Intersil HIP6002CB Rectifier (pwm) controller and output voltage monitor Datasheet

HIP6002
Data Sheet
Rectifier (PWM) Controller and Output
Voltage Monitor
The HIP6002 provides complete control and protection for a
DC-DC converter optimized for high-performance
microprocessor applications. It is designed to drive two
N-Channel MOSFETs in a synchronous-rectified buck
topology. The HIP6002 integrates all of the control, output
adjustment, monitoring and protection functions into a single
package.
The output voltage of the converter is easily adjusted and
precisely regulated. The HIP6002 includes a 4-Input
Digital-to-Analog Converter (DAC) that adjusts the output
voltage from 2.0VDC to 3.5VDC in 0.1V increments. The
precision reference and voltage-mode regulator hold the
selected output voltage to within ±1% over temperature and
line voltage variations.
The HIP6002 provides simple, single feedback loop, voltagemode control with fast transient response. It includes a
200kHz free-running triangle-wave oscillator that is
adjustable from below 50kHz to over 1MHz. The error
amplifier features a 15MHz gain-bandwidth product and
6V/µs slew rate which enables high converter bandwidth for
fast transient performance. The resulting PWM duty ratio
ranges from 0% to 100%.
The HIP6002 monitors the output voltage with a window
comparator that tracks the DAC output and issues a Power
Good signal when the output is within ±10%. The HIP6002
protects against over-current conditions by inhibiting PWM
operation. Built-in over-voltage protection triggers an
external SCR to crowbar the input supply. The HIP6002
monitors the current by using the rDS(ON) of the upper
MOSFET which eliminates the need for a current sensing
resistor.
Pinout
March 2000
VSEN
1
OCSET
2
19 OVP
SS
3
18 VCC
VID0
4
17 LGATE
VID1
5
16 PGND
VID2
6
15 BOOT
VID3
7
14 UGATE
EN
8
13 PHASE
COMP
9
12 PGOOD
4270.2
Features
• Drives Two N-Channel MOSFETs
• Operates From +5V or +12V Input
• Simple Single-Loop Control Design
- Voltage-Mode PWM Control
• Fast Transient Response
- High-Bandwidth Error Amplifier
- Full 0% to 100% Duty Ratio
• Excellent Output Voltage Regulation
- ±1% Over Line Voltage and Temperature
• 4-Bit Digital-to-Analog Output Voltage Selection
- Wide Range . . . . . . . . . . . . . . . . . . .2.0VDC to 3.5VDC
- 0.1V Binary Steps
• Power-Good Output Voltage Monitor
• Over-Voltage and Over-Current Fault Monitors
- Does Not Require Extra Current Sensing Element
- Uses MOSFET’s rDS(ON)
• Small Converter Size
- Constant Frequency Operation
- 200kHz Free-Running Oscillator Programmable from
50kHz to Over 1MHz
Applications
• Power Supply for Pentium®, Pentium Pro, PowerPC™ and
Alpha™ Microprocessors
• High-Power 5V to 3.xV DC-DC Regulators
• Low-Voltage Distributed Power Supplies
Ordering Information
PART NUMBER
HIP6002 (SOIC)
TOP VIEW
File Number
HIP6002CB
TEMP.
RANGE (oC)
0 to 70
PACKAGE
20 Ld SOIC
PKG.
NO.
M20.3
20 RT
FB 10
11 GND
1
Alpha Micro™ is a trademark of Digital Computer Equipment Corporation.
Pentium® is a registered trademark of Intel Corporation.
PowerPC™ is a registered trademark of IBM.
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.
1-888-INTERSIL or 321-724-7143 | Copyright © Intersil Corporation 2000
HIP6002
Typical Application
+12V
VIN = +5V OR +12V
VCC
PGOOD
OCSET
MONITOR AND
PROTECTION
SS
EN
BOOT
OVP
RT
VID0
VID1
VID2
VID3
OSC
UGATE
PHASE
HIP6002
+VOUT
D/A
-
FB
LGATE
+
+
-
PGND
COMP
GND
VSEN
Block Diagram
VCC
VSEN
POWER-ON
RESET (POR)
110%
EN
+
-
PGOOD
90%
+
-
OVERVOLTAGE
+
115%
10µA
OVP
-
SOFTSTART
+
-
OCSET
REFERENCE
200µA
OVERCURRENT
SS
BOOT
UGATE
4V
PHASE
VID0
VID1
VID2
VID3
D/A
CONVERTER
(DAC)
PWM
COMPARATOR
DACOUT
+
-
+
-
ERROR
AMP
FB
GATE
INHIBIT CONTROL
LOGIC
PWM
LGATE
PGND
COMP
GND
OSCILLATOR
RT
2
HIP6002
Absolute Maximum Ratings
Thermal Information
Supply Voltage VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +15V
Boot Voltage, VBOOT - VPHASE . . . . . . . . . . . . . . . . . . . . . . . . +15V
Input, Output or I/O Voltage . . . . . . . . . . . GND -0.3V to VCC + 0.3V
ESD Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Class 2
Thermal Resistance (Typical, Note 1)
θJA (oC/W)
SOIC Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
115
Maximum Junction Temperature (Plastic Package) . . . . . . . 150oC
Maximum Storage Temperature Range . . . . . . . . . . -65oC to 150oC
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . 300oC
(SOIC - Lead Tips Only)
Operating Conditions
Supply Voltage, VCC . . . . . . . . . . . . . . . . . . . . . . . . . +12V to ±10%
Ambient Temperature Range . . . . . . . . . . . . . . . . . . . . . . 0o to 70oC
Junction Temperature Range . . . . . . . . . . . . . . . . . . . 0oC to 125oC
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:
1. θJA is measured with the component mounted on a low effective thermal conductivity test board in free air. See Tech Brief 379 for details.
Electrical Specifications
Recommended Operating Conditions, unless otherwise noted
PARAMETER
SYMBOL
TEST CONDITIONS
MIN
TYP
MAX
UNITS
VCC SUPPLY CURRENT
Nominal Supply
ICC
EN = VCC; UGATE and LGATE Open
-
5
-
mA
EN = 0V
-
50
100
µA
Rising VCC Threshold
VOCSET = 4.5V
-
-
10.4
V
Falling VCC Threshold
VOCSET = 4.5V
8.2
-
-
V
Enable - Input threshold Voltage
VOCSET = 4.5V
0.8
-
2.0
V
-
1.26
-
V
Shutdown Supply
POWER-ON RESET
Rising VOCSET Threshold
OSCILLATOR
Free Running Frequency
RT = OPEN
185
200
215
kHz
Programmable Variation
6kΩ < RT to GND < 200kΩ
-15
-
+15
%
-
1.9
-
VP-P
-1.0
-
+1.0
%
∆VOSC
Ramp Amplitude
RT = OPEN
REFERENCE AND DAC
DACOUT Voltage Accuracy
ERROR AMPLIFIER
DC Gain
Gain-Bandwidth Product
Slew Rate
G0
-
88
-
dB
GBW
-
15
-
MHz
-
6
-
V/µs
350
500
-
mA
-
5.5
10
Ω
SR
COMP = 10pF
GATE DRIVERS
Upper Gate Source
IUGATE
VBOOT - VPHASE = 12V, VUGATE = 6V
Upper Gate Sink
RUGATE
ILGATE = 0.3A
Lower Gate Source
ILGATE
VCC = 12V, VLGATE = 6V
300
450
-
mA
Lower Gate Sink
RLGATE
ILGATE = 0.3A
-
3.5
6.5
Ω
% Over Nominal DACOUT Voltage
-
115
120
%
VOCSET = 4.5VDC
170
200
230
µA
VSEN = 5.5V, VOVP = 0V
60
-
-
mA
-
10
-
µA
PROTECTION
Over-Voltage Trip
OCSET Current Source
IOCSET
OVP Sourcing Current
IOVP
Soft Start Current
ISS
POWER GOOD
Upper Threshold (VSEN/DACOUT)
VSEN Rising
106
-
111
%
Lower Threshold (VSEN/DACOUT)
VSEN Falling
89
-
94
%
Hysteresis (VSEN/DACOUT)
PGOOD Voltage Low
VPGOOD
3
Upper and Lower Threshold
-
2
-
%
IPGOOD = -5mA
-
0.5
-
V
HIP6002
Typical Performance Curves
80
70
RT PULLUP
TO +12V
100
CGATE = 3300pF
60
RT PULLDOWN
TO VSS
50
ICC (mA)
RESISTANCE (kΩ)
1000
CUPPER = CLOWER = CGATE
40
CGATE = 1000pF
30
10
20
CGATE = 10pF
10
10
100
1000
0
100
200
300
SWITCHING FREQUENCY (kHz)
FIGURE 1. RT RESISTANCE vs FREQUENCY
Functional Pin Description
VSEN
1
20 RT
OCSET
2
19 OVP
400
500
600
700
800
900
1000
SWITCHING FREQUENCY (kHz)
FIGURE 2. BIAS SUPPLY CURRENT vs FREQUENCY
VID0-3 (Pins 4-7)
VID0-3 are the input pins to the 4-bit DAC. The states of
these four pins program the internal voltage reference
(DACOUT). The level of DACOUT sets the converter output
voltage. It also sets the PGOOD and OVP thresholds. Table
1 specifies DACOUT for the 16 combinations of DAC inputs.
SS
3
18 VCC
VID0
4
17 LGATE
VID1
5
16 PGND
EN (Pin 8)
VID2
6
15 BOOT
VID3
7
14 UGATE
EN
8
13 PHASE
This pin is the open-collector enable pin. Pull this pin below
1V to disable the converter. In shutdown, the soft start pin is
discharged and the UGATE pin is held low.
COMP
9
12 PGOOD
FB 10
11 GND
VSEN (Pin 1)
This pin is connected to the converters output voltage. The
PGOOD and OVP comparator circuits use this signal to
report output voltage status and for overvoltage protection.
OCSET (Pin 2)
Connect a resistor (ROCSET) from this pin to the drain of the
upper MOSFET. ROCSET, an internal 200µA current source
(IOCS), and the upper MOSFET on-resistance (rDS(ON)) set
the converter over-current (OC) trip point according to the
following equation:
I OCS • R OCSET
I PEAK = -------------------------------------------r DS ( ON )
COMP (Pin 9) and FB (Pin 10)
COMP and FB are the available external pins of the error
amplifier. The FB pin is the inverting input of the error
amplifier and the COMP pin is the error amplifier output.
These pins are used to compensate the voltage-control
feedback loop of the converter.
GND (Pin 11)
Signal ground for the IC. All voltage levels are measured with
respect to this pin.
PGOOD (Pin 12)
PGOOD is an open collector output used to indicate the
status of the converter output voltage. This pin is pulled low
when the converter output is not within ±10% of the
DACOUT reference voltage.
PHASE (Pin 13)
An over-current trip cycles the soft-start function.
SS (Pin 3)
Connect a capacitor from this pin to ground. This capacitor,
along with an internal 10µA current source, sets the softstart interval of the converter.
Connect the PHASE pin to the upper MOSFET source. This
input pin is used to monitor the voltage drop across the
MOSFET for over-current protection. This pin also provide
the return path for the upper gate drive.
UGATE (Pin 14)
Connect UGATE to the upper MOSFET gate. This pin
provides the gate drive for the upper MOSFET.
4
HIP6002
BOOT (Pin 15)
Soft Start
This pin provides bias voltage to the upper MOSFET driver.
A bootstrap circuit may be used to create a BOOT voltage
suitable to drive a standard N-Channel MOSFET.
The POR function initiates the soft start sequence. An
internal 10µA current source charges an external capacitor
(CSS) on the SS pin to 4V. Soft start clamps the error
amplifier output (COMP pin) and reference input (+
terminal of error amp) to the SS pin voltage. Figure 3
shows the soft start interval with CSS = 0.1µF. Initially the
clamp on the error amplifier (COMP pin) controls the
converter’s output voltage. At t1 in Figure 3, the SS voltage
reaches the valley of the oscillator’s triangle wave. The
oscillator’s triangular waveform is compared to the ramping
error amplifier voltage. This generates PHASE pulses of
increasing width that charge the output capacitor(s). This
interval of increasing pulse width continues to t2 . With
sufficient output voltage, the clamp on the reference input
controls the output voltage. This is the interval between t2
and t3 in Figure 3. At t3 the SS voltage exceeds the
DACOUT voltage and the output voltage is in regulation.
This method provides a rapid and controlled output voltage
rise. The PGOOD signal toggles ‘high’ when the output
voltage (VSEN pin) is with in ±5% of DACOUT. The 2%
hysteresis built into the power good comparators prevents
PGOOD oscillation due to nominal output voltage ripple.
PGND (Pin 16)
This is the power ground connection. Tie the lower MOSFET
source to this pin.
LGATE (Pin 17)
Connect LGATE to the lower MOSFET gate. This pin
provides the gate drive for the lower MOSFET.
VCC (Pin 18)
Provide a 12V bias supply for the chip to this pin.
OVP (Pin 19)
The OVP pin can be used to drive an external SCR in the
event of an overvoltage condition.
RT (Pin 20)
This pin provides oscillator switching frequency adjustment.
By placing a resistor (RT) from this pin to GND, the nominal
200kHz switching frequency is increased according to the
following equation:
6
5 • 10
Fs ≈ 200kHz + --------------------R T ( kΩ )
(RT to GND)
Conversely, connecting a pull-up resistor (RT) from this pin
to VCC reduces the switching frequency according to the
following equation:
PGOOD
(2V/DIV)
0V
7
4 • 10
Fs ≈ 200kHz – --------------------R T ( kΩ )
SOFT-START
(1V/DIV)
(RT to 12V)
OUTPUT
VOLTAGE
(1V/DIV)
Functional Description
0V
Initialization
The HIP6002 automatically initializes upon receipt of power.
Special sequencing of the input supplies is not necessary.
The Power-On Reset (POR) function continually monitors
the input supply voltages and the enable (EN) pin. The POR
monitors the bias voltage at the VCC pin and the input
voltage (VIN) on the OCSET pin. The level on OCSET is
equal to VIN less a fixed voltage drop (see over-current
protection). With the EN pin held to VCC , the POR function
initiates soft start operation after both input supply voltages
exceed their POR thresholds. For operation with a single
+12V power source, VIN and VCC are equivalent and the
+12V power source must exceed the rising VCC threshold
before POR initiates operation.
The Power-On Reset (POR) function inhibits operation with
the chip disabled (EN pin low). With both input supplies
above their POR thresholds, transitioning the EN pin high
initiates a soft start interval.
5
0V
t1
t2
t3
TIME (5ms/DIV)
FIGURE 3. SOFT START INTERVAL
Over-Current Protection
The over-current function protects the converter from a
shorted output by using the upper MOSFET’s on-resistance,
rDS(ON) to monitor the current. This method enhances the
converter’s efficiency and reduces cost by eliminating a
current sensing resistor.
The over-current function cycles the soft-start function in a
hiccup mode to provide fault protection. A resistor (ROCSET)
programs the over-current trip level. An internal 200µA current
sink develops a voltage across ROCSET that is referenced to
VIN . When the voltage across the upper MOSFET (also
referenced to VIN) exceeds the voltage across ROCSET, the
over-current function initiates a soft-start sequence. The softstart function discharges CSS with a 10µA current sink and
SOFT-START
HIP6002
(DAC). The level of DACOUT also sets the PGOOD and
OVP thresholds. Table 1 specifies the DACOUT voltage for
the 16 combinations of open or short connections on the VID
pins. The output voltage should not be adjusted while the
converter is delivering power. Remove input power or inhibit the
converter (EN pin to GND) before changing the output voltage.
Adjusting the output voltage during operation could toggle the
PGOOD signal and exercise the overvoltage protection.
4V
2V
OUTPUT INDUCTOR
0V
15A
10A
5A
0A
TIME (20ms/DIV)
The DAC function is a precision non-inverting summation
amplifier shown in Figure 5. The resistor values shown are
only approximations of the actual precision values used.
Grounding any combination of the VID pins increases the
DACOUT voltage. The ‘open’ circuit voltage on the VID pins
is the band gap reference voltage, 1.26V.
TABLE 1. OUTPUT VOLTAGE PROGRAM
FIGURE 4. OVER-CURRENT OPERATION
PIN NAME
inhibits PWM operation. The soft-start function recharges
CSS , and PWM operation resumes with the error amplifier
clamped to the SS voltage. Should an overload occur while
recharging CSS , the soft start function inhibits PWM operation
while fully charging CSS to 4V to complete its cycle. Figure 4
shows this operation with an overload condition. Note that the
inductor current increases to over 15A during the CSS
charging interval and causes an over-current trip. The
converter dissipates very little power with this method. The
measured input power for the conditions of Figure 4 is 2.5W.
The over-current function will trip at a peak inductor current
(IPEAK) determined by:
I OCSET • R OCSET
I PEAK = --------------------------------------------------r DS(ON)
where IOCSET is the internal OCSET current source (200µA typical). The OC trip point varies mainly due to the MOSFET’s
rDS(ON) variations. To avoid over-current tripping in the normal
operating load range, find the ROCSET resistor from the
equation above with:
1. The maximum rDS(ON) at the highest junction
temperature.
VID3
VID2
VID1
VID0
NOMINAL
DACOUT
VOLTAGE
1
1
1
1
2.0
1
1
1
0
2.1
1
1
0
1
2.2
1
1
0
0
2.3
1
0
1
1
2.4
1
0
1
0
2.5
1
0
0
1
2.6
1
0
0
0
2.7
0
1
1
1
2.8
0
1
1
0
2.9
0
1
0
1
3.0
0
1
0
0
3.1
0
0
1
1
3.2
0
0
1
0
3.3
2. The minimum IOCSET from the Specification Table.
0
0
0
1
3.4
3. Determine IPEAK for IPEAK > IOUT(MAX) + (∆I)/2, where ∆I
is the output inductor ripple current.
0
0
0
0
3.5
For an equation for the ripple current see the section under
component guidelines titled ‘Output Inductor Selection’.
A small ceramic capacitor should be placed in parallel with
ROCSET to smooth the voltage across ROCSET in the
presence of switching noise on the input voltage.
Output Voltage Program
The output voltage of a HIP6002 converter is digitally
programmed to levels between 2VDC and 3.5VDC. The
voltage identification (VID) pins program an internal voltage
reference (DACOUT) with a 4-bit digital-to-analog converter
6
NOTE: 0 = connected to GND or VSS , 1 = OPEN.
HIP6002
1.26V
21.5kΩ
VID0
+VIN
BOOT
-
+
HIP6002
COMP
-
Q1 LO
CBOOT
ERROR
AMPLIFIER
DACOUT
+
D1
VOUT
PHASE
SS
+12V
10.7kΩ
Q2
CO
1.7kΩ
VID1
5.4kΩ
VCC
VID2
CSS
2.7kΩ
VID3
DAC
LOAD
BAND GAP
REFERENCE
CVCC
GND
FB
2.9kΩ
FIGURE 7. PRINTED CIRCUIT BOARD SMALL SIGNAL
LAYOUT GUIDELINES
FIGURE 5. DAC FUNCTION SCHEMATIC
Application Guidelines
Layout Considerations
As in any high frequency switching converter, layout is very
important. Switching current from one power device to another
can generate voltage transients across the impedances of the
interconnecting bond wires and circuit traces. These
interconnecting impedances should be minimized by using
wide, short printed circuit traces. The critical components
should be located as close together as possible, using ground
plane construction or single point grounding.
Figure 6 shows the critical power components of the converter.
To minimize the voltage overshoot, the interconnecting wires
indicated by heavy lines should be part of ground or power
plane in a printed circuit board. The components shown in
Figure 6 should be located as close together as possible.
Please note that the capacitors CIN and CO each represent
numerous physical capacitors. Locate the HIP6002 within 3
inches of the MOSFETs, Q1 and Q2. The circuit traces for the
MOSFETs’ gate and source connections from the HIP6002
must be sized to handle up to 1A peak current.
VIN
Figure 7 shows the circuit traces that require additional
layout consideration. Use single point and ground plane
construction for the circuits shown. Minimize any leakage
current paths on the SS PIN and locate the capacitor, CSS
close to the SS pin because the internal current source is
only 10µA. Provide local VCC decoupling between VCC and
GND pins. Locate the capacitor, CBOOT as close as practical
to the BOOT and PHASE pins.
Feedback Compensation
Figure 8 highlights the voltage-mode control loop for a
synchronous-rectified buck converter. The output voltage
(VOUT) is regulated to the Reference voltage level. The error
amplifier (Error Amp) output (VE/A) is compared with the
oscillator (OSC) triangular wave to provide a pulse-width
modulated (PWM) wave with an amplitude of VIN at the
PHASE node. The PWM wave is smoothed by the output
filter (LO and CO).
The modulator transfer function is the small-signal transfer
function of VOUT/VE/A. This function is dominated by a DC
Gain and the output filter (LO and CO), with a double pole
break frequency at FLC and a zero at FESR . The DC Gain of
the modulator is simply the input voltage (VIN) divided by the
peak-to-peak oscillator voltage ∆VOSC.
Modulator Break Frequency Equations
HIP6002
Q1
1
F LC = --------------------------------------2π • L O • C O
LO
VOUT
PHASE
Q2
LGATE
D2
CIN
CO
PGND
RETURN
FIGURE 6. PRINTED CIRCUIT BOARD POWER AND
GROUND PLANES OR ISLANDS
7
LOAD
UGATE
1
F ESR = --------------------------------------------2π • ( ESR • C O )
The compensation network consists of the error amplifier
(internal to the HIP6002) and the impedance networks ZIN
and ZFB . The goal of the compensation network is to
provide a closed loop transfer function with the highest 0dB
crossing frequency (f0dB) and adequate phase margin.
Phase margin is the difference between the closed loop
phase at f0dB and 180 degrees. The equations below relate
the compensation network’s poles, zeros and gain to the
components (R1, R2, R3, C1, C2, and C3) in Figure 9. Use
these guidelines for locating the poles and zeros of the
compensation network:
HIP6002
multiplying the modulator transfer function to the
compensation transfer function and plotting the gain.
VIN
OSC
DRIVER
PWM
COMPARATOR
LO
-
∆VOSC
DRIVER
+
VOUT
PHASE
CO
ESR
(PARASITIC)
ZFB
The compensation gain uses external impedance networks
ZFB and ZIN to provide a stable, high bandwidth (BW) overall
loop. A stable control loop has a gain crossing with
-20dB/decade slope and a phase margin greater than 45
degrees. Include worst case component variations when
determining phase margin.
VE/A
-
ZIN
+
ERROR
AMP
100
REFERENCE
FZ1 FZ2
80
FP1
FP2
OPEN LOOP
ERROR AMP GAIN
60
ZFB
VOUT
C2
C1
ZIN
C3
R2
R3
GAIN (dB)
DETAILED COMPENSATION COMPONENTS
40
20
20LOG
(R2/R1)
0
-20
COMPENSATION
GAIN
MODULATOR
GAIN
R1
COMP
20LOG
(VIN /∆VOSC)
CLOSED LOOP
GAIN
-40
FB
+
FLC
-60
10
100
1K
FESR
10K
100K
FREQUENCY (Hz)
1M
10M
HIP6002
DACOUT
FIGURE 8. VOLTAGE - MODE BUCK CONVERTER
COMPENSATION DESIGN
FIGURE 9. ASYMPTOTIC BODE PLOT OF CONVERTER GAIN
Component Selection Guidelines
Output Capacitor Selection
Compensation Break Frequency Equations
1
F Z1 = ---------------------------------2π • R 2 • C1
1
F Z2 = -----------------------------------------------------2π • ( R1 + R3 ) • C3
1
F P1 = ------------------------------------------------------C1 • C2
2π • R2 •  ----------------------
 C1 + C2
1
F P2 = ---------------------------------2π • R3 • C3
1. Pick Gain (R2/R1) for desired converter bandwidth
2. Place 1ST Zero Below Filter’s Double Pole (~75% FLC)
3. Place 2ND Zero at Filter’s Double Pole
4. Place 1ST Pole at the ESR Zero
5. Place 2ND Pole at Half the Switching Frequency
6. Check Gain against Error Amplifier’s Open-Loop Gain
7. Estimate Phase Margin - Repeat if Necessary
Figure 9 shows an asymptotic plot of the DC-DC converter’s
gain vs frequency. The actual Modulator Gain has a high
gain peak due to the high Q factor of the output filter and is
not shown in Figure 9. Using the above guidelines should
give a Compensation Gain similar to the curve plotted. The
open loop error amplifier gain bounds the compensation gain.
Check the compensation gain at FP2 with the capabilities of
the error amplifier. The Closed Loop Gain is constructed on
the log-log graph of Figure 9 by adding the Modulator Gain (in
dB) to the Compensation Gain (in dB). This is equivalent to
8
An output capacitor is required to filter the output and supply
the load transient current. The filtering requirements are a
function of the switching frequency and the ripple current.
The load transient requirements are a function of the slew
rate (di/dt) and the magnitude of the transient load current.
These requirements are generally met with a mix of
capacitors and careful layout.
Modern microprocessors produce transient load rates above
1A/ns. High frequency capacitors initially supply the
transient and slow the current load rate seen by the bulk
capacitors. The bulk filter capacitor values are generally
determined by the ESR (effective series resistance) and
voltage rating requirements rather than actual capacitance
requirements.
High frequency decoupling capacitors should be placed as
close to the power pins of the load as physically possible.
Be careful not to add inductance in the circuit board wiring
that could cancel the usefulness of these low inductance
components. Consult with the manufacturer of the load on
specific decoupling requirements. For example, Intel
recommends that the high frequency decoupling for the
Pentium Pro be composed of at least forty (40) 1µF
ceramic capacitors in the 1206 surface-mount package.
Use only specialized low-ESR capacitors intended for
switching-regulator applications for the bulk capacitors. The
HIP6002
bulk capacitor’s ESR will determine the output ripple voltage
and the initial voltage drop after a high slew-rate transient. An
aluminum electrolytic capacitor's ESR value is related to the
case size with lower ESR available in larger case sizes.
However, the Equivalent Series Inductance (ESL) of these
capacitors increases with case size and can reduce the
usefulness of the capacitor to high slew-rate transient loading.
Unfortunately, ESL is not a specified parameter. Work with your
capacitor supplier and measure the capacitor’s impedance with
frequency to select a suitable component. In most cases,
multiple electrolytic capacitors of small case size perform better
than a single large case capacitor.
Output Inductor Selection
The output inductor is selected to meet the output voltage
ripple requirements and minimize the converter’s response
time to the load transient. The inductor value determines the
converter’s ripple current and the ripple voltage is a function
of the ripple current. The ripple voltage and current are
approximated by the following equations:
V IN - V OUT V OUT
∆I = -------------------------------- • ---------------Fs x L
V IN
∆VOUT = ∆I x ESR
Increasing the value of inductance reduces the ripple current
and voltage. However, the large inductance values reduce
the converter’s response time to a load transient.
One of the parameters limiting the converter’s response to a
load transient is the time required to change the inductor
current. Given a sufficiently fast control loop design, the
HIP6002 will provide either 0% or 100% duty cycle in response
to a load transient. The response time is the time required to
slew the inductor current from an initial current value to the
transient current level. During this interval the difference
between the inductor current and the transient current level
must be supplied by the output capacitor. Minimizing the
response time can minimize the output capacitance required.
The response time to a transient is different for the
application of load and the removal of load. The following
equations give the approximate response time interval for
application and removal of a transient load:
L O × I TRAN
t RISE = -------------------------------V IN – V OUT
L O × I TRAN
t FALL = ------------------------------V OUT
where: ITRAN is the transient load current step, tRISE is the
response time to the application of load, and tFALL is the
response time to the removal of load. With a +5V input
source, the worst case response time can be either at the
application or removal of load and dependent upon the
DACOUT setting. Be sure to check both of these equations
at the minimum and maximum output levels for the worst
case response time. With a +12V input, and output voltage
level equal to DACOUT, tFALL is the longest response time.
9
Input Capacitor Selection
Use a mix of input bypass capacitors to control the voltage
overshoot across the MOSFETs. Use small ceramic
capacitors for high frequency decoupling and bulk capacitors
to supply the current needed each time Q1 turns on. Place the
small ceramic capacitors physically close to the MOSFETs
and between the drain of Q1 and the source of Q2.
The important parameters for the bulk input capacitor are the
voltage rating and the RMS current rating. For reliable
operation, select the bulk capacitor with voltage and current
ratings above the maximum input voltage and largest RMS
current required by the circuit. The capacitor voltage rating
should be at least 1.25 times greater than the maximum
input voltage and a voltage rating of 1.5 times is a
conservative guideline. The RMS current rating requirement
for the input capacitor of a buck regulator is approximately
1/2 the DC load current.
For a through hole design, several electrolytic capacitors
(Panasonic HFQ series or Nichicon PL series or Sanyo MV-GX
or equivalent) may be needed. For surface mount designs, solid
tantalum capacitors can be used, but caution must be
exercised with regard to the capacitor surge current rating.
These capacitors must be capable of handling the surgecurrent at power-up. The TPS series available from AVX, and
the 593D series from Sprague are both surge current tested.
MOSFET Selection/Considerations
The HIP6002 requires 2 N-channel power MOSFETs. These
should be selected based upon rDS(ON) , gate supply
requirements, and thermal management requirements.
In high-current applications, the MOSFET power dissipation,
package selection and heatsink are the dominant design
factors. The power dissipation includes two loss
components; conduction loss and switching loss. The
conduction losses are the largest component of power
dissipation for both the upper and the lower MOSFETs.
These losses are distributed between the two MOSFETs
according to duty factor (see the equations below). Only the
upper MOSFET has switching losses, since the Schottky
rectifier clamps the switching node before the synchronous
rectifier turns on. These equations assume linear
PUPPER = IO2 x rDS(ON) x D + 1 Io x VIN x tSW x Fs
2
PLOWER = IO2 x rDS(ON) x (1 - D)
Where: D is the duty cycle = VOUT/VIN ,
tSW is the switching interval, and
Fs is the switching frequency.
voltage-current transitions and do not adequately model
power loss due the reverse-recovery of the lower MOSFET’s
body diode. The gate-charge losses are dissipated by the
HIP6002 and don't heat the MOSFETs. However, large gatecharge increases the switching interval, tSW which increases
HIP6002
the upper MOSFET switching losses. Ensure that both
MOSFETs are within their maximum junction temperature at
high ambient temperature by calculating the temperature rise
according to package thermal-resistance specifications. A
separate heatsink may be necessary depending upon
MOSFET power, package type, ambient temperature and air
flow.
Standard-gate MOSFETs are normally recommended for
use with the HIP6002. However, logic-level gate MOSFETs
can be used under special circumstances. The input voltage,
upper gate drive level, and the MOSFET’s absolute
gate-to-source voltage rating determine whether logic-level
MOSFETs are appropriate.
+12V
+5V OR LESS
VCC
HIP6002
BOOT
UGATE
Q1
PHASE
-
+
LGATE
PGND
NOTE:
VG-S ≈ VCC -5V
Q2
D2
NOTE:
VG-S ≈ VCC
GND
+12V
DBOOT
+
VCC
HIP6002
VD
FIGURE 11. UPPER GATE DRIVE - DIRECT VCC DRIVE OPTION
+5V OR +12V
Schottky Selection
BOOT
CBOOT
Q1
UGATE
PHASE
-
+
NOTE:
VG-S ≈ VCC -VD
Q2
LGATE
PGND
D2
NOTE:
VG-S ≈ VCC
GND
FIGURE 10. UPPER GATE DRIVE - BOOTSTRAP OPTION
Figure 10 shows the upper gate drive (BOOT pin) supplied
by a bootstrap circuit from VCC . The boot capacitor, CBOOT
develops a floating supply voltage referenced to the PHASE
pin. This supply is refreshed each cycle to a voltage of VCC
less the boot diode drop (VD) when the lower MOSFET, Q2
turns on. Logic-level MOSFETs can only be used if the
MOSFET’s absolute gate-to-source voltage rating exceeds
the maximum voltage applied to VCC .
Figure 11 shows the upper gate drive supplied by a direct
connection to VCC . This option should only be used in
converter systems where the main input voltage is +5 VDC or
less. The peak upper gate-to-source voltage is approximately
VCC less the input supply. For + 5V main power and + 12
VDC for the bias, the gate-to-source voltage of Q1 is 7V. A
logic-level MOSFET is a good choice for Q1 and a logic-level
MOSFET can be used for Q2 if its absolute gate-to-source
voltage rating exceeds the maximum voltage applied to VCC .
10
Rectifier D2 is a clamp that catches the negative inductor
swing during the dead time between turning off the lower
MOSFET and turning on the upper MOSFET. The diode
must be a Schottky type to prevent the lossy parasitic
MOSFET body diode from conducting. It is acceptable to
omit the diode and let the body diode of the lower MOSFET
clamp the negative inductor swing, but efficiency will drop
one or two percent as a result. The diode’s rated reverse
breakdown voltage must be greater than the maximum input
voltage.
HIP6002 DC-DC Converter Application
Circuit
Figure 12 shows an application circuit of a DC-DC Converter
for an Intel Pentium Pro microprocessor. Detailed
information on the circuit, including a complete
Bill-of-Materials and circuit board description, can be found
in Application Note AN9668. See Intersil’s home page on the
web: www.intersil.com or Intersil AnswerFAX
(321-724-7800) document # 99668.
HIP6002
VIN =
+5V
OR
+12V
F1
L1 - 1µH
C1 - C4
4x 330µF
2x 1µF
2N6394
+12V
2K
D1
0.1µF
10K
EN
0.1µF
8
SS
3
VSEN
1
RT
VID0
VID1
VID2
VID3
FB
100pF
VCC
OVP
18
19
2 OCSET
MONITOR
AND
PROTECTION
20
12 PGOOD
15 BOOT
OSC
4
5
1.1K
14 UGATE
13 PHASE
HIP6002
7
16 PGND
11
COMP
2.2nF
17 LGATE
+
+
-
10
9
GND
20K
8.2nF
0.1µF
15
Component Selection Notes:
C15 - C21 each 1000µF 6.3W VDC, Sanyo MV-GX or Equivalent.
C1 - C4 each 330µF 25W VDC, Sanyo MV-GX or Equivalent.
L0 - Core: Micrometals T50-52B; Each Winding: 10 Turns of 16AWG.
L1 - Core: Micrometals T50-52; Winding: 5 Turns of 18AWG.
D1 - 1N4148 or Equivalent.
D2 - 3A, 40V Schottky, Motorola MBR340 or Equivalent.
Q1 - Q2 - Intersil MOSFET; RFP70N03.
FIGURE 12. PENTIUM PRO DC-DC CONVERTER
11
L0
3µH
D/A
6
1.33K
0.1µF
Q1
Q2
D2 C15 - C21
7x 1000µF
+VO
HIP6002
Small Outline Plastic Packages (SOIC)
M20.3 (JEDEC MS-013-AC ISSUE C)
20 LEAD WIDE BODY SMALL OUTLINE PLASTIC PACKAGE
N
INDEX
AREA
H
0.25(0.010) M
B M
INCHES
E
-B1
2
3
L
SEATING PLANE
-A-
h x 45o
A
D
-C-
e
A1
B
0.25(0.010) M
C
0.10(0.004)
C A M
SYMBOL
MIN
MAX
MIN
MAX
NOTES
A
0.0926
0.1043
2.35
2.65
-
A1
0.0040
0.0118
0.10
0.30
-
B
0.013
0.0200
0.33
0.51
9
C
0.0091
0.0125
0.23
0.32
-
D
0.4961
0.5118
12.60
13.00
3
E
0.2914
0.2992
7.40
7.60
4
e
α
B S
0.050 BSC
1.27 BSC
-
H
0.394
0.419
10.00
10.65
-
h
0.010
0.029
0.25
0.75
5
L
0.016
0.050
0.40
1.27
6
N
NOTES:
1. Symbols are defined in the “MO Series Symbol List” in Section 2.2 of
Publication Number 95.
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
3. Dimension “D” does not include mold flash, protrusions or gate burrs.
Mold flash, protrusion and gate burrs shall not exceed 0.15mm (0.006
inch) per side.
4. Dimension “E” does not include interlead flash or protrusions. Interlead
flash and protrusions shall not exceed 0.25mm (0.010 inch) per side.
5. The chamfer on the body is optional. If it is not present, a visual index
feature must be located within the crosshatched area.
6. “L” is the length of terminal for soldering to a substrate.
7. “N” is the number of terminal positions.
8. Terminal numbers are shown for reference only.
9. The lead width “B”, as measured 0.36mm (0.014 inch) or greater
above the seating plane, shall not exceed a maximum value of
0.61mm (0.024 inch)
10. Controlling dimension: MILLIMETER. Converted inch dimensions
are not necessarily exact.
MILLIMETERS
α
20
0o
20
8o
0o
7
8o
Rev. 0 12/93
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see web site www.intersil.com
Sales Office Headquarters
NORTH AMERICA
Intersil Corporation
P. O. Box 883, Mail Stop 53-204
Melbourne, FL 32902
TEL: (321) 724-7000
FAX: (321) 724-7240
12
EUROPE
Intersil SA
Mercure Center
100, Rue de la Fusee
1130 Brussels, Belgium
TEL: (32) 2.724.2111
FAX: (32) 2.724.22.05
ASIA
Intersil (Taiwan) Ltd.
7F-6, No. 101 Fu Hsing North Road
Taipei, Taiwan
Republic of China
TEL: (886) 2 2716 9310
FAX: (886) 2 2715 3029
Similar pages