ATMEL AT24C128BD3-DH-T Two-wire serial eeprom Datasheet

1. Features
• Low-voltage and Standard-voltage Operation
– 1.8 (VCC = 1.8V to 5.5V)
Internally Organized as 16,384 x 8
Two-wire Serial Interface
Schmitt Trigger, Filtered Inputs for Noise Suppression
Bidirectional Data Transfer Protocol
1 MHz (5.5V, 2.5V), and 400 kHz (1.8V) Compatibility
Write Protect Pin for Hardware and Software Data Protection
64-byte Page Write Mode (Partial Page Writes Allowed)
Self-timed Write Cycle (5 ms Max)
High Reliability
– Endurance: One Million Write Cycles
– Data Retention: 40 Years
• Lead-free/Halogen-free
• 8-lead JEDEC PDIP, 8-lead JEDEC SOIC, 8-lead Ultra Thin Mini MAP, 8-lead Ultra Lead
Frame Land Grid Array (ULA), 8-lead TSSOP, and 8-ball dBGA2 Packages
• Die Sales: Wafer Form, Tape and Reel and Bumped Wafers
•
•
•
•
•
•
•
•
•
Two-wire Serial
EEPROM
128K (16,384 x 8)
AT24C128B
2. Description
The AT24C128B provides 131,072 bits of serial electrically erasable and programmable read-only memory (EEPROM) organized as 16,384 words of 8 bits each. The
device’s cascadable feature allows up to eight devices to share a common two-wire
bus. The device is optimized for use in many industrial and commercial applications
where low-power and low-voltage operation are essential. The devices are available
in space-saving 8-lead JEDEC PDIP, 8-lead JEDEC SOIC, 8-lead Ultra Thin Mini
MAP, 8-lead Ultra Lead Frame Land Grid Array (ULA), 8-lead TSSOP, and 8-ball
dBGA2 packages. In addition, the entire family is available in a 1.8V (5.5V to 3.6V)
version.
8-lead PDIP
Table 0-1.
Pin Configurations
Pin Name
Function
A0–A2
Address Inputs
SDA
Serial Data
SCL
Serial Clock Input
WP
Write Protect
GND
A0
A1
A2
GND
1
2
3
4
8
7
6
5
8-lead SOIC
VCC
WP
SCL
SDA
A0
A1
A2
GND
8-lead dBGA2
1
8
VCC
2
7
3
6
4
5
WP
SCL
SDA
8-lead TSSOP
VCC
8
1
A0
WP
7
2
A1
SCL
6
3
A2
SDA
5
4
GND
A0
A1
A2
GND
8
7
6
5
1
2
3
4
VCC
WP
SCL
SDA
Bottom View
Ground
8-lead Ultra Lead Frame Land Grid Array
8-lead Ultra Thin Mini MAP
VCC
8
1
A0
VCC
8
1
A0
WP
7
2
A1
WP
7
2
A1
SCL
6
3
A2
SCL
6
3
A2
SDA
5
4
GND
SDA
5
4
GND
Bottom View
Bottom View
Rev. 5296A–SEEPR–1/08
3. Absolute Maximum Ratings*
*NOTICE:
Operating Temperature......................................−55°C to +125°C
Storage Temperature .........................................−65°C to +150°C
Voltage on Any Pin
with Respect to Ground ........................................ −1.0V to +7.0V
Maximum Operating Voltage .......................................... 6.25V
Stresses beyond those listed under “Absolute
Maximum Ratings” may cause permanent damage to the device. This is a stress rating only;
functional operation of the device at these or any
other conditions beyond those indicated in the
operational sections of this specification is not
implied. Exposure to absolute maximum rating
conditions for extended periods may affect device
reliability.
DC Output Current........................................................ 5.0 mA
Figure 3-1.
Block Diagram
VCC
GND
WP
START
STOP
LOGIC
SERIAL
CONTROL
LOGIC
LOAD
DEVICE
ADDRESS
COMPARATOR
A2
A1
A0
R/W
EN
H.V. PUMP/TIMING
COMP
LOAD
DATA RECOVERY
INC
DATA WORD
ADDR/COUNTER
Y DEC
X DEC
SCL
SDA
EEPROM
SERIAL MUX
DOUT/ACK
LOGIC
DIN
DOUT
2
AT24C128B
5296A–SEEPR–1/08
AT24C128B
4. Pin Description
SERIAL CLOCK (SCL): The SCL input is used to positive-edge clock data into each EEPROM
device and negative-edge clock data out of each device.
SERIAL DATA (SDA): The SDA pin is bidirectional for serial data transfer. This pin is opendrain driven and may be wire-ORed with any number of other open-drain or open-collector
devices.
DEVICE/PAGE ADDRESSES (A2, A1, A0): The A2, A1, and A0 pins are device address inputs
that are hardwired (directly to GND or to Vcc) for compatibility with other AT24Cxx devices.
When the pins are hardwired, as many as eight 128K devices may be addressed on a single bus
system. (Device addressing is discussed in detail under “Device Addressing,” page 8.) A device
is selected when a corresponding hardware and software match is true. If these pins are left
floating, the A2, A1, and A0 pins will be internally pulled down to GND. However, due to capacitive coupling that may appear during customer applications, Atmel recommends always
connecting the address pins to a known state. When using a pull-up resistor, Atmel recommends
using 10kΩ or less.
WRITE PROTECT (WP): The write protect input, when connected to GND, allows normal write
operations. When WP is connected directly to Vcc, all write operations to the memory are inhibited. If the pin is left floating, the WP pin will be internally pulled down to GND. However, due to
capacitive coupling that may appear during customer applications, Atmel recommends always
connecting the WP pins to a known state. When using a pull-up resistor, Atmel recommends
using 10kΩ or less.
3
5296A–SEEPR–1/08
5. Memory Organization
AT24C128B, 128K SERIAL EEPROM: The 128K is internally organized as 256 pages of 64
bytes each. Random word addressing requires a 14-bit data word address.
Table 5-1.
Pin Capacitance(1)
Applicable over recommended operating range from TA = 25°C, f = 1.0 MHz, VCC = +1.8V to 5.5V
Symbol
Test Condition
CI/O
CIN
Note:
Max
Units
Conditions
Input/Output Capacitance (SDA)
8
pF
VI/O = 0V
Input Capacitance (A0, A1, SCL)
6
pF
VIN = 0V
1. This parameter is characterized and is not 100% tested.
Table 5-2.
DC Characteristics
Applicable over recommended operating range from: TAI = − 40°C to +85°C, VCC = +1.8V to +5.5V (unless otherwise noted)
Symbol
Parameter
Test Condition
Min
VCC1
Supply Voltage
ICC1
Supply Current
VCC = 5.0V
READ at 400 kHz
ICC2
Supply Current
VCC = 5.0V
WRITE at 400 kHz
ISB1
Standby Current
(1.8V option)
VCC = 1.8V
ILI
Input Leakage Current
VCC = 5.0V
VIN = VCC or VSS
ILO
Output Leakage
Current
VCC = 5.0V
VOUT = VCC or VSS
VIL
Input Low Level(1)
Typ
Max
Units
5.5
V
1.0
2.0
mA
2.0
3.0
mA
1.0
µA
6.0
µA
0.10
3.0
µA
0.05
3.0
µA
− 0.6
VCC x 0.3
V
VCC x 0.7
VCC + 0.5
V
1.8
VCC = 5.5V
VIN = VCC or VSS
(1)
VIH
Input High Level
VOL2
Output Low Level
VCC = 3.0V
IOL = 2.1 mA
0.4
V
VOL1
Output Low Level
VCC = 1.8V
IOL = 0.15 mA
0.2
V
Notes:
4
1. VIL min and VIH max are reference only and are not tested.
AT24C128B
5296A–SEEPR–1/08
AT24C128B
Table 5-3.
AC Characteristics (Industrial Temperature)
Applicable over recommended operating range from TAI = − 40°C to +85°C, VCC = +1.8V to +5.5V, CL = 100 pF (unless otherwise noted). Test conditions are listed in Note 2.
1.8-volt
Symbol
Parameter
fSCL
Clock Frequency, SCL
tLOW
Clock Pulse Width Low
1.3
0.4
µs
tHIGH
Clock Pulse Width High
0.6
0.4
µs
ti
Noise Suppression Time(1)
tAA
Clock Low to Data Out Valid
0.05
tBUF
Time the bus must be free before a
new transmission can start(1)
1.3
0.5
µs
tHD.STA
Start Hold Time
0.6
0.25
µs
tSU.STA
Start Set-up Time
0.6
0.25
µs
tHD.DAT
Data In Hold Time
0
0
µs
tSU.DAT
Data In Set-up Time
100
100
ns
tR
Min
2.5, 5.5-volt
Inputs Rise Time
Max
Min
400
100
(1)
(1)
0.9
0.05
Max
Units
1000
kHz
50
ns
0.55
µs
0.3
0.3
µs
300
100
ns
tF
Inputs Fall Time
tSU.STO
Stop Set-up Time
0.6
0.25
µs
tDH
Data Out Hold Time
50
50
ns
tWR
Write Cycle Time
Endurance(1)
25°C, Page Mode, 3.3V
Notes:
5
5
1,000,000
ms
Write
Cycles
1. This parameter is ensured by characterization and is not 100% tested.
2. AC measurement conditions:
RL (connects to VCC): 1.3 kΩ (2.5V, 5.5V), 10 kΩ (1.8V)
Input pulse voltages: 0.3 VCC to 0.7 VCC
Input rise and fall times: ≤ 50 ns
Input and output timing reference voltages: 0.5 VCC
5
5296A–SEEPR–1/08
6. Device Operation
CLOCK and DATA TRANSITIONS: The SDA pin is normally pulled high with an external device.
Data on the SDA pin may change only during SCL low time periods (see Figure 6-1). Data
changes during SCL high periods will indicate a start or stop condition as defined below.
Figure 6-1.
Data Validity
SDA
SCL
DATA STABLE
DATA STABLE
DATA
CHANGE
START CONDITION: A high-to-low transition of SDA with SCL high is a start condition that must
precede any other command (see Figure 6-2).
Figure 6-2.
Start and Stop Definition
SDA
SCL
START
STOP
STOP CONDITION: A low-to-high transition of SDA with SCL high is a stop condition. After a
read sequence, the stop command will place the EEPROM in a standby power mode (see Figure 6-2).
ACKNOWLEDGE: All addresses and data words are serially transmitted to and from the
EEPROM in 8-bit words. The EEPROM sends a “0” during the ninth clock cycle to acknowledge
that it has received each word.
STANDBY MODE: The AT24C128B features a low-power standby mode that is enabled upon
power-up and after the receipt of the stop bit and the completion of any internal operations.
SOFTWARE RESET: After an interruption in protocol, power loss or system reset, any 2-wire
part can be protocol reset by following these steps: (a) Create a start bit condition, (b) clock 9
6
AT24C128B
5296A–SEEPR–1/08
AT24C128B
cycles, (c) create another start bit followed by stop bit condition as shown below. The device is
ready for next communication after above steps have been completed.
Figure 6-3.
Software Reset
Dummy Clock Cycles
Start bit
SCL
1
2
3
Start bit
8
Stop bit
9
SDA
Figure 6-4.
Bus Timing
tHIGH
tF
tR
tLOW
SCL
tSU.STA
tLOW
tHD.STA
tHD.DAT
tSU.DAT
tSU.STO
SDA IN
tAA
tDH
tBUF
SDA OUT
Figure 6-5.
Write Cycle Timing
SCL
SDA
8th BIT
ACK
WORDn
(1)
twr
STOP
CONDITION
Note:
START
CONDITION
1. The write cycle time tWR is the time from a valid stop condition of a write sequence to the end of the internal clear/write cycle.
7
5296A–SEEPR–1/08
Figure 6-6.
Output Acknowledge
1
SCL
8
9
DATA IN
DATA OUT
START
ACKNOWLEDGE
7. Device Addressing
The 128K EEPROM requires an 8-bit device address word following a start condition to enable
the chip for a read or write operation (see Figure 7-1). The device address word consists of a
mandatory “1”, “0” sequence for the first four most significant bits as shown. This is common to
all two-wire EEPROM devices.
Figure 7-1.
Device Address
1
MSB
0
1
0
A2
A1
A0
R/W
LSB
The next three bits are the A2, A1, A0 device address bits to allow as many as eight devices on
the same bus. These bits must compare to their corresponding hardwired input pins. The A2,
A1, and A0 pins use an internal proprietary circuit that biases them to a logic low condition if the
pins are allowed to float.
The eighth bit of the device address is the read/write operation select bit. A read operation is initiated if this bit is high, and a write operation is initiated if this bit is low.
Upon a compare of the device address, the EEPROM will output a “0”. If a compare is not made,
the device will return to a standby state.
DATA SECURITY: The AT24C128B has a hardware data protection scheme that allows the user
to write protect the whole memory when the WP pin is at VCC.
8
AT24C128B
5296A–SEEPR–1/08
AT24C128B
8. Write Operations
BYTE WRITE: A write operation requires two 8-bit data word addresses following the device
address word and acknowledgment. Upon receipt of this address, the EEPROM will again
respond with a “0” and then clock in the first 8-bit data word. Following receipt of the 8-bit data
word, the EEPROM will output a “0”. The addressing device, such as a microcontroller, must
then terminate the write sequence with a stop condition. At this time the EEPROM enters an
internally-timed write cycle, tWR, to the nonvolatile memory. All inputs are disabled during this
write cycle and the EEPROM will not respond until the write is complete (see Figure 8-1).
Figure 8-1.
Note:
Byte Write
* = DON’T CARE bit
PAGE WRITE: The 128K EEPROM is capable of 64-byte page writes.
A page write is initiated the same way as a byte write, but the microcontroller does not send a
stop condition after the first data word is clocked in. Instead, after the EEPROM acknowledges
receipt of the first data word, the microcontroller can transmit up to 63 more data words. The
EEPROM will respond with a “0” after each data word received. The microcontroller must terminate the page write sequence with a stop condition (see Figure 8-2).
Figure 8-2.
Note:
Page Write
* = DON’T CARE bit
The data word address lower six bits are internally incremented following the receipt of each
data word. The higher data word address bits are not incremented, retaining the memory page
row location. When the word address, internally generated, reaches the page boundary, the following byte is placed at the beginning of the same page. If more than 64 data words are
transmitted to the EEPROM, the data word address will “roll over” and previous data will be
overwritten. The address “roll over” during write is from the last byte of the current page to the
first byte of the same page.
ACKNOWLEDGE POLLING: Once the internally-timed write cycle has started and the
EEPROM inputs are disabled, acknowledge polling can be initiated. This involves sending a
start condition followed by the device address word. The read/write bit is representative of the
operation desired. Only if the internal write cycle has completed will the EEPROM respond with
a “0”, allowing the read or write sequence to continue.
9
5296A–SEEPR–1/08
9. Read Operations
Read operations are initiated the same way as write operations with the exception that the
read/write select bit in the device address word is set to “1”. There are three read operations:
current address read, random address read, and sequential read.
CURRENT ADDRESS READ: The internal data word address counter maintains the last
address accessed during the last read or write operation, incremented by one. This address
stays valid between operations as long as the chip power is maintained. The address “roll over”
during read is from the last byte of the last memory page, to the first byte of the first page.
Once the device address with the read/write select bit set to “1” is clocked in and acknowledged
by the EEPROM, the current address data word is serially clocked out. The microcontroller does
not respond with an input “0” but does generate a following stop condition (see Figure 9-1).
Figure 9-1.
Current Address Read
RANDOM READ: A random read requires a “dummy” byte write sequence to load in the data
word address. Once the device address word and data word address are clocked in and
acknowledged by the EEPROM, the microcontroller must generate another start condition. The
microcontroller now initiates a current address read by sending a device address with the
read/write select bit high. The EEPROM acknowledges the device address and serially clocks
out the data word. The microcontroller does not respond with a “0” but does generate a following
stop condition (see Figure 9-2).
Figure 9-2.
Note:
Random Read
* = DON’T CARE bit
SEQUENTIAL READ: Sequential reads are initiated by either a current address read or a random address read. After the microcontroller receives a data word, it responds with an
acknowledge. As long as the EEPROM receives an acknowledge, it will continue to increment
the data word address and serially clock out sequential data words. When the memory address
limit is reached, the data word address will “roll over” and the sequential read will continue. The
10
AT24C128B
5296A–SEEPR–1/08
AT24C128B
sequential read operation is terminated when the microcontroller does not respond with a “0” but
does generate a following stop condition (see Figure 9-3).
Figure 9-3.
Sequential Read
11
5296A–SEEPR–1/08
10. AT24C128B Ordering Information
Ordering Code
AT24C128B-PU (Bulk Form Only)
Voltage
Package
1.8
8P3
(1)
(NiPdAu Lead Finish)
1.8
8S1
(2)
(NiPdAu Lead Finish)
1.8
8S1
(NiPdAu Lead Finish)
1.8
8A2
AT24C128B-TH-T(2) (NiPdAu Lead Finish)
1.8
8A2
AT24C128BN-SH-B
AT24C128BN-SH-T
(1)
AT24C128B-TH-B
(2)
(NiPdAu Lead Finish)
1.8
8Y6
(2)
(NiPdAu Lead Finish)
1.8
8D3
AT24C128BU2-UU-T
1.8
8U2-1
AT24C128B-W-11(3)
1.8
Die Sale
AT24C128BY6-YH-T
AT24C128BD3-DH-T
(2)
Notes:
Operation Range
Lead-free/Halogen-free
Industrial Temperature
(−40°C to 85°C)
Industrial Temperature
(−40°C to 85°C)
1. “-B” denotes bulk.
2. “-T” denotes and tape and reel. SOIC = 4K. TSSOP, dBGA2, and Mini MAP = 5k. SAP = 3K.
3. Available in tape and reel and wafer form; order as SL788 for inkless wafer form. Bumped die available upon request. Please
contact Serial Interface Marketing.
Package Type
8P3
8-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)
8S1
8-lead, 0.150" Wide, Plastic Gull Wing Small Outline Package (JEDEC SOIC)
8A2
8-lead, 0.170" Wide, Thin Shrink Small Outline Package (TSSOP)
8Y6
8-lead, 2.00 mm x 3.00 mm Body, 0.50 mm Pitch, Ultra Thin Mini MAP, Dual No Lead Package, (DFN), (MLP2x3mm)
8D3
8-lead, 1.80 mm x 2.20 mm Body, Ultra Lead Frame Land Grid Array (ULA)
8U2-1
8-ball, die Ball Grid Array Package (dBGA2)
Options
−1.8
12
Low-voltage (1.8V to 5.5V)
AT24C128B
5296A–SEEPR–1/08
AT24C128B
11. Part marking scheme
11.1
8-PDIP
TOP MARK
Seal Year
| Seal Week
|
|
|
|---|---|---|---|---|---|---|---|
A
T
M
L
U
Y
W
W
Y = SEAL YEAR
6: 2006
0: 2010
7: 2007
8: 2008
9: 2009
1: 2011
2: 2012
3: 2013
|---|---|---|---|---|---|---|---|
2
D
B
04 = Week 4
:: : :::: :
:: : :::: ::
50 = Week 50
1
52 = Week 52
|---|---|---|---|---|---|---|---|
*
Lot Number
|---|---|---|---|---|---|---|---|
|
Pin 1 Indicator (Dot)
11.2
WW = SEAL WEEK
02 = Week 2
Lot Number to Use ALL Characters in Marking
BOTTOM MARK
No Bottom Mark
8-SOIC
Seal Year
| Seal Week
TOP MARK
|
|
|
|---|---|---|---|---|---|---|---|
A
T
M
L
H
Y
W
W
Y = SEAL YEAR
6: 2006
0: 2010
7: 2007
8: 2008
9: 2009
|---|---|---|---|---|---|---|---|
2
D
B
04 = Week 4
:: : :::: :
:: : :::: ::
50 = Week 50
1
|---|---|---|---|---|---|---|---|
*
Lot Number
|---|---|---|---|---|---|---|---|
|
Pin 1 Indicator (Dot)
1: 2011
2: 2012
3: 2013
WW = SEAL WEEK
02 = Week 2
52 = Week 52
Lot Number to Use ALL Characters in Marking
BOTTOM MARK
No Bottom Mark
13
5296A–SEEPR–1/08
11.3
8-TSSOP
TOP MARK
Pin 1 Indicator (Dot)
|
|---|---|---|---|
*
H
Y
W
W
|---|---|---|---|---|
2
D
B
Y = SEAL YEAR
6:
7:
8:
9:
2006
2007
2008
2009
0:
1:
2:
3:
WW = SEAL WEEK
2010
2011
2012
2013
1 *
02
04
::
::
=
=
:
:
Week
Week
::::
::::
2
4
:
::
50 = Week 50
|---|---|---|---|---|
52 = Week 52
BOTTOM MARK
|---|---|---|---|---|---|---|
C
0
0
|---|---|---|---|---|---|---|
A
A
A
A
A
A
A
|---|---|---|---|---|---|---|
<- Pin 1 Indicator
11.4
C00 = Country or Origin
AAA = Atmel Lot Number
8-Ultra Thin Mini-MAP
TOP MARK
Y = YEAR OF ASSEMBLY
|---|---|---|
2
D
B
|---|---|---|
H
1
XX = ATMEL LOT NUMBER TO COORESPOND WITH
NSEB TRACE CODE LOG BOOK.
(e.g. XX = AA, AB, AC,...AX, AY, AZ)
|---|---|---|
Y
X
X
|---|---|---|
*
|
Pin 1 Indicator (Dot)
Y =
6:
7:
8:
SEAL YEAR
2006
0: 2010
2007
1: 2011
2008
2: 2012
9: 2009
14
3: 2013
AT24C128B
5296A–SEEPR–1/08
AT24C128B
11.5
8-ULA
TOP MARK
Y = YEAR OF ASSEMBLY
|---|---|---|
2
D
B
|---|---|---|
Y
X
XX = ATMEL LOT NUMBER TO COORESPOND WITH
NSEB TRACE CODE LOG BOOK.
(e.g. XX = AA, AB, AC,...AX, AY, AZ)
X
|---|---|---|
*
|
Pin 1 Indicator (Dot)
Y =
6:
7:
8:
BUILD YEAR
2006
2007
2008
Etc...
11.6
dBGA2
TOP MARK
LINE 1------->
LINE 2------->
2DBU
PYMTC
|<-- Pin 1 This Corner
P = COUNTRY OF ORIGIN
Y = ONE DIGIT YEAR CODE
4: 2004
7: 2007
5: 2005
8: 2008
6: 2006
9: 2009
M = SEAL MONTH (USE ALPHA DESIGNATOR A-L)
A = JANUARY
B = FEBRUARY
" " """""""
J = OCTOBER
K = NOVEMBER
L = DECEMBER
TC = TRACE CODE (ATMEL LOT
NUMBERS TO CORRESPOND
WITH ATK TRACE CODE LOG BOOK)
15
5296A–SEEPR–1/08
8P3 – PDIP
E
1
E1
N
Top View
c
eA
End View
COMMON DIMENSIONS
(Unit of Measure = inches)
D
e
D1
A2 A
SYMBOL
A
b2
b3
b
4 PLCS
Side View
L
NOM
MAX
NOTE
–
–
0.210
2
A2
0.115
0.130
0.195
b
0.014
0.018
0.022
5
b2
0.045
0.060
0.070
6
b3
0.030
0.039
0.045
6
c
0.008
0.010
0.014
D
0.355
0.365
0.400
3
D1
0.005
–
–
3
E
0.300
0.310
0.325
4
E1
0.240
0.250
0.280
3
e
0.100 BSC
eA
0.300 BSC
L
Notes:
MIN
0.115
0.130
4
0.150
2
1. This drawing is for general information only; refer to JEDEC Drawing MS-001, Variation BA, for additional information.
2. Dimensions A and L are measured with the package seated in JEDEC seating plane Gauge GS-3.
3. D, D1 and E1 dimensions do not include mold Flash or protrusions. Mold Flash or protrusions shall not exceed 0.010 inch.
4. E and eA measured with the leads constrained to be perpendicular to datum.
5. Pointed or rounded lead tips are preferred to ease insertion.
6. b2 and b3 maximum dimensions do not include Dambar protrusions. Dambar protrusions shall not exceed 0.010 (0.25 mm).
01/09/02
R
16
2325 Orchard Parkway
San Jose, CA 95131
TITLE
8P3, 8-lead, 0.300" Wide Body, Plastic Dual
In-line Package (PDIP)
DRAWING NO.
REV.
8P3
B
AT24C128B
5296A–SEEPR–1/08
AT24C128B
8S1 - JEDEC SOIC
C
1
E
E1
L
N
Ø
TOP VIEW
END VIEW
e
b
COMMON DIMENSIONS
(Unit of Measure = mm)
A
A1
D
SIDE VIEW
Note:
SYMBOL
MIN
NOM
MAX
A
1.35
–
1.75
A1
0.10
–
0.25
b
0.31
–
0.51
C
0.17
–
0.25
D
4.80
–
5.05
E1
3.81
–
3.99
E
5.79
–
6.20
e
NOTE
1.27 BSC
L
0.40
–
1.27
θ
0°
–
8°
These drawings are for general information only. Refer to JEDEC Drawing MS-012, Variation AA for proper dimensions, tolerances, datums, etc.
3/17/05
R
1150 E. Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TITLE
8S1, 8-lead (0.150" Wide Body), Plastic Gull Wing
Small Outline (JEDEC SOIC)
DRAWING NO.
REV.
8S1
C
17
5296A–SEEPR–1/08
8A2 - TSSOP
3
2 1
Pin 1 indicator
this corner
E1
E
L1
N
L
Top View
End View
COMMON DIMENSIONS
(Unit of Measure = mm)
SYMBOL
A
b
D
MIN
2.90
E
e
D
A2
3.00
3.10
2, 5
3, 5
4.30
4.40
4.50
A
–
–
1.20
A2
0.80
1.00
1.05
b
0.19
–
0.30
L
4
0.65 BSC
0.45
0.60
0.75
1.00 REF
1. This drawing is for general information only. Refer to JEDEC Drawing MO-153, Variation AA, for proper dimensions, tolerances,
datums, etc.
2. Dimension D does not include mold Flash, protrusions or gate burrs. Mold Flash, protrusions and gate burrs shall not exceed
0.15 mm (0.006 in) per side.
3. Dimension E1 does not include inter-lead Flash or protrusions. Inter-lead Flash and protrusions shall not exceed 0.25 mm
(0.010 in) per side.
4. Dimension b does not include Dambar protrusion. Allowable Dambar protrusion shall be 0.08 mm total in excess of the
b dimension at maximum material condition. Dambar cannot be located on the lower radius of the foot. Minimum space between
protrusion and adjacent lead is 0.07 mm.
5. Dimension D and E1 to be determined at Datum Plane H.
5/30/02
R
18
NOTE
E1
L1
Notes:
MAX
6.40 BSC
e
Side View
NOM
2325 Orchard Parkway
San Jose, CA 95131
TITLE
8A2, 8-lead, 4.4 mm Body, Plastic
Thin Shrink Small Outline Package (TSSOP)
DRAWING NO.
8A2
REV.
B
AT24C128B
5296A–SEEPR–1/08
AT24C128B
8Y6 – MAP
D2
A
b
(8X)
E
E2
Pin 1
Index
Area
Pin 1 ID
L (8X)
D
A2
e (6X)
A1
1.50 REF.
COMMON DIMENSIONS
(Unit of Measure = mm)
A3
SYMBOL
MIN
D
2.00 BSC
E
3.00 BSC
D2
1.40
1.50
1.60
-
-
1.40
A
-
-
0.60
A1
0.0
0.02
0.05
A2
-
-
0.55
L
b
NOTE
0.20 REF
0.20
e
R
MAX
E2
A3
Notes:
NOM
0.30
0.40
0.50 BSC
0.20
0.25
0.30
2
1. This drawing is for general information only. Refer to JEDEC Drawing MO-229, for proper dimensions,
tolerances, datums, etc.
2. Dimension b applies to metallized terminal and is measured between 0.15 mm and 0.30 mm from the terminal tip. If the
terminal has the optional radius on the other end of the terminal, the dimension should not be measured in that radius area.
3. Soldering the large thermal pad is optional, but not recommended. No electrical connection is accomplished to the
device through this pad, so if soldered it should be tied to ground
2325 Orchard Parkway
San Jose, CA 95131
TITLE
8Y6, 8-lead 2.0 x 3.0 mm Body, 0.50 mm Pitch, Utlra Thin Mini-Map,
Dual No Lead Package (DFN) ,(MLP 2x3)
DRAWING NO.
8Y6
10/16/07
REV.
D
19
5296A–SEEPR–1/08
8D3 - ULA
D
8
7
e1
6
b
5
L
E
PIN #1 ID
0.10
PIN #1 ID
0.15
1
2
3
4
A1
A
TOP VIEW
b
e
BOTTOM VIEW
SIDE VIEW
COMMON DIMENSIONS
(Unit of Measure = mm)
MIN
NOM
MAX
A
–
–
0.40
A1
0.00
–
0.05
D
1.70
1.80
1.90
E
2.10
2.20
2.30
b
0.15
0.20
0.25
SYMBOL
e
0.40 TYP
e1
1.20 REF
L
0.25
0.30
NOTE
0.35
11/15/05
R
20
1150 E. Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TITLE
8D3, 8-lead (1.80 x 2.20 mm Body) Ultra Leadframe
Land Grid Array (ULA) D3
DRAWING NO.
8D3
REV.
0
AT24C128B
5296A–SEEPR–1/08
AT24C128B
8U2-1 - dBGA2
D
A1 BALL PAD CORNER
1.
b
E
A1
A2
Top View
A
A1 BALL PAD CORNER
2
Side View
1
A
B
e
C
D
(e1)
d
(d1)
COMMON DIMENSIONS
(Unit of Measure = mm)
Bottom View
SYMBOL
MIN
NOM
MAX
8 Solder Balls
A
0.81
0.91
1.00
A1
0.15
0.20
0.25
A2
0.40
0.45
0.50
b
0.25
0.30
0.35
D
2.35 BSC
1. Dimension 'b' is measured at the maximum solder ball diameter.
E
3.73 BSC
This drawing is for general information only.
e
0.75 BSC
e1
0.74 REF
d
0.75 BSC
d1
0.80 REF
NOTE
1
6/24/03
R
1150 E. Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TITLE
8U2-1, 8-ball, 2.35 x 3.73 mm Body, 0.75 mm pitch,
Small Die Ball Grid Array Package (dBGA2)
DRAWING NO.
PO8U2-1
REV.
A
21
5296A–SEEPR–1/08
Revision History
22
Doc. Rev.
Date
Comments
5296A
1/2008
AT24C128B product with date code 2008 work week 14 (814) or later
supports 5Vcc operation
Initial document release
AT24C128B
5296A–SEEPR–1/08
Headquarters
International
Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600
Atmel Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369
Atmel Europe
Le Krebs
8, Rue Jean-Pierre Timbaud
BP 309
78054 Saint-Quentin-enYvelines Cedex
France
Tel: (33) 1-30-60-70-00
Fax: (33) 1-30-60-71-11
Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581
Technical Support
[email protected]
Sales Contact
www.atmel.com/contacts
Product Contact
Web Site
www.atmel.com
Literature Requests
www.atmel.com/literature
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF
THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided
otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use
as components in applications intended to support or sustain life.
©2008 Atmel Corporation. All rights reserved. Atmel ®, logo and combinations thereof, and others, are registered trademarks or trademarks
of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.
5296A–SEEPR–1/08
Similar pages