
RS
–200
VS = ±15V
TA = 25°C
CHANGE IN OFFSET VOLTAGE (μV)
VS = ±15V
200
INPUT OFFSET VOLTAGE (μV)
Offset Voltage vs Balanced
Source Resistance
+
4
3
LT1013 METAL CAN (H) PACKAGE
2
LT1014
1
0.01
–50 –25
50
25
0
75
TEMPERATURE (°C)
100
125
1k
5
0.1Hz to 10Hz Noise
120
100
80
VS = 5V, 0V
VS = ±15V
60
40
20
0
10
100
1k
10k
FREQUENCY (Hz)
100k
TA = 25°C
VS = ±2V TO ±18V
100
NEGATIVE
SUPPLY
80
POSITIVE
SUPPLY
60
40
VS = ±15V + 1VP-P SINE WAVE
TA = 25°C
20
0
0.1
1M
NOISE VOLTAGE (200nV/DIV)
TA = 25°C
POWER SUPPLY REJECTION RATIO (dB)
1
10
100 1k
10k
FREQUENCY (Hz)
1013/14 TPC04
100k
1M
0
1000
TA = 25°C
VS = ±2V TO ±18V
160
NUMBER OF UNITS
VOLTAGE NOISE
30
140
120
100
80
60
40
20
1/f CORNER 2Hz
0
1
10
100
FREQUENCY (Hz)
1k
1013/14 TPC07
10
Supply Current vs Temperature
VS = ±15V
TA = 25°C
328 UNITS TESTED
FROM THREE RUNS
180
CURRENT NOISE
8
460
200
100
6
4
TIME (SECONDS)
1013/14 TPC06
10Hz Voltage Noise
Distribution
Noise Spectrum
300
2
1013/14 TPC05
SUPPLY CURRENT PER AMPLIFIER (μA)
COMMON MODE REJECTION RATIO (dB)
1
3
4
2
TIME AFTER POWER ON (MINUTES)
1013/14 TPC03
Power Supply Rejection Ratio
vs Frequency
120
VOLTAGE NOISE DENSITY (nV/√Hz)
CURRENT NOISE DENSITY (fA/√Hz)
0
1013/14 TPC02
Common Mode Rejection Ratio
vs Frequency
10
0
3k 10k 30k 100k 300k 1M 3M 10M
BALANCED SOURCE RESISTANCE (Ω)
1013/14 TPC01
LT1013 CERDIP (J) PACKAGE
–
10
20
40
50
30
VOLTAGE NOISE DENSITY (nV/√Hz)
60
1013/14 TPC08
420
380
VS = ±15V
340
VS = 5V, 0V
300
260
–50 –25
50
25
0
75
TEMPERATURE (°C)
100
125
1013/14 TPC09
10134fc
6
LT1013/LT1014
U W
Input Bias Current vs
Common Mode Voltage
4
10
3
5
VS = ±15V
2
0
VS = 5V, 0V
1
–5
0
–10
–1
0
–5
–25
–10
–15
–20
INPUT BIAS CURRENT (nA)
–15
–30
1.0
–30
VCM = 0V
VCM = 0V
–25
0.8
0.6
0.4
VS = 5V, 0V
=±
V
2.5
0
–50 –25
50
25
0
75
TEMPERATURE (°C)
–20
VS = 5V, 0V
–15
.5V
VS = ± 2
VS = ±15V
–10
–5
VS = ±15V
100
125
0
–50 –25
50
25
75
0
TEMPERATURE (°C)
1013/14 TPC11
Output Saturation vs Sink
Current vs Temperature
100
125
1013/14 TPC12
Large Signal Transient
Response, VS = ±15V
Small Signal Transient
Response, VS = ±15V
V + = 5V TO 30V
V – = 0V
ISINK = 10mA
1
ISINK = 5mA
5V/DIV
20mV/DIV
SATURATION VOLTAGE (V)
VS
0.2
1013/14 TPC10
10
Input Bias Current vs
Temperature
INPUT BIAS CURRENT (nA)
15
TA = 25°C
INPUT OFFSET CURRENT (nA)
5
Input Offset Current vs
Temperature
COMMON MODE INPUT VOLTAGE, VS = ±15V (V)
COMMON MODE INPUT VOLTAGE, VS = +5V, 0V (V)
TYPICAL PERFOR A CE CHARACTERISTICS
ISINK = 1mA
0.1
ISINK = 100μA
ISINK = 10μA
AV = +1
2μs/DIV
AV = +1
1013/14 TPC14
50μs/DIV
1013/14 TPC15
ISINK = 0
0.01
–50
–25
0
25
50
75
TEMPERATURE (°C)
100
125
1013/14 TPC13
Large Signal Transient
Response, VS = 5V, 0V
Small Signal Transient
Response, VS = 5V, 0V
Large Signal Transient
Response, VS = 5V, 0V
4V
4V
100mV
2V
2V
0V
50mV
0V
0
AV = +1
20μs/DIV
RL = 600Ω TO GROUND
INPUT = 0V TO 100mV PULSE
1013/14 TPC16
AV = +1
10μs/DIV
RL = 4.7k TO 5V
INPUT = 0V TO 4V PULSE
1013/14 TPC17
AV = +1
10μs/DIV
NO LOAD
INPUT = 0V TO 4V PULSE
1013/14 TPC18
10134fc
7
LT1013/LT1014
U W
TYPICAL PERFOR A CE CHARACTERISTICS
Output Short-Circuit Current
vs Time
40
125°C
TA = 125°C, VS = ±15V
10
0
125°C
–10
–20
25°C
–30
–55°C
TA = –55°C, VS = 5V, 0V
TA = 25°C, VS = 5V, 0V
1M
TA = 125°C, VS = 5V, 0V
100
80
1
2
0
3
TIME FROM OUTPUT SHORT TO GROUND (MINUTES)
100k
100
1k
LOAD RESISTANCE TO GROUND (Ω)
40
0
140
160
5V, 0V
180
5V, 0V
200
CHANNEL SEPARATION (dB)
120
±15V
0
VS = ±15V
TA = 25°C
VIN = 20Vp-p to 5kHz
RL = 2k
140
LIMITED BY
THERMAL
INTERACTION
120
0.3
1
3
FREQUENCY (MHz)
RS = 100Ω
RS = 1kΩ
100
LIMITED BY
PIN TO PIN
CAPACITANCE
80
–10
0.1
10 100 1k 10k 100k 1M 10M
FREQUENCY (Hz)
1013/14 TPC21
160
PHASE SHIFT (DEGREES)
VOLTAGE GAIN (dB)
80
TA = 25°C
VCM = 0V
100
CL = 100pF
±15V
GAIN
1
Channel Separation vs
Frequency
Gain, Phase vs Frequency
10
–20
0.01 0.1
10k
1013/14 TPC20
1013/14 TPC19
PHASE
VS = ±15V
20
VO = ±10V WITH VS = ±15V
–40
VS = 5V, 0V
60
VO = 20mV TO 3.5V
WITH VS = 5V, 0V
20
TA = 25°C
CL = 100pF
120
VOLTAGE GAIN (dB)
20
Voltage Gain vs Frequency
140
TA = 25°C, VS = ±15V
TA = –55°C, VS = ±15V
VOLTAGE GAIN (V/V)
SHORT-CIRCUIT CURRENT (mA)
SINKING
SOURCING
25°C
10M
VS = ±15V
–55°C
30
Voltage Gain vs Load
Resistance
60
10
10
1013/14 TPC22
100
10k
1k
FREQUENCY (Hz)
100k
1M
1013/14 TPC23
U
W
U
U
APPLICATIO S I FOR ATIO
Single Supply Operation
The LT1013/LT1014 are fully specified for single supply
operation, i.e., when the negative supply is 0V. Input
common mode range includes ground; the output swings
within a few millivolts of ground. Single supply operation,
however, can create special difficulties, both at the input
and at the output. The LT1013/LT1014 have specific
circuitry which addresses these problems.
At the input, the driving signal can fall below 0V— inadvertently or on a transient basis. If the input is more than
a few hundred millivolts below ground, two distinct prob-
lems can occur on previous single supply designs, such as
the LM124, LM158, OP-20, OP-21, OP-220, OP-221,
OP-420:
a) When the input is more than a diode drop below ground,
unlimited current will flow from the substrate (V – terminal) to the input. This can destroy the unit. On the LT1013/
LT1014, the 400Ω resistors, in series with the input (see
Schematic Diagram), protect the devices even when the
input is 5V below ground.
10134fc
8
LT1013/LT1014
U
W
U
U
APPLICATIO S I FOR ATIO
b) When the input is more than 400mV below ground (at
25°C), the input stage saturates (transistors Q3 and Q4)
and phase reversal occurs at the output. This can cause
lock-up in servo systems. Due to a unique phase reversal
protection circuitry (Q21, Q22, Q27, Q28), the LT1013/
LT1014’s outputs do not reverse, as illustrated below, even
when the inputs are at –1.5V.
There is one circumstance, however, under which the phase
reversal protection circuitry does not function: when the
other op amp on the LT1013, or one specific amplifier of the
other three on the LT1014, is driven hard into negative
saturation at the output.
Phase reversal protection does not work on amplifier:
A when D’s output is in negative saturation. B’s and C’s
outputs have no effect.
B when C’s output is in negative saturation. A’s and D’s
outputs have no effect.
C when B’s output is in negative saturation. A’s and D’s
outputs have no effect.
D when A’s output is negative saturation. B’s and C’s
outputs have no effect.
At the output, the aforementioned single supply designs
either cannot swing to within 600mV of ground (OP-20) or
cannot sink more than a few microamperes while swinging to ground (LM124, LM158). The LT1013/LT1014’s
all-NPN output stage maintains its low output resistance
and high gain characteristics until the output is saturated.
In dual supply operations, the output stage is crossover
distortion-free.
Comparator Applications
The single supply operation of the LT1013/LT1014 lends
itself to its use as a precision comparator with TTL
compatible output:
In systems using both op amps and comparators, the
LT1013/LT1014 can perform multiple duties; for example,
on the LT1014, two of the devices can be used as op amps
and the other two as comparators.
Voltage Follower with Input Exceeding the Negative Common Mode Range
4V
2V
4V
4V
2V
2V
0V
0V
0V
6Vp-p INPUT, – 1.5V TO 4.5V
LM324, LM358, OP-20
EXHIBIT OUTPUT PHASE
REVERSAL
LT1013/LT1014
NO PHASE REVERSAL
Comparator Fall Response Time
to 10mV, 5mV, 2mV Overdrives
OUTPUT (V)
OUTPUT (V)
Comparator Rise Response Time
10mV, 5mV, 2mV Overdrives
4
2
INPUT (mV)
INPUT (mV)
2
4
0
0
– 100
0
100
0
VS = 5V, 0V
50μs/DIV
VS = 5V, 0V
50μs/DIV
10134fc
9
LT1013/LT1014
U
U
W
U
APPLICATIO S I FOR ATIO
Test Circuit for Offset Voltage and
Offset Drift with Temperature
Low Supply Operation
The minimum supply voltage for proper operation of the
LT1013/LT1014 is 3.4V (three Ni-Cad batteries). Typical
supply current at this voltage is 290μA, therefore power
dissipation is only one milliwatt per amplifier.
50k*
+15V
–
100Ω*
Noise Testing
LT1013
OR LT1014
50k*
For applications information on noise testing and calculations, please see the LT1007 or LT1008 data sheet.
VO
+
–15V
*RESISTOR MUST HAVE LOW
THERMOELECTRIC POTENTIAL.
**THIS CIRCUIT IS ALSO USED AS THE BURN-IN
CONFIGURATION, WITH SUPPLY VOLTAGES
INCREASED TO ±20V.
VO = 1000VOS
LT1013/14 F06
U
TYPICAL APPLICATIO S
5V Single Supply Dual Instrumentation Amplifier
50MHz Thermal rms to DC Converter
100k*
+5V
+5V
30k*
2
–
3
+
30k*
+INPUT
LT1014
10k
1μF
1/2 LTC1043
0.01
1
10k*
6
5
5
10k*
–
5
+
300Ω*
100k*
10k*
2
+5V
4
7
4
7
OUTPUT A
–
R2
1μF
1μF
LT1014
8
1/2 LT1013
6
6
+
3
R1
11
10k*
–INPUT
18
+INPUT
7
15
0.01
0.01
T1A
GRN
–
12
+
LT1014
10k
INPUT
300mV–
10VRMS
BRN
13
14
1/2 LTC1043
3
8
2
10
RED
T1B
RED
T2B
GRN
BRN
+
1/2 LT1013
1μF
20k
FULLSCALE
TRIM
10k
11
+
8
1μF
0V–4V
OUTPUT
10k*
10k*
–INPUT
13
14
16
2% ACCURACY, DC–50MHz.
100:1 CREST FACTOR CAPABILITY.
* 0.1% RESISTOR.
T1–T2 = YELLOW SPRINGS INST. CO. THERMISTOR COMPOSITE #44018.
ENCLOSE T1 AND T2 IN STYROFOAM.
7.5mW DISSIPATION.
1μF
12
–
T2A
OUTPUT B
–
R2
LT1014
9
1
0.01
R1
OFFSET = 150μV
GAIN = R2 + 1.
R1
CMRR = 120dB.
COMMON-MODE RANGE IS 0V TO 5V.
1013/14 TA04
1013/14 TA03
10134fc
10
LT1013/LT1014
U
TYPICAL APPLICATIO S
Hot Wire Anemometer
+15V
500pF
Q1
2N6533
Q2–Q5
CA3046
PIN 3 TO –15V
Q2
2k
Q5
Q3
220
150k*
0.01μF
10k*
27Ω
1W
33k
–
2
#328
6
A2
LT1014
Q4
2k
7
150k*
+
12k
1
1k
ZERO
FLOW
+
2k*
500k
–15V
–
12
+
A4
LT1014
10M
RESPONSE
TIME
ADJUST
2M
FULLSCALE
FLOW
3.3k
11
13
1μF
+15V
4
A1
LT1014
3
5
1000pF
–
14
0V–10V =
0–1000 FEET/MINUTE
100k
–15V
REMOVE LAMP'S GLASS ENVELOPE FROM 328 LAMP.
A1 SERVOS #328 LAMP TO CONSTANT TEMPERATURE.
A2-A3 FURNISH LINEAR OUTPUT vs FLOW RATE.
* 1% RESISTOR.
9
–
10
+
1μF
A3
LT1014
8
1013/14 TA05
Liquid Flowmeter
3.2k**
1M*
+15V
15Ω
DALE
HL-25
3.2k*
1M*
2
1M*
6.25k**
3
10M
RESPONSE
TIME
–
1
A1
LT1014
+
6
–
5
+LT1014
A2
100k
7
6.98k*
5k
FLOW
CALIB
6.25k**
1μF
1M*
1k*
T1
T2
+15V
4.7k
1N4148
100k
2N4391
300pF
0.1
LT1004
–1.2
383k*
9
2.7k
10
–
8
A3
LT1014
100k
12
+
100k
–15V
13
+
OUTPUT
0Hz
300Hz =
0 300ML/MIN
+15V
4
14
A4
LT1014
–
11
–15V
T1
FLOW
15Ω HEATER RESISTOR
T2
FLOW
PIPE
* 1% FILM RESISTOR.
** SUPPLIED WITH YSI THERMISTOR NETWORK.
T1, T2 YSI THERMISTOR NETWORK = #44201.
FLOW IN PIPE IS INVERSELY PROPORTIONAL TO
RESISTANCE OF T1–T2 TEMPERATURE DIFFERENCE.
A1–A2 PROVIDE GAIN. A3–A4 PROVIDE LINEARIZED
1013/14 TA06
FREQUENCY OUTPUT.
10134fc
11
LT1013/LT1014
U
TYPICAL APPLICATIO S
5V Powered Precision Instrumentation Amplifier
–
8
9
LT1014
+
TO
INPUT
CABLE SHIELDS
10
200k*
2
+5V
–INPUT
3
10k*
10k*
1
LT1014
†
20k
–
+
+5V
10k
†
13
–
12
+
4
RG (TYP 2k)
14
LT1014
1μF
200k*
†
6
20k
5
10k*
7
LT1014
+INPUT
11
10k
–
OUTPUT
10k*
+
†
* 1% FILM RESISTOR. MATCH 10k's 0.05%
400,000
GAIN EQUATION: A =
+ 1.
RG
†
FOR HIGH SOURCE IMPEDANCES,
USE 2N2222 AS DIODES.
+5V
1013/14 TA07
9V Battery Powered Strain Gauge Signal Conditioner
15k
+9V
+9V
2
–
0.068
3
+
1N4148
4
LT1014
11
22M
47μF
4.7k
1
330Ω
2N2219
100k
0.01
TO A/D RATIO
REFERENCE
100k
100k
100k
+9V
+9V
1
15k
15
350Ω
STRAIN GAUGE
BRIDGE
13
6
5
–
+
LT1014
7
499
0.068
14
–
12
+
LT1014
14
TO A/D
499
7 74C221
3k
13
9
–
0.068
6
9
10
+
100k
LT1014
8
5
TO A/D
CONVERT COMMAND
SAMPLED OPERATION GIVES LOW AVERAGE OPERATING CURRENT ≈ 650μA.
4.7k–0.01μF RC PROTECTS STRAIN BRIDGE FROM LONG TERM DRIFTS DUE TO
1013/14 TA08
HIGH ΔV/ΔT STEPS.
10134fc
12
LT1013/LT1014
U
TYPICAL APPLICATIO S
5V Powered Motor Speed Controller
No Tachometer Required
+5V
100k
2
3
47
1k
82Ω
–
A1
1/2 LT1013
0.47
330k
+
2k
1
Q3
2N5023
Q1
2N3904
+
1N4001
1M
2k
6.8M
0.068
1/4 CD4016
5V
8
–
7
1N4001
1N4148
3.3M
6
0.068
1N4148
A2
1/2 LT1013
0.47
2k
5
MOTOR = CANON–FN30–R13N1B.
A1 DUTY CYCLE MODULATES MOTOR.
A2 SAMPLES MOTORS BACK EMF.
Q2
+
4
EIN
0V–3V
1013/14 TA09
5V Powered EEPROM Pulse Generator
+5V
DALE
#TC-10-04 1N4148
1N4148
1N4148
2N2222
10Ω
+5V
0.05
0.1
2N2222
2N2222
4.7k
20k
0.33
1N4148
820
270Ω
100k
100Ω
820
2
1N4148
TTL INPUT
MEETS ALL VPP PROGRAMMING SPECS WITH NO TRIMS AND
RUNS OFF 5V SUPPLY—NO EXTERNAL HIGH VOLTAGE SUPPLY REQUIRED.
SUITABLE FOR BATTERY POWERED USE (600μA QUIESCENT CURRENT).
*1% METAL FILM.
4.7M
–
LT1013
3
+
1
1N4148
6
–
8
LT1013
0.005
5
7
1k
2N2222
+
4
120k
OUTPUT
100K*
LT1004
1.2V
21V
600μs RC
6.19K
1013/14 TA10
10134fc
13
LT1013/LT1014
U
TYPICAL APPLICATIO S
Methane Concentration Detector with Linearized Output
+5V
1
* 1% METAL FILM RESISTOR
SENSOR = CALECTRO-GC ELECTRONICS #J4-807 OR FIGARO #813
14
LT1004
1.2V
–5V
0.033
390k*
2.7k
9
10
1N4148 (4)
CD4016
–
A3
LT1014
+
100k*
8
13
11
12
5
8
LTC1044
–
74C04
A4
LT1014
14
+
74C04
+5V
–5V
4
2
10μF
3
470pF
+
+
10μF
470pF
10k
+5V
1
74C04
14
SENSOR
CA3046
Q2
2
5k
1000ppm
TRIM
3
1N4148
OUTPUT
500ppm-10,000ppm
50Hz 1kHz
Q3
1000pF
+5V
4
–
–5V
Q4
Q1
2k
A1
LT1014
1
100k*
6
–
A2
LT1014
+
5
7
2k
150k*
+
12k*
1013/14 TA11
Low Power 9V to 5V Converter
+9V INPUT
L
2N2905
+
1N4148
10k
5V
20mA
2N5434
47
390k
1%
HP5082-2811
VD = 200mV
–
+9V
10k
100μA
1
LT1013
8
+
+
7
5
330k
LT1013
–
4
2
3
120k
1%
+9V
6
47k
L = DALE TE-3/Q3/TA.
SHORT CIRCUIT CURRENT = 30mA.
≈ 75% EFFICIENCY.
SWITCHING PREREGULATOR CONTROLS DROP ACROSS FET TO 200mV.
LT1004
1.2V
1013/14 TA12
10134fc
14
LT1013/LT1014
U
TYPICAL APPLICATIO S
5V Powered 4mA–20mA Current Loop Transmitter†
+5V
Q3
2N2905
820Ω
74C04
(6)
10μF
T1
Q1
2N2905
68Ω
1N4002 (4)
10μF
+
+
0.002
Q2
2N2905
820Ω
10k
10k
0.33
100k
+5V
8
A1
1/2 LT1013
1
+
100pF
4k*
3
4
10k*
20mA
TRIM
10k*
1k
4mA
TRIM
4.3k
+5V
7
A2
1/2 LT1013
+
†
12-BIT ACCURACY.
* 1% FILM.
T1 = PICO-31080.
100Ω*
80k*
–
–
2k
Q4
2N2222
10k*
2
LT1004
1.2V
6
4mA-20mA OUT
TO LOAD
2.2kΩ MAXIMUM
5
INPUT
0 TO 4V
1013/14 TA13
Fully Floating Modification to 4mA-20mA Current Loop†
T1
0.1Ω
+5V
A1
1/2 LT1013
+
7
100k
A2
1/2 LT1013
1
68k*
5
+
–
TO INVERTER
DRIVE
6
–
8
+
3
1N4002 (4)
10μF
2
4mA-20mA OUT
FULLY FLOATING
4
4k*
10k*
301Ω*
1k
20mA
TRIM
4.3k
†
8-BIT ACCURACY.
+5V
LT1004
1.2V
2k
4mA
TRIM
INPUT
0V–4V
1013/14 TA14
10134fc
15
LT1013/LT1014
U
TYPICAL APPLICATIO S
5V Powered, Linearized Platinum RTD Signal Conditioner
2M
9
499Ω
167Ω
Q1
200k
2
–
A2
1/4 LT1014
Q2
200k
3
2N4250
(2)
+
1
A4
1/4 LT1014
150Ω
10
5k
LINEARITY
8
+
OUTPUT
0V–4V =
0°C–400°C
±0.05°C
GAIN TRIM
1k
2M
3.01k
SENSOR
–
1.5k
–
ROSEMOUNT
118MF
7
A3
1/4 LT1014
6
8.25k
50k
ZERO
TRIM
5
2.4k
5%
+
274k
+5V
4
–
A1
1/4 LT1014
+
14
+5V
11
13
LT1009
2.5V
10k
12
250k
ALL RESISTORS ARE TRW-MAR-6 METAL FILM.
RATIO MATCH 2M–200K ± 0.01%.
TRIM SEQUENCE:
SET SENSOR TO 0° VALUE.
ADJUST ZERO FOR 0V OUT.
SET SENSOR TO 100°C VALUE.
ADJUST GAIN FOR 1.000V OUT.
SET SENSOR TO 400°C.
ADJUST LINEARITY FOR 4.000V OUT, REPEAT AS REQUIRED.
1013/14 TA15
Strain Gauge Bridge Signal Conditioner
+5V
220
+5V
8
1
+
2
100μF
301k
39k
100k
3
4
E
LTC1044
4
10k
ZERO
TRIM
VREF
2
1/2 LT1013
8
+
LT1004
1.2V
–
0.1
1.2VOUT REFERENCE
TO A/D CONVERTER
FOR RATIOMETRIC OPERATION
1mA MAXIMUM LOAD
D
PRESSURE
TRANSDUCER
350Ω
V ≈ –VREF
5
+
7
A
0.33
1/2 LT1013
6
OUTPUT
–
0V–3.5V
0psi–350psi
0.047
C
5
100μF
2k GAIN TRIM
+
* 1% FILM RESISTOR.
PRESSURE TRANSDUCER–BLH/DHF–350.
CIRCLED LETTER IS PIN NUMBER.
46k*
100Ω*
1013/14 TA16
10134fc
16
LT1013/LT1014
U
TYPICAL APPLICATIO S
LVDT Signal Conditioner
7
0.005
30k
0.005
30k
8
FREQUENCY =
1.5kHz
+5V
5
+
7
LT1013
6
YEL-BLK
11
LVDT
RDBLUE
–
BLUE
–5V
GRN
10k
4.7k
YEL-RD
1N914
BLK
12
LT1004
1.2V
2N4338
100k
1.2k
+
10μF
13
7.5k
LT1013
2
1/2 LTC1043
1
–
OUT
0V–3V
200k
+5V
2
+
8
1k
7
LT1011
100k
PHASE
TRIM
+
1μF
100k
LVDT = SCHAEVITZ E-100.
3
14
0.01
3
–
10k
TO PIN 16, LT1043
4
1
1013/14 TA17
Triple Op Amp Instrumentation Amplifier with Bias Current Cancellation
3
–INPUT
+
1/4 LT1014
2
–
R1
R3
2R
10M
RG
6
–
5
+
12
+
13
–
7
2R
10M
–
R2
10
+
8
1/4 LT1014
OUTPUT
R3
(
V+
R
5M
9
R1
1/4 LT1014
+INPUT
R2
1
)
GAIN = 1 + 2R1 R3
RG R2
4
1/4 LT1014
11
10pF
14
INPUT BIAS CURRENT TYPICALLY <1nA
INPUT RESISTANCE = 3R = 15M FOR VALUES SHOWN
NEGATIVE COMMON-MODE LIMIT = V – + IB × 2R + 30mV
= 150mV for V – = 0V
IB = 12nA
100k
V–
1013/14 TA18
10134fc
17
LT1013/LT1014
U
TYPICAL APPLICATIO S
Low Dropout Regulator for 6V Battery
+12 OUTPUT
1N914
100Ω
3
2
4
+
+
8
LTC1044
10
5
10
VBATT
6V
2N2219
100k
5V OUTPUT
100Ω
0.01Ω
0.003μF
1.2k
6
5
1M
3
LT1004
1.2V
2
+
1
LT1013
–
4
–
A2
LT1013
120k
8
7
1N914
+
30k
0.009V DROPOUT AT 5mA OUTPUT.
0.108V DROPOUT AT 100mA OUTPUT.
IQUIESCENT = 850μA.
50k
OUTPUT ADJUST
1013/14 TA19
Voltage Controlled Current Source with Ground Referred Input and Output
+5V
0V–2V
3
+
8
1/2 LT1013
2
1
–
4
0.68μF
1k
1/2 LTC1043
7
8
11
1μF
1μF
100Ω
12
13
14
IOUT = 0mA TO 15mA
VIN
100Ω
FOR BIPOLAR OPERATION,
RUN BOTH ICs FROM
A BIPOLAR SUPPLY.
IOUT =
1013/14 TA20
10134fc
18
LT1013/LT1014
U
TYPICAL APPLICATIO S
6V to ±15V Regulating Converter
+6V
1μF
+
+6V
15pF
10k
22k
10k
2N3906
Q1
D2
2N4391
74C00
Q2
L1
1MHY
Q2
+16V
22k
1
2N3904
10
2
15pF
200k
VOUT
ADJ
+6V
3
100k
4
10k
1.4M
0.005
LT1013
+
10k
+15VOUT
+16V
8
10
+
CLK 1 74C74
D1
–16V
CLK 2
+
–16V
LT1004
1.2V
82k
6
+
7
–
100kHz INPUT
Q1
–
+V
5
LT1013
L1 = 24-104 AIE VERNITRON
0.005
= 1N4148
1M
2N5114
±5mA OUTPUT
75% EFFICIENCY
–15VOUT
1013/14 TA21
Low Power, 5V Driven, Temperature Compensated Crystal Oscillator (TXCO)†
+5V
3
8
+
1/2 LT1013
2
1
OSCILLATOR SUPPLY
STABILIZATION
1M*
–
4
5M*
3.4k*
4.3k
+5V
LT1009
2.5V
RT1
3.2k
2.16k*
4.22M*
TEMPERATURE
COMPENSATION
GENERATOR
RT2
6.25k
YSI 44201
RT
1M*
1M*
6
20k
–
1/2 LT1013
5
+5V
+
7
3.5MHz
XTAL
100Ω
100k
100k
2N2222
OSCILLATOR
MV-209
510pF
560k
4.22M*
510pF
* 1% FILM
3.5MHz XTAL = AT CUT – 35°20'
MOUNT RT NEAR XTAL
3mA POWER DRAIN
† THERMISTOR-AMPLIFIER-VARACTOR NETWORK GENERATES
A TEMPERATURE COEFFICIENT OPPOSITE THE CRYSTAL TO
MINIMIZE OVERALL OSCILLATOR DRIFT
3.5MHz OUTPUT
0.03ppm/°C, 0°C–70°C
680Ω
1013/14 TA22
10134fc
19
LT1013/LT1014
W
W
SCHE ATIC DIAGRA
1/2 LT1013, 1/4 LT1014
V+
9k
9k
1.6k
Q13
Q6
Q5
1.6k
1.6k
Q16
100Ω
1k
800Ω
Q14
Q36
Q15
Q32
Q30
Q35
Q3
J1
Q4
Q37
Q25
–
Q1
Q33
21pF
3.9k
Q27
Q26
2.4k
2.5pF
400Ω
18Ω
Q38
IN
+
Q21
OUTPUT
Q2
Q41
14k
Q28
400Ω
Q39
IN
Q22
Q18
4pF
Q12
Q29
Q10
Q31
2k
Q11
Q9
75pF
V–
10pF
Q7
Q8
5k
5k
Q40
Q19
Q34
100pF
Q17
2k
42k
600Ω
Q23 Q24
Q20
1.3k
2k
30Ω
1013/14 SD
10134fc
20
LT1013/LT1014
U
PACKAGE DESCRIPTIO
H Package
8-Lead TO-5 Metal Can (.200 Inch PCD)
(Reference LTC DWG # 05-08-1320)
0.335 – 0.370
(8.509 – 9.398)
DIA
0.305 – 0.335
(7.747 – 8.509)
0.027 – 0.045
(0.686 – 1.143)
45°TYP
PIN 1
0.028 – 0.034
(0.711 – 0.864)
0.040
(1.016)
MAX
0.050
(1.270)
MAX
SEATING
PLANE
0.200
(5.080)
TYP
0.165 – 0.185
(4.191 – 4.699)
GAUGE
PLANE
0.010 – 0.045*
(0.254 – 1.143)
REFERENCE
PLANE
0.500 – 0.750
(12.700 – 19.050)
0.110 – 0.160
(2.794 – 4.064)
INSULATING
STANDOFF
0.016 – 0.021**
(0.406 – 0.533)
*LEAD DIAMETER IS UNCONTROLLED BETWEEN THE REFERENCE PLANE
AND 0.045" BELOW THE REFERENCE PLANE
0.016 – 0.024
**FOR SOLDER DIP LEAD FINISH, LEAD DIAMETER IS
(0.406 – 0.610)
H8(TO-5) 0.200 PCD 1197
J8 Package
8-Lead CERDIP (Narrow .300 Inch, Hermetic)
(Reference LTC DWG # 05-08-1110)
CORNER LEADS OPTION
(4 PLCS)
0.023 – 0.045
(0.584 – 1.143)
HALF LEAD
OPTION
0.045 – 0.068
(1.143 – 1.727)
FULL LEAD
OPTION
0.300 BSC
(0.762 BSC)
0.015 – 0.060
(0.381 – 1.524)
0.008 – 0.018
(0.203 – 0.457)
0.405
(10.287)
MAX
0.005
(0.127)
MIN
0.200
(5.080)
MAX
8
6
7
5
0.025
(0.635)
RAD TYP
0.220 – 0.310
(5.588 – 7.874)
0° – 15°
1
NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP/PLATE
OR TIN PLATE LEADS
0.045 – 0.065
(1.143 – 1.651)
0.014 – 0.026
(0.360 – 0.660)
0.100
(2.54)
BSC
2
3
4
0.125
3.175
MIN
J8 1298
J Package
14-Lead CERDIP (Narrow .300 Inch, Hermetic)
(Reference LTC DWG # 05-08-1110)
0.200
(5.080)
MAX
0.300 BSC
(0.762 BSC)
0.015 – 0.060
(0.381 – 1.524)
0.008 – 0.018
(0.203 – 0.457)
0.005
(0.127)
MIN
0.785
(19.939)
MAX
14
13
12
11
10
9
8
0.220 – 0.310
(5.588 – 7.874)
0.025
(0.635)
RAD TYP
0° – 15°
1
0.045 – 0.065
(1.143 – 1.651)
NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP/PLATE
OR TIN PLATE LEADS
0.014 – 0.026
(0.360 – 0.660)
0.100
(2.54)
BSC
2
3
4
5
6
7
0.125
(3.175)
MIN
J14 1298
OBSOLETE PACKAGES
10134fc
21
LT1013/LT1014
U
PACKAGE DESCRIPTIO
N8 Package
8-Lead PDIP (Narrow .300 Inch)
(Reference LTC DWG # 05-08-1510)
.400*
(10.160)
MAX
8
7
6
5
1
2
3
4
.255 ± .015*
(6.477 ± 0.381)
.300 – .325
(7.620 – 8.255)
.065
(1.651)
TYP
.008 – .015
(0.203 – 0.381)
(
+.035
.325 –.015
8.255
+0.889
–0.381
.130 ± .005
(3.302 ± 0.127)
.045 – .065
(1.143 – 1.651)
)
.120
(3.048) .020
MIN (0.508)
MIN
.018 ± .003
.100
(2.54)
BSC
(0.457 ± 0.076)
N8 1002
NOTE:
1. DIMENSIONS ARE
INCHES
MILLIMETERS
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)
N Package
14-Lead PDIP (Narrow .300 Inch)
(Reference LTC DWG # 05-08-1510)
.770*
(19.558)
MAX
14
13
12
11
10
9
8
1
2
3
4
5
6
7
.255 ± .015*
(6.477 ± 0.381)
.130 ± .005
(3.302 ± 0.127)
.300 – .325
(7.620 – 8.255)
.045 – .065
(1.143 – 1.651)
.020
(0.508)
MIN
.065
(1.651)
TYP
.008 – .015
(0.203 – 0.381)
(
+.035
.325 –.015
+0.889
8.255
–0.381
NOTE:
1. DIMENSIONS ARE
)
.120
(3.048)
MIN
.005
(0.127) .100
MIN (2.54)
BSC
.018 ± .003
(0.457 ± 0.076)
N14 1103
INCHES
MILLIMETERS
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)
10134fc
22
LT1013/LT1014
U
PACKAGE DESCRIPTIO
S8 Package
8-Lead Plastic Small Outline (Narrow .150 Inch)
(Reference LTC DWG # 05-08-1610)
.045 ±.005
.050 BSC
.245
MIN
.189 – .197
(4.801 – 5.004)
NOTE 3
.160 ±.005
7
8
.010 – .020
× 45°
(0.254 – 0.508)
.008 – .010
(0.203 – 0.254)
5
6
.030 ±.005
TYP
0°– 8° TYP
RECOMMENDED SOLDER PAD LAYOUT
.053 – .069
(1.346 – 1.752)
.016 – .050
(0.406 – 1.270)
.150 – .157
(3.810 – 3.988)
NOTE 3
.228 – .244
(5.791 – 6.197)
.004 – .010
(0.101 – 0.254)
1
NOTE:
1. DIMENSIONS IN
3
2
4
.050
(1.270)
BSC
.014 – .019
(0.355 – 0.483)
TYP
INCHES
(MILLIMETERS)
2. DRAWING NOT TO SCALE
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)
SO8 0303
SW Package
16-Lead Plastic Small Outline (Wide .300 Inch)
(Reference LTC DWG # 05-08-1620)
.050 BSC .045 ±.005
.030 ±.005
TYP
N
.005
(0.127)
RAD MIN
.009 – .013
(0.229 – 0.330)
.325 ±.005
.420
MIN
.291 – .299
(7.391 – 7.595)
NOTE 4
.010 – .029 × 45°
(0.254 – 0.737)
0° – 8° TYP
2
3
15
14
13
12
11 10
9
N/2
RECOMMENDED SOLDER PAD LAYOUT
.093 – .104
(2.362 – 2.642)
.394 – .419
(10.007 – 10.643)
NOTE 3
.037 – .045
(0.940 – 1.143)
.016 – .050
(0.406 – 1.270)
NOTE:
1. DIMENSIONS IN
16
N
1
NOTE 3
.398 – .413
(10.109 – 10.490)
NOTE 4
N/2
1
.050
(1.270)
BSC
2
3
4
5
6
7
8
.004 – .012
(0.102 – 0.305)
.014 – .019
INCHES
(0.356 – 0.482)
(MILLIMETERS)
TYP
2. DRAWING NOT TO SCALE
3. PIN 1 IDENT, NOTCH ON TOP AND CAVITIES ON THE BOTTOM OF PACKAGES ARE THE MANUFACTURING OPTIONS.
THE PART MAY BE SUPPLIED WITH OR WITHOUT ANY OF THE OPTIONS
4. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)
S16 (WIDE) 0502
10134fc
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights.
23
LT1013/LT1014
U
TYPICAL APPLICATIO
Step-Up Switching Regulator for 6V Battery
INPUT
+6V
22k
2N2222
OUTPUT
+15V
50mA
+
2.2
LT1004
1.2V
L1
1MHY
200k
5
220pF
1N5821
1M
220k
0.001
3
+
LT1013
2
1
2N5262
8
LT1013
130k
6
7
–
4
+
300Ω
+
100
5.6k
–
0.1
5.6k
LT = AIE–VERNITRON 24–104
78% EFFICIENCY
1013/14 TA23
RELATED PARTS
PART NUMBER
DESCRIPTION
COMMENTS
LT2078/LT2079
Dual/Quad 50μA Single Supply Precision Amplifier
50μA Max IS, 70μV Max VOS
LT2178/LT2179
Dual/Quad 17μA Single Supply Precision Amplifier
17μA Max IS, 70μV Max VOS
10134fc
24
Linear Technology Corporation
LT 0807 REV C • PRINTED IN USA
1630 McCarthy Blvd., Milpitas, CA 95035-7417
(408) 432-1900 ● FAX: (408) 434-0507
●
www.linear.com
© LINEAR TECHNOLOGY CORPORATION 1990
Similar pages