Fairchild FSCQ0565RT Green mode fairchild power switch (fps tm) Datasheet

FSCQ-Series
FSCQ0565RT/FSCQ0765RT/FSCQ0965RT/FSCQ1265RT/
FSCQ1465RT/FSCQ1565RT/FSCQ1565RP
Green Mode Fairchild Power Switch (FPS™)
Features
Description
■ Optimized for Quasi-Resonant Converter (QRC)
A Quasi-Resonant Converter (QRC) typically shows
lower EMI and higher power conversion efficiency compared to conventional hard-switched converter with a
fixed switching frequency. Therefore, a QRC is well
suited for noise-sensitive applications, such as color TV
and audio. Each product in the FSCQ-Series contains an
integrated Pulse Width Modulation (PWM) controller and
a SenseFET, and is specifically designed for quasiresonant off-line Switch Mode Power Supplies (SMPS)
with minimal external components. The PWM controller
includes an integrated fixed frequency oscillator, under voltage lockout, leading edge blanking (LEB), optimized gate
driver, internal soft start, temperature-compensated precise current sources for a loop compensation, and self
protection circuitry. Compared with a discrete MOSFET
and PWM controller solution, the FSCQ-Series can
reduce total cost, component count, size, and weight, while
simultaneously increasing efficiency, productivity, and system reliability. These devices provide a basic platform that
is well suited for cost-effective designs of quasi-resonant
switching flyback converters.
■ Advanced Burst-Mode Operation for under 1W
Standby Power Consumption
■ Pulse-by-Pulse Current Limit
■ Over Load Protection (OLP) – Auto Restart
■ Over Voltage Protection (OVP) – Auto Restart
■ Abnormal Over Current Protection (AOCP) – Latch
■ Internal Thermal Shutdown (TSD) – Latch
■ Under Voltage Lock Out (UVLO) with Hysteresis
■ Low Startup Current (typical: 25µA)
■ Internal High Voltage SenseFET
■ Built-in Soft Start (20ms)
■ Extended Quasi-Resonant Switching
Applications
■ CTV
■ Audio Amplifier
Related Application Notes
■ AN4146: Design Guidelines for Quasi-Resonant
Converters Using FSCQ-Series Fairchild Power
Switch.
■ AN4140: Transformer Design Consideration for
Off-Line Flyback Converters Using Fairchild Power
Switch.
Ordering Information
Product Number
Package
Marking Code
BVdss
Rds(ON) Max.
FSCQ0565RTYDTU
TO-220F-5L (Forming)
CQ0565RT
650V
2.2Ω
FSCQ0765RTYDTU
TO-220F-5L (Forming)
CQ0765RT
650V
1.6Ω
FSCQ0965RTYDTU
TO-220F-5L (Forming)
CQ0965RT
650V
1.2Ω
FSCQ1265RTYDTU
TO-220F-5L (Forming)
CQ1265RT
650V
0.9Ω
FSCQ1465RTYDTU
TO-220F-5L( Forming)
CQ1465RT
650V
0.8Ω
FSCQ1565RTYDTU
TO-220F-5L (Forming)
CQ1565RT
650V
0.7Ω
FSCQ1565RPVDTU
TO-3PF-7L (Forming)
CQ1565RP
650V
0.7Ω
YDTU: Forming Type
VDTU: Forming Type
©2006 Fairchild Semiconductor Corporation
FSCQ-Series Rev. 1.1.2
1
www.fairchildsemi.com
FSCQ-Series Green Mode Fairchild Power Switch (FPS™)
February 2006
FSCQ-Series Green Mode Fairchild Power Switch (FPS™)
Typical Circuit
VO
AC
IN
Drain
FSCQ-Series
PWM
Sync
GND
VFB
VCC
Figure 1. Typical Flyback Application
Table 1. Maximum Output Power
Output Power Table3
230 VAC ±15%2
Product
Open
Frame1
85–265 VAC
Open Frame1
FSCQ0565RT
70W
60W
FSCQ0765RT
100W
85W
FSCQ0965RT
130W
110W
FSCQ1265RT
170W
140W
FSCQ1465RT
190W
160W
FSCQ1565RT
210W
170W
FSCQ1565RP
250W
210W
Notes:
1. Maximum practical continuous power in an open frame design at 50°C ambient.
2. 230 VAC or 100/115 VAC with doubler.
3. The junction temperature can limit the maximum output power.
2
FSCQ-Series Rev. 1.1.2
www.fairchildsemi.com
Sync
5
Vcc
3
Drain
1
+
Threshold
Quasi-Resonant
(QR) Switching
Controller
-
+
fs
Soft Start
4.6V/2.6V: Normal QR
3.0V/1.8V: Extended QR
Burst Mode
Controller
VBurst
Normal Operation
Vref
I BFB
VCC
VCC good
Auxiliary
Vref
OSC
Burst Switching
Vref
Main Bias
Normal
Operation
Vref
I FB
9V/15V
Internal
Bias
IB
Idelay
PWM
VFB 4
S
Q
R
Q
2.5R
Gate
Driver
R
LEB
600ns
VSD
Sync
Vovp
S
VCC good
(VCC = 9V)
R
Q
Q
AOCP
Q
S
Q
R
2 GND
TSD
Vocp
Power Off Reset (VCC = 6V)
Figure 2. Functional Block Diagram of FSCQ-Series
3
FSCQ-Series Rev. 1.1.2
www.fairchildsemi.com
FSCQ-Series Green Mode Fairchild Power Switch (FPS™)
Internal Block Diagram
FSCQ-Series Green Mode Fairchild Power Switch (FPS™)
Pin Configuration
TO-220F-5L
5. Sync
4. Vfb
3. Vcc
2. GND
1. Drain
TO-3PF-7L
5. Sync
4. Vfb
3. Vcc
2. GND
1. Drain
Figure 3. Pin Configuration (Top View)
Pin Definitions
Pin Number
Pin Name
Pin Function Description
1
Drain
High voltage power SenseFET drain connection.
2
GND
This pin is the control ground and the SenseFET source.
3
Vcc
This pin is the positive supply input. This pin provides internal operating current for
both start-up and steady-state operation.
4
Vfb
This pin is internally connected to the inverting input of the PWM comparator.
The collector of an optocoupler is typically tied to this pin. For stable operation,
a capacitor should be placed between this pin and GND. If the voltage of this
pin reaches 7.5V, the over load protection triggers, which results in the FPS
shutting down.
5
Sync
This pin is internally connected to the sync detect comparator for quasi-resonant
switching. In normal quasi-resonant operation, the threshold of the sync
comparator is 4.6V/2.6V. Whereas, the sync threshold is changed to 3.0V/1.8V
in an extended quasi-resonant operation.
4
FSCQ-Series Rev. 1.1.2
www.fairchildsemi.com
(TA = 25°C, unless otherwise specified)
Parameter
Symbol
Value
Unit
Drain Pin Voltage
VDS
650
V
Supply Voltage
VCC
20
V
Vsync
-0.3 to 13V
V
VFB
-0.3 to VCC
V
FSCQ0565RT
11.2
A
FSCQ0765RT
15.2
FSCQ0965RT
16.4
FSCQ1265RT
21.2
FSCQ1465RT
22
FSCQ1565RT
26.4
FSCQ1565RP
33.2
FSCQ0565RT
2.8
FSCQ0765RT
3.8
FSCQ0965RT
4.1
FSCQ1265RT
5.3
FSCQ1465RT
5.5
FSCQ1565RT
6.6
FSCQ1565RP
8.3
FSCQ0565RT
5
FSCQ0765RT
7
FSCQ0965RT
7.6
FSCQ1265RT
11
Analog Input Voltage Range
Drain Current
Pulsed4
Continuous Drain Current (Tc = 25°C)
(Tc: Case Back Surface Temperature)
Continuous Drain Current* (TDL = 25°C)
(TDL:Drain Lead Temperature)
Continuous Drain Current (TC = 100°C)
Single-Pulsed Avalanche Energy5
IDM
ID
ID*
ID
EAS
5
FSCQ-Series Rev. 1.1.2
FSCQ1465RT
12
FSCQ1565RT
13.3
FSCQ1565RP
15
FSCQ0565RT
1.7
FSCQ0765RT
2.4
FSCQ0965RT
2.6
FSCQ1265RT
3.4
FSCQ1465RT
3.5
FSCQ1565RT
4.4
FSCQ1565RP
5.5
FSCQ0565RT
400
FSCQ0765RT
570
FSCQ0965RT
630
FSCQ1265RT
950
FSCQ1465RT
1000
FSCQ1565RT
1050
FSCQ1565RP
1050
A(rms)
A(rms)
A(rms)
mJ
www.fairchildsemi.com
FSCQ-Series Green Mode Fairchild Power Switch (FPS™)
Absolute Maximum Ratings
(TA = 25°C, unless otherwise specified)
Total Power Dissipation
(Tc = 25°C with Infinite Heat Sink)
PD
FSCQ0565RT
38
FSCQ0765RT
45
FSCQ0965RT
49
FSCQ1265RT
50
FSCQ1465RT
60
FSCQ1565RT
75
FSCQ1565RP
W
98
Operating Junction Temperature
TJ
+150
°C
Operating Ambient Temperature
TA
-25 to +85
°C
TSTG
-55 to +150
°C
ESD Capability, HBM Model (All pins except Vfb)
–
2.0
(GND – Vfb = 1.7kV)
kV
ESD Capability, Machine Model (All pins except Vfb)
–
300
(GND – Vfb = 170V)
V
Storage Temperature Range
Notes:
4. Repetitive rating: pulse width limited by maximum junction temperature.
5. L = 15mH, starting Tj = 25°C, These parameters, although guaranteed at the design, are not tested in mass production.
Thermal Impedance
(TA = 25°C unless otherwise specified)
Parameter
Junction to Case Thermal Impedance
Symbol
θJC
Value
Unit
FSCQ0565RT
3.29
°C/W
FSCQ0765RT
2.60
FSCQ0965RT
2.55
FSCQ1265RT
2.50
FSCQ1465RT
2.10
FSCQ1565RT
2.00
FSCQ1565RP
1.28
6
FSCQ-Series Rev. 1.1.2
www.fairchildsemi.com
FSCQ-Series Green Mode Fairchild Power Switch (FPS™)
Absolute Maximum Ratings (Continued)
(TA = 25°C unless otherwise specified)
Parameter
Symbol
Condition
Min. Typ. Max.
Unit
Drain-Source Breakdown Voltage BVDSS
VGS = 0V, ID = 250µA
650
–
–
V
Zero Gate Voltage Drain Current
IDSS
VDS = 650V,VGS = 0V
–
–
250
µA
Drain-Source ON-State
Resistance
RDS(ON) FSCQ0565RT
VGS = 10V, ID = 1A
–
1.76
2.2
Ω
FSCQ0765RT
VGS = 10V, ID = 1A
–
1.4
1.6
FSCQ0965RT
VGS = 10V, ID = 1A
–
1.0
1.2
FSCQ1265RT
VGS = 10V, ID = 1A
–
0.75
0.9
FSCQ1465RT
VGS = 10V, ID = 1A
–
0.7
0.8
FSCQ1565RT
VGS = 10V, ID = 1A
–
0.53
0.7
FSCQ1565RP
VGS = 10V, ID = 1A
–
0.53
0.7
FSCQ0565RT
VGS = 0V, VDS = 25V,
f = 1MHz
–
1080
–
–
1415
–
FSCQ0965RT
–
1750
–
FSCQ1265RT
–
2400
–
FSCQ1465RT
–
2400
–
FSCQ1565RT
–
3050
–
FSCQ1565RP
–
3050
–
–
90
–
–
100
–
FSCQ0965RT
–
130
–
FSCQ1265RT
–
175
–
FSCQ1465RT
–
185
–
FSCQ1565RT
–
220
–
FSCQ1565RP
–
220
–
Input Capacitance
CISS
FSCQ0765RT
Output Capacitance
COSS
FSCQ0565RT
FSCQ0765RT
7
FSCQ-Series Rev. 1.1.2
VGS = 0V, VDS = 25V,
f = 1MHz
pF
pF
www.fairchildsemi.com
FSCQ-Series Green Mode Fairchild Power Switch (FPS™)
Electrical Characteristics (SenseFET Part)
Parameter
Symbol
Condition
Min.
Typ. Max. Unit
Control Section
Switching Frequency
Switching
Frequency Variation7
Feedback Source Current
FOSC
∆FOSC
IFB
VFB = 5V, VCC = 18V
18
20
22
kHz
-25°C ≤ TA ≤ 85°C
0
±5
±10
%
VFB = 0.8V, VCC = 18V
0.5
0.65
0.8
mA
Maximum Duty Cycle
DMAX
VFB = 5V, VCC = 18V
92
95
98
%
Minimum Duty Cycle
DMIN
VFB = 0V, VCC = 18V
–
0
–
%
VFB = 1V
14
15
16
V
VSTOP
8
9
10
TSS
18
20
22
ms
Burst Mode Enable Feedback Voltage
VBEN
0.25
0.40
0.55
V
Burst Mode Feedback Source Current
IBFB
VFB = 0V
60
100
140
µA
Burst Mode Switching Time
TBS
VFB = 0.9V, Duty = 50%
1.2
1.4
1.6
ms
Burst Mode Hold Time
TBH
VFB = 0.9V → 0V
1.2
1.4
1.6
ms
VSD
VCC = 18V
7.0
7.5
8.0
V
UVLO Threshold Voltage
Soft
Start Time6
VSTART
Burst Mode Section
Protection Section
Shutdown Feedback Voltage
Shutdown Delay Current
IDELAY
VFB = 5V, VCC = 18V
4
5
6
µA
Over Voltage Protection
VOVP
VFB = 3V
11
12
13
V
VOCL
VCC = 18V
0.9
1.0
1.1
V
140
–
–
°C
Over Current
Thermal
Latch Voltage6
Shutdown Temp7
TSD
Notes:
6. These parameters, although guaranteed, are tested only in EDS (wafer test) process.
7. These parameters, although guaranteed at the design, are not tested in mass production.
8
FSCQ-Series Rev. 1.1.2
www.fairchildsemi.com
FSCQ-Series Green Mode Fairchild Power Switch (FPS™)
Electrical Characteristics (Continued)
(TA = 25°C unless otherwise specified)
(TA = 25°C unless otherwise specified)
Parameter
Symbol
Condition
Min. Typ. Max. Unit
Sync Section
Sync Threshold in Normal QR (H)
VSH1
Sync Threshold in Normal QR (L)
VCC = 18V, VFB = 5V
4.2
4.6
5.0
V
VSL1
2.3
2.6
2.9
V
Sync Threshold in Extended QR (H) VSH2
2.7
3.0
3.3
V
Sync Threshold in Extended QR (L) VSL2
1.6
1.8
2.0
V
Extended QR Enable Frequency
FSYH
–
90
–
kHz
Extended QR Disable Frequency
FSYL
–
45
–
kHz
FSCQ0565RT VFB = 5V
–
4
6
mA
FSCQ0765RT
–
4
6
FSCQ0965RT
–
6
8
FSCQ1265RT
–
6
8
FSCQ1465RT
–
7
9
Total Device Section
Operating Supply Current9
- In Normal Operation
IOP
FSCQ1565RT
–
7
9
FSCQ1565RP
–
7
9
- In Burst Mode (Non-switching)
IOB
VFB = GND
–
0.25
0.50
mA
Startup Current
ISTART
VCC = VSTART – 0.1V
–
25
50
µA
ISN
VCC = VSTOP – 0.1V
–
50
100
µA
FSCQ0565RT VCC = 18V, VFB = 5V
3.08
3.5
3.92
A
FSCQ0765RT
4.4
5
5.6
FSCQ0965RT
5.28
6.0
6.72
FSCQ1265RT
6.16
7
7.84
FSCQ1465RT
7.04
8.0
8.96
FSCQ1565RT
7.04
8
8.96
FSCQ1565RP
10.12 11.5 12.88
Sustain Latch
Current11
Current Sense Section
Maximum Current Limit10
Burst Peak Current
ILIM
IBUR(pk) FSCQ0565RT VCC = 18V, VFB = Pulse
0.45
0.65
0.85
FSCQ0765RT
0.65
0.9
1.15
FSCQ0965RT
0.6
0.9
1.2
FSCQ1265RT
0.8
1.2
1.6
FSCQ1465RT
0.6
0.9
1.2
FSCQ1565RT
–
1
–
FSCQ1565RP
–
1
–
A
Notes:
9. This parameter is the current flowing in the control IC.
10. These parameters indicate inductor current.
11. These parameters, although guaranteed, are tested only in EDS (wafer test) process.
9
FSCQ-Series Rev. 1.1.2
www.fairchildsemi.com
FSCQ-Series Green Mode Fairchild Power Switch (FPS™)
Electrical Characteristics (Continued)
Operating Supply Current
Burst-mode Supply Current (Non-Switching)
1.4
Normalized to 25°C
Normalized to 25°C
1.2
1.0
0.8
-50
0
50
Temp (°C)
100
1.2
1.0
0.8
0.6
-50
150
Start-Up Current
Normalized to 25°C
Normalized to 25°C
1.0
0.8
0
50
Temp (°C)
100
150
1.05
1.00
0.95
0.90
-50
150
0
Stop Threshold Voltage
50
Temp (°C)
100
150
100
150
Initial Frequency
1.10
1.10
Normalized to 25°C
Normalized to 25°C
100
Start Threshold Voltage
1.2
1.05
1.00
0.95
0.90
-50
50
Temp (°C)
1.10
1.4
0.6
-50
0
0
50
Temp (°C)
100
1.00
0.95
0.90
-50
150
10
FSCQ-Series Rev. 1.1.2
1.05
0
50
Temp (°C)
www.fairchildsemi.com
FSCQ-Series Green Mode Fairchild Power Switch (FPS™)
Electrical Characteristics
Maximum Duty Cycle
Over Voltage Protection
1.10
Normalized to 25°C
Normalized to 25°C
1.10
1.05
1.00
0.95
0.90
-50
0
50
Temp (°C)
100
1.05
1.00
0.95
0.90
-50
150
Shutdown Delay Current
Normalized to 25°C
Normalized to 25°C
1.0
0.9
0
50
Temp (°C)
100
150
1.05
1.00
0.95
0.90
-50
150
Feedback Source Current
0
50
Temp (°C)
100
150
Burst Mode Feedback Source Current
1.2
Normalized to 25°C
1.2
Normalized to 25°C
100
1.10
1.1
1.1
1.0
0.9
0.8
-50
50
Temp (°C)
Shutdown Feedback Voltage
1.2
0.8
-50
0
0
50
Temp (°C)
100
1.0
0.9
0.8
-50
150
11
FSCQ-Series Rev. 1.1.2
1.1
0
50
Temp (°C)
100
150
www.fairchildsemi.com
FSCQ-Series Green Mode Fairchild Power Switch (FPS™)
Electrical Characteristics (Continued)
Feedback Offset Voltage
Burst Mode Enable Feedback Voltage
1.4
Normalized to 25°C
Normalized to 25°C
1.4
1.2
1.0
0.8
0.6
-50
0
50
Temp (°C)
100
1.2
1.0
0.8
0.6
-50
150
Sync. Threshold in Normal QR(H)
100
150
1.10
Normalized to 25°C
Normalized to 25°C
50
Temp (°C)
Sync. Threshold in Normal QR(L)
1.10
1.05
1.00
0.95
0.90
-50
0
50
Temp (°C)
100
1.05
1.00
0.95
0.90
-50
150
Sync. Threshold in Extended QR(H)
Normalized to 25°C
1.00
0.95
0
50
Temp (°C)
100
100
150
1.05
1.00
0.95
0.90
-50
150
12
FSCQ-Series Rev. 1.1.2
50
Temp (°C)
1.10
1.05
0.90
-50
0
Sync. Threshold in Extended QR(L)
1.10
Normalized to 25°C
0
0
50
Temp (°C)
100
150
www.fairchildsemi.com
FSCQ-Series Green Mode Fairchild Power Switch (FPS™)
Electrical Characteristics (Continued)
Extended QR Enable Frequency
Extended QR Disable Frequency
1.10
Normalized to 25°C
Normalized to 25°C
1.10
1.05
1.00
0.95
0.90
-50
0
50
Temp (°C)
100
1.05
1.00
0.95
0.90
-50
150
0
50
Temp (°C)
100
150
Pulse-by-pulse Current Limit
Normalized to 25°C
1.10
1.05
1.00
0.95
0.90
-50
0
50
Temp (°C)
13
FSCQ-Series Rev. 1.1.2
100
150
www.fairchildsemi.com
FSCQ-Series Green Mode Fairchild Power Switch (FPS™)
Electrical Characteristics (Continued)
The minimum average of the current supplied from the
AC is given by:
1. Startup: Figure 4 shows the typical startup circuit and
the transformer auxiliary winding for the FSCQ-Series.
Before the FSCQ-Series begins switching, it consumes
only startup current (typically 25µA). The current supplied from the AC line charges the external capacitor
(Ca1) that is connected to the Vcc pin. When Vcc
reaches the start voltage of 15V (VSTART), the FSCQSeries begins switching, and its current consumption
increases to IOP. Then, the FSCQ-Series continues its
normal switching operation and the power required for
the FSCQ-Series is supplied from the transformer auxiliary winding, unless VCC drops below the stop voltage of
9V (VSTOP). To guarantee the stable operation of the
control IC, VCC has under voltage lockout (UVLO) with
6V hysteresis. Figure 5 shows the relationship between
the operating supply current of the FSCQ-Series and the
supply voltage (VCC).
min
avg
I sup
where Vacmin is the minimum input voltage, Vstart is the
FSCQ-Series start voltage (15V), and Rstr is the startup
resistor. The startup resistor should be chosen so that
Isupavg is larger than the maximum startup current
(50µA).
Once the resistor value is determined, the maximum loss
in the startup resistor is obtained as:
( Vacmax ) 2 + Vstart2 2 2 • Vstart • Vacmax
1
- – ----------------------------------------------------Loss = ---------- •  ---------------------------------------------
R str 
2
π
where Vacmax is the maximum input voltage. The startup
resistor should have properly-rated dissipation wattage.
2. Synchronization: The FSCQ-Series employs a quasiresonant switching technique to minimize the switching
noise and loss. In this technique, a capacitor (Cr) is
added between the MOSFET drain and the source as
shown in Figure 6. The basic waveforms of the quasiresonant converter are shown in Figure 7. The external
capacitor lowers the rising slope of the drain voltage to
reduce the EMI caused when the MOSFET turns off. To
minimize the MOSFET’s switching loss, the MOSFET
should be turned on when the drain voltage reaches its
minimum value as shown in Figure 7.
CDC
1N4007
AC line
(Vacmin – Vacmax)
Isup
Rstr
Da
VCC
V start
 2 ⋅ V ac
1
- – ------------- • ---------=  ---------------------------R
π
2


str
FSCQ-Series
Ca1
Ca2
Np
+
CDC
VDC
Ns
–
Lm
Drain
Figure 4. Startup circuit
Cr +
Ids
Vds
Sync
ICC
Vo
–
IOP Value
GND
FSCQ0565RT : 4mA (Typ.)
FSCQ0765RT : 4mA (Typ.)
FSCQ0965RT : 6mA (Typ.)
FSCQ1265RT : 6mA (Typ.)
FSCQ1465RT : 7mA (Typ.)
FSCQ1565RT : 7mA (Typ.)
FSCQ1565RP : 7mA (Typ.)
VCC
Ca1
VCO
RCC
Ca2
Da
Na
DSY
IOP
RSY1
Power Down
Power Up
CSY
ISTART
RSY2
VCC
Vstop = 9V Vstart = 15V
Vz
Figure 6. Synchronization Circuit
Figure 5. Relationship Between Operating
Supply Current and Vcc Voltage
14
FSCQ-Series Rev. 1.1.2
www.fairchildsemi.com
FSCQ-Series Green Mode Fairchild Power Switch (FPS™)
Functional Description
MOSFET
On
Vds
Vgs
2VRO
VRO
Vds
TQ
VRO
Vsync
Vsypk
VDC
Vrh (4.6V)
Vrf (2.6V)
Ids
TR
Ipk
MOSFET Gate
Figure 7. Quasi-Resonant Operation
Waveforms
ON
The minimum drain voltage is indirectly detected by monitoring the Vcc winding voltage as shown in Figure 6 and
8. Choose voltage dividers, RSY1 and RSY2, so that the
peak voltage of the sync signal (Vsypk) is lower than the
OVP voltage (12V) to avoid triggering OVP in normal
operation. It is typical to set Vsypk to be lower than OVP
voltage by 3–4V. To detect the optimum time to turn on
MOSFET, the sync capacitor (CSY) should be determined so that TR is the same with TQ as shown in Figure
8. The TR and TQ are given as, respectively:
ON
Figure 8. Normal Quasi-Resonant
Operation Waveforms
Switching
frequency
Extended QR operation
90kHz
R SY2
V co
T R = R SY2 • C SY • In  --------- • ----------------------------------
 2.6 R SY1 + R SY2
T Q = π ⋅ L m • C eo
Normal QR operation
45kHz
N a • ( V o + V FO )
V co = ----------------------------------------- – V Fa
Ns
Output power
where Lm is the primary side inductance of the transformer, and Ns and Na are the number of turns for the
output winding and VCC winding, respectively, VFo and
VFa are the diode forward voltage drops of the output
winding and Vcc winding, respectively, and Ceo is the
sum of the output capacitance of the MOSFET and the
external capacitor, Cr.
Figure 9. Extended Quasi-Resonant Operation
In general, the QRC has a limitation in a wide load range
application, since the switching frequency increases as
the output load decreases, resulting in a severe switching loss in the light load condition. To overcome this limitation, the FSCQ-Series employs an extended quasiresonant switching operation. Figure 9 shows the mode
change between normal and extended quasi-resonant
operations. In the normal quasi-resonant operation, the
FSCQ-Series enters into the extended quasi-resonant
operation when the switching frequency exceeds 90kHz
as the load reduces. To reduce the switching frequency,
the MOSFET is turned on when the drain voltage
15
FSCQ-Series Rev. 1.1.2
www.fairchildsemi.com
FSCQ-Series Green Mode Fairchild Power Switch (FPS™)
MOSFET
Off
3.2 Leading Edge Blanking (LEB): At the instant the
internal Sense FET is turned on, there is usually a high
current spike through the Sense FET, caused by the
external resonant capacitor across the MOSFET and
secondary-side rectifier reverse recovery. Excessive voltage across the Rsense resistor can lead to incorrect feedback operation in the current mode PWM control. To
counter this effect, the FSCQ-Series employs a leading
edge blanking (LEB) circuit. This circuit inhibits the PWM
comparator for a short time (TLEB) after the Sense FET
is turned on.
Vds
2VRO
Vcc Vref
Idelay
Vo
Vsync
Vfb
H11A817A
4.6V
IFB
4
CB
D1 D2 2.5R
+
Vfb* R
-
KA431
3V
SenseFET
OSC
Gate
Driver
2.6V
1.8V
VSD
Rsense
OLP
MOSFET Gate
ON
Figure 11. Pulse Width
Modulation (PWM) Circuit
ON
4. Protection Circuits: The FSCQ-Series has several
self-protective functions such as over load protection
(OLP), abnormal over current protection (AOCP), over
voltage protection (OVP), and thermal shutdown (TSD).
OLP and OVP are auto-restart mode protections, while
TSD and AOCP are latch mode protections. Because
these protection circuits are fully integrated into the IC
without external components, the reliability can be
improved without increasing cost.
Figure 10. Extended Quasi-Resonant
Operation Waveforms
3. Feedback Control: The FSCQ-Series employs current mode control, as shown in Figure 11. An optocoupler (such as Fairchild’s H11A817A) and shunt regulator
(such as Fairchild’s KA431) are typically used to implement the feedback network. Comparing the feedback
voltage with the voltage across the Rsense resistor plus
an offset voltage makes it possible to control the switching duty cycle. When the reference pin voltage of the
KA431 exceeds the internal reference voltage of 2.5V,
the H11A817A LED current increases, pulling down the
feedback voltage and reducing the duty cycle. This event
typically happens when the input voltage is increased or
the output load is decreased.
– Auto-restart mode protection: Once the fault condition is detected, switching is terminated and the
SenseFET remains off. This causes VCC to fall. When
Vcc falls to the under voltage lockout (UVLO) stop voltage of 9V, the protection is reset and the FSCQ-Series
consumes only startup current (25µA). Then, the Vcc
capacitor is charged up, since the current supplied
through the startup resistor is larger than the current
that the FPS consumes. When VCC reaches the start
voltage of 15V, the FSCQ-Series resumes its normal
operation. If the fault condition is not removed, the
SenseFET remains off and VCC drops to stop voltage
again. In this manner, the auto-restart can alternately
enable and disable the switching of the power
SenseFET until the fault condition is eliminated (see
Figure 12).
3.1 Pulse-by-Pulse Current Limit: Because current
mode control is employed, the peak current through the
SenseFET is limited by the inverting input of the PWM
comparator (Vfb*) as shown in Figure 11. The feedback
current (IFB) and internal resistors are designed so that
the maximum cathode voltage of diode D2 is about 2.8V,
which occurs when all IFB flows through the internal
resistors. Since D1 is blocked when the feedback voltage
(Vfb) exceeds 2.8V, the maximum voltage of the cathode
16
FSCQ-Series Rev. 1.1.2
www.fairchildsemi.com
FSCQ-Series Green Mode Fairchild Power Switch (FPS™)
of D2 is clamped at this voltage, thus clamping Vfb*.
Therefore, the peak value of the current through the
SenseFET is limited.
reaches the second minimum level, as shown in Figure
10. Once the FSCQ-Series enters into the extended
quasi-resonant operation, the first sync signal is ignored.
After the first sync signal is applied, the sync threshold
levels are changed from 4.6V and 2.6V to 3V and 1.8V,
respectively, and the MOSFET turn-on time is synchronized to the second sync signal. The FSCQ-Series
returns to its normal quasi-resonant operation when the
switching frequency reaches 45kHz as the load
increases.
Vds
Fault
occurs
Power
on
Over load protection
VFB
7.5V
2.8V
Fault
removed
T12 = CB * (7.5 – 2.8) / Idelay
T1
T2
t
Figure 13. Over Load Protection
VCC
4.2 Abnormal Over Current Protection (AOCP): When
the secondary rectifier diodes or the transformer pins are
shorted, a steep current with extremely high di/dt can
flow through the SenseFET during the LEB time. Even
though the FSCQ-Series has OLP (Over Load Protection), it is not enough to protect the FSCQ-Series in that
abnormal case, since severe current stress will be
imposed on the SenseFET until the OLP triggers. The
FSCQ-Series has an internal AOCP (Abnormal Over
Current Protection) circuit as shown in Figure 14. When
the gate turn-on signal is applied to the power
SenseFET, the AOCP block is enabled and monitors the
current through the sensing resistor. The voltage across
the resistor is then compared with a preset AOCP level.
If the sensing resistor voltage is greater than the AOCP
level, the set signal is applied to the latch, resulting in the
shutdown of SMPS. This protection is implemented in
the latch mode.
15V
9V
ICC
IOP
ISTART
t
Fault
situation
Normal
operation
Figure 12. Auto Restart Mode Protection
4.1 Over Load Protection (OLP): Overload is defined
as the load current exceeding its normal level due to an
unexpected abnormal event. In this situation, the protection circuit should trigger to protect the SMPS. However,
even when the SMPS is in the normal operation, the over
load protection circuit can be triggered during the load
transition. To avoid this undesired operation, the over
load protection circuit is designed to trigger after a specified time to determine whether it is a transient situation
or an overload situation. Because of the pulse-by-pulse
current limit capability, the maximum peak current
through the SenseFET is limited, and therefore the maximum input power is restricted with a given input voltage.
If the output consumes more than this maximum power,
the output voltage (Vo) decreases below the set voltage.
This reduces the current through the optocoupler LED,
which also reduces the optocoupler transistor current,
thus increasing the feedback voltage (Vfb). If Vfb
exceeds 2.8V, D1 is blocked, and the 5µA current source
starts to charge CB slowly up to VCC. In this condition,
Vfb continues increasing until it reaches 7.5V, then the
switching operation is terminated as shown in Figure 13.
The delay time for shutdown is the time required to
charge CB from 2.8V to 7.5V with 5µA. In general, a
20~50ms delay time is typical for most applications. OLP
is implemented in auto restart mode.
2.5R
OSC
S Q
Gate
Driver
–
R Q
R
LEB
Rsense
2
GND
+
AOCP
Vaocp
–
Figure 14. AOCP Block
4.3 Over Voltage Protection (OVP): If the secondary
side feedback circuit malfunctions or a solder defect
causes an open in the feedback path, the current
through the optocoupler transistor becomes almost zero.
Then, Vfb climbs up in a similar manner to the over load
situation, forcing the preset maximum current to be supplied to the SMPS until the over load protection triggers.
Because more energy than required is provided to the
17
FSCQ-Series Rev. 1.1.2
PWM
+
Normal
operation
www.fairchildsemi.com
FSCQ-Series Green Mode Fairchild Power Switch (FPS™)
– Latch mode protection: Once this protection is triggered, switching is terminated and the Sense FET
remains off until the AC power line is unplugged. Then,
VCC continues charging and discharging between 9V
and 15V. The latch is reset only when VCC is discharged to 6V by unplugging the AC power line.
VO2
Linear
Regulator
Micom
VO1 (B +)
RD
DZ
Rbias
R1
CF
RF
R3
D1
Q1
C
KA431
4.4 Thermal Shutdown (TSD): The SenseFET and the
control IC are built in one package. This makes it easy for
the control IC to detect abnormal over temperature of the
SenseFET. When the temperature exceeds approximately 150°C, the thermal shutdown triggers. This protection is implemented in the latch mode.
A
Picture ON
R
R2
Figure 15. Typical Feedback Circuit to Drop
Output Voltage in Standby Mode
Figure 17 shows the burst mode operation waveforms.
When the picture ON signal is disabled, Q1 is turned off
and R3 and Dz are connected to the reference pin of
KA431 through D1. Before Vo2 drops to Vo2stby, the voltage on the reference pin of KA431 is higher than 2.5V,
which increases the current through the opto LED. This
pulls down the feedback voltage (VFB) of FSCQ-Series
and forces FSCQ-Series to stop switching. If the switching is disabled longer than 1.4ms, FSCQ-Series enters
into burst operation and the operating current is reduced
from IOP to 0.25mA (IOB). Since there is no switching, Vo2
decreases until it reaches Vo2stby. As Vo2 reaches Vo2stby,
the current through the opto LED decreases allowing the
feedback voltage to rise. When the feedback voltage
reaches 0.4V, FSCQ-Series resumes switching with a
predetermined peak drain current of 0.9A. After burst
switching for 1.4ms, FSCQ-Series stops switching and
checks the feedback voltage. If the feedback voltage is
below 0.4V, FSCQ-Series stops switching until the feedback voltage increases to 0.4V. If the feedback voltage is
above 0.4V, FSCQ-Series goes back to the normal operation.
5. Soft Start: The FSCQ-Series has an internal soft-start
circuit that increases PWM comparator’s inverting input
voltage together with the SenseFET current slowly after
it starts up. The typical soft start time is 20ms. The pulse
width to the power switching device is progressively
increased to establish the correct working conditions for
transformers, inductors, and capacitors. Increasing the
pulse width to the power switching device also helps prevent transformer saturation and reduces the stress on
the secondary diode during startup. For a fast build up of
the output voltage, an offset is introduced in the soft-start
reference current.
6. Burst Operation: In order to minimize the power consumption in the standby mode, the FSCQ-Series
employs burst operation. Once FSCQ-Series enters into
the burst mode, FSCQ-Series allows all output voltages
and effective switching frequency to be reduced. Figure
15 shows the typical feedback circuit for C-TV applications. In normal operation, the picture on signal is
applied and the transistor Q1 is turned on, which decouples R3, Dz and D1 from the feedback network. Therefore, only Vo1 is regulated by the feedback circuit in
normal operation and determined by R1 and R2 as:
The output voltage drop circuit can be implemented
alternatively as shown in Figure 16. In the circuit of Figure 16, the FSCQ-Series goes into burst mode, when
picture off signal is applied to Q1. Then, Vo2 is determined by the zener diode breakdown voltage. Assuming
that the forward voltage drop of opto LED is 1V, the
approximate value of Vo2 in standby mode is given by:
R1 + R2
V o1norm = 2.5 •  --------------------
 R2 
In the standby mode, the picture ON signal is disabled
and the transistor Q1 is turned off, which couples R3, Dz,
and D1 to the reference pin of KA431. Then, Vo2 is determined by the zener diode breakdown voltage. Assuming
that the forward voltage drop of D1 is 0.7V, Vo2 in standby
mode is approximately given by:
V o2stby = V Z + 1
V o2stby = V Z + 0.7 + 2.5
18
FSCQ-Series Rev. 1.1.2
www.fairchildsemi.com
FSCQ-Series Green Mode Fairchild Power Switch (FPS™)
output, the output voltage may exceed the rated voltage
before the over load protection triggers, resulting in the
breakdown of the devices in the secondary side. In order
to prevent this situation, an over voltage protection
(OVP) circuit is employed. In general, the peak voltage of
the sync signal is proportional to the output voltage and
the FSCQ-Series uses a sync signal instead of directly
monitoring the output voltage. If the sync signal exceeds
12V, an OVP is triggered resulting in a shutdown of
SMPS. In order to avoid undesired triggering of OVP during normal operation, the peak voltage of the sync signal
should be designed to be below 12V. This protection is
implemented in the auto restart mode.
FSCQ-Series Green Mode Fairchild Power Switch (FPS™)
VO2
Linear
Regulator
Micom
RD
Rbias
VO1 (B+)
CF
C
KA431
A
RF
R1
R
R2
DZ
Q1
Picture OFF
Figure 16. Feedback Circuit to Drop Output
Voltage in Standby Mode
19
FSCQ-Series Rev. 1.1.2
www.fairchildsemi.com
(b)
FSCQ-Series Green Mode Fairchild Power Switch (FPS™)
(a)
(c)
Vo2norm
Vo2stby
VFB
0.4V
IOP
IOP
IOB
Vds
Picture On
Picture Off
Picture On
Burst Mode
0.4V
0.4V
0.3V
VFB
0.4V
Vds
1.4ms
1.4ms
0.9A
Ids
1.4ms
0.9A
(a) Mode Change to Burst Operation
(b) Burst Operation
(c) Mode Change to Normal Operation
Figure 17. Burst Operation Waveforms
20
FSCQ-Series Rev. 1.1.2
www.fairchildsemi.com
Application
Output Power
Input Voltage
Output Voltage (Max Current)
C-TV
59W
Universal Input
(90–270 Vac)
12V (0.5A)
18V (0.3A)
125V (0.3A)
24V (0.4A)
Features
Key Design Notes
■ High Efficiency (>83% at 90 Vac Input)
■ 24V output is designed to drop to around 8V in
standby mode
■ Wider Load Range through the Extended
■
■
■
■
Quasi-Resonant Operation
Low Standby Mode Power Consumption (<1W)
Low Component Count
Enhanced System Reliability Through Various
Protection Functions
Internal Soft-Start (20ms)
1. Schematic
T1
EER3540
RT101
5D-9
C102
220µF
400V
BD101
R101
100kΩ
0.25W
1
3
11
R106 C104
1.5kΩ 10µF
50V
1W
1
Drai n
SYNC
3 Vcc IC101
5
FSCQ0565RT
GND
2
C103
10µF
50V
FB
4
C106
47nF
50V
C204
1000µF
35V
C210
470pF
1kV
D204
EGP20D
4
D104
UF4007
12V, 0.5A
10
BEAD101
R102
150kΩ
0.25W
ZD101
18V
1W
D205
EGP20D
C107
680pF
1kV
D102
1N4937
18V, 0.3A
13
12
C205
1000µF
35V
C209
470pF
1kV
D202
EGP20J
D103
1N4148
R105
470Ω
0.25W
R104 D101 R103 6
1.5kΩ 1N4937 5.1Ω
0.25W
0.25W
14
15
16
C105
3.9nF
50V
125V, 0.3A
L201
C201 BEAD
100µF
160V
C207
470pF
1kV
C202
47µF
160V
D203
EGP20D
7
LF101
18
OPTO101
FOD817A
24V, 0.4A
17
C203
1000µF
35V
C208
470pF
1kV
VR201
30kΩ
R205
220kΩ
0.25W
R201
1kΩ
0.25W
C101
330nF
275VAC
FUSE
250V
2.0A
C301
2.2nF
Q201
KA431
21
FSCQ-Series Rev. 1.1.2
R208
1kΩ
0.25W
ZD201
C206
22nF
50V
Normal
ZD202
5.1V
0.5W
R202
1kΩ
0.25W
R203
39kΩ
0.25W
R204
4.7kΩ
0.25W
D201
Q202
KSC945
SW201
R207
5.1kΩ
0.25W
Standby
R206
5.1kΩ
0.25W
www.fairchildsemi.com
FSCQ-Series Green Mode Fairchild Power Switch (FPS™)
FSCQ0565RT Typical Application Circuit
EER3540
Np1 1
18
2
17
3
16
4
15
5
14
6
13
Np2
N24V
Na
N18V
N125V /2
N125V /2
N125V /2
Np2
N12V
Na
7
12
8
11
9
10
N24V
N12V
N125V /2
Np1
N18V
3. Winding Specification
No
Pin (s→f)
Wire
Turns
Winding Method
×1
32
Center Winding
×1
32
Center Winding
0.4φ × 2
13
Center Winding
×2
7
Center Winding
×1
32
Center Winding
×1
32
Center Winding
0.4φ × 2
10
Center Winding
20
Center Winding
1–3
0.5φ
N125V/2
16–15
0.5φ
N24V
18–17
12–13
0.5φ
3–4
0.5φ
N125V/2
15–14
0.5φ
N18V
11–10
0.3φ
Np1
N12V
Np2
Na
7–6
×1
4. Electrical Characteristics
Pin
Specification
Remarks
Inductance
1–3
740µH ± 5%
1kHz, 1V
Leakage Inductance
1–3
10µH Max
2nd all short
5. Core & Bobbin
Core: EER3540
Bobbin: EER3540
Ae: 107 mm2
22
FSCQ-Series Rev. 1.1.2
www.fairchildsemi.com
FSCQ-Series Green Mode Fairchild Power Switch (FPS™)
2. Transformer Schematic Diagram
Part
Value
Note
Part
Fuse
FUSE
Note
Capacitor (Continued)
250V/2A
RT101
Value
C210
470pF/1kV
Ceramic Capacitor
NTC
C301
2.2nF/1kV
AC Ceramic Capacitor
Resistor
BEAD101
BEAD
BEAD201
5µH
5D-9
Inductor
R101
100kΩ
0.25W
3A
R102
150kΩ
0.25W
R103
5.1Ω
0.25W
D101
1N4937
1A, 600V
R104
1.5kΩ
0.25W
D102
1N4937
1A, 600V
R105
470Ω
0.25W
D103
1N4148
0.15A, 50V
R106
1.5kΩ
1W
D104
Short
R107
Open
D105
Open
R201
1kΩ
0.25W
ZD101
1N4746
R202
1kΩ
0.25W
ZD102
Open
R203
39kΩ
0.25W
ZD201
1N5231
5.1V, 0.5W
Diode
18V, 1W
R204
4.7kΩ
0.25W, 1%
D201
1N4148
0.15A, 50V
R205
220kΩ
0.25W, 1%
D202
EGP20J
2A, 600V
R206
5.1kΩ
0.25W
D203
EGP20D
2A, 200V
R207
5.1kΩ
0.25W
D204
EGP20D
2A, 200V
R208
1kΩ
0.25W
D205
EGP20D
2A, 200V
VR201
30kΩ
Bridge Diode
Capacitor
BD101
C101
330n/275VAC
Box Capacitor
C102
220µF/400V
Electrolytic
C103
10µF/50V
Electrolytic
C104
10µF/50V
Electrolytic
C105
3.9nF/50V
Film Capacitor
C106
47nF/50V
Film Capacitor
C107
680pF/1kV
Film Capacitor
C108
Open
C201
100µF/160V
C202
C203
C204
1000µF/35V
Electrolytic
C205
1000µF/35V
Electrolytic
GSIB660
Line Filter
LF101
14mH
Transformer
T101
EER3540
Switch
SW201
ON/OFF
For MCU Signal
IC
IC101
FSCQ0565RT
Electrolytic
OPT101
FOD817A
47µF/160V
Electrolytic
Q201
KA431LZ
1000µF/35V
Electrolytic
Q202
KSC945
C206
22nF/50V
Film Capacitor
C207
470pF/1kV
Ceramic Capacitor
C208
470pF/1kV
Ceramic Capacitor
C209
470pF/1kV
Ceramic Capacitor
23
FSCQ-Series Rev. 1.1.2
6A, 600V
TO-220F-5L
TO-92
www.fairchildsemi.com
FSCQ-Series Green Mode Fairchild Power Switch (FPS™)
6. Demo Circuit Part List
Application
Output Power
Input Voltage
Output Voltage (Max Current)
C-TV
83W
Universal input
(90–270 Vac)
12V (1A)
18V (0.5A)
125V (0.4A)
24V (0.5A)
Features
Key Design Notes
■ High Efficiency (>83% at 90 Vac Input)
■ 24V output is designed to drop to around 8V in
standby mode
■ Wider Load Range through the Extended
■
■
■
■
Quasi-Resonant Operation
Low Standby Mode Power Consumption (<1W)
Low Component Count
Enhanced System Reliability Through Various
Protection Functions
Internal Soft-Start (20ms)
1. Schematic
T1
EER3540
RT101
5D-9
C102
220µF
400V
BD101
R101
100kΩ
0.25W
1
3
11
R106 C104
1.5kΩ 10µF
1W
50V
1
Drai n
SYNC
3 Vcc IC101
5
FSCQ0765RT
GND
2
C103
10µF
50V
FB
4
C106
47nF
50V
C204
1000µF
35V
C210
470pF
1kV
D204
EGP20D
4
D104
UF4007
12V, 0.5A
10
BEAD101
R102
150kΩ
0.25W
ZD101
18V
1W
D205
EGP20D
C107
1nF
1kV
D102
1N4937
18V, 0.3A
13
12
C205
1000µF
35V
C209
470pF
1kV
D202
EGP20J
D103
1N4148
R105
470Ω
0.25W
R104 D101 R103 6
1.5kΩ 1N4937 5.1Ω
0.25W
0.25W
14
15
16
C105
3.9nF
50V
125V, 0.3A
L201
C201 BEAD
100µF
160V
C207
470pF
1kV
C202
47µF
160V
D203
EGP20D
7
LF101
18
OPTO101
FOD817A
24V, 0.4A
17
C203
1000µF
35V
C208
470pF
1kV
VR201
30kΩ
R205
220kΩ
0.25W
R201
1kΩ
0.25W
FUSE
250V
2.0A
C301
2.2nF
Q201
KA431
24
FSCQ-Series Rev. 1.1.2
R208
1kΩ
0.25W
ZD201
C206
22nF
50V
Normal
ZD202
5.1V
0.5W
R202
1kΩ
0.25W
C101
330nF
275VAC
R203
39kΩ
0.25W
R204
4.7kΩ
0.25W
D201
Q202
KSC945
SW201
R207
5.1kΩ
0.25W
Standby
R206
5.1kΩ
0.25W
www.fairchildsemi.com
FSCQ-Series Green Mode Fairchild Power Switch (FPS™)
FSCQ0765RT Typical Application Circuit
EER3540
Np1 1
18
2
17
3
16
4
15
5
14
6
13
Np2
N24V
Na
N18V
N125V /2
N125V /2
N125V /2
Np2
N12V
Na
7
12
8
11
9
10
N24V
N12V
N125V /2
Np1
N18V
3. Winding Specification
No
Pin (s→f)
Wire
Turns
Winding Method
×1
32
Center Winding
×1
32
Center Winding
0.4φ × 2
13
Center Winding
×2
7
Center Winding
×1
32
Center Winding
×1
32
Center Winding
0.4φ × 2
10
Center Winding
20
Center Winding
1–3
0.5φ
N125V/2
16–15
0.5φ
N24V
18–17
12–13
0.5φ
3–4
0.5φ
N125V/2
15–14
0.5φ
N18V
11–10
0.3φ
Np1
N12V
Np2
Na
7–6
×1
4. Electrical Characteristics
Pin
Specification
Remarks
Inductance
1–3
515µH ± 5%
1kHz, 1V
Leakage Inductance
1–3
10µH Max
2nd all short
5. Core & Bobbin
Core: EER3540
Bobbin: EER3540
Ae: 107 mm2
25
FSCQ-Series Rev. 1.1.2
www.fairchildsemi.com
FSCQ-Series Green Mode Fairchild Power Switch (FPS™)
2. Transformer Schematic Diagram
Part
Value
Note
Part
Fuse
FUSE
Note
Capacitor (Continued)
250V/2A
RT101
Value
C210
470pF/1kV
Ceramic Capacitor
NTC
C301
2.2nF/1kV
AC Ceramic Capacitor
Resistor
BEAD101
BEAD
BEAD201
5µH
5D-9
Inductor
R101
100kΩ
0.25W
3A
R102
150kΩ
0.25W
R103
5.1Ω
0.25W
D101
1N4937
1A, 600V
R104
1.5kΩ
0.25W
D102
1N4937
1A, 600V
R105
470Ω
0.25W
D103
1N4148
0.15A, 50V
R106
1.5kΩ
1W
D104
Short
R107
Open
D105
Open
R201
1kΩ
0.25W
ZD101
1N4746
R202
1kΩ
0.25W
ZD102
Open
R203
39kΩ
0.25W
ZD201
1N5231
5.1V, 0.5W
Diode
18V, 1W
R204
4.7kΩ
0.25W, 1%
D201
1N4148
0.15A, 50V
R205
220kΩ
0.25W, 1%
D202
EGP20J
2A, 600V
R206
5.1kΩ
0.25W
D203
EGP20D
2A, 200V
R207
5.1kΩ
0.25W
D204
EGP20D
2A, 200V
R208
1kΩ
0.25W
D205
EGP20D
2A, 200V
VR201
30kΩ
Bridge Diode
Capacitor
BD101
C101
330n/275VAC
Box Capacitor
C102
220µF/400V
Electrolytic
C103
10µF/50V
Electrolytic
C104
10µF/50V
Electrolytic
C105
3.9nF/50V
Film Capacitor
C106
47nF/50V
Film Capacitor
C107
1nF/1kV
Film Capacitor
C108
Open
C201
100µF/160V
C202
C203
C204
1000µF/35V
Electrolytic
C205
1000µF/35V
Electrolytic
GSIB660
6A, 600V
Line Filter
LF101
14mH
Transformer
T101
EER3540
Switch
SW201
ON/OFF
For MCU Signal
IC
IC101
FSCQ0765RT
Electrolytic
OPT101
FOD817A
47µF/160V
Electrolytic
Q201
KA431LZ
1000µF/35V
Electrolytic
Q202
KSC945
C206
22nF/50V
Film Capacitor
C207
470pF/1kV
Ceramic Capacitor
C208
470pF/1kV
Ceramic Capacitor
C209
470pF/1kV
Ceramic Capacitor
26
FSCQ-Series Rev. 1.1.2
TO-220F-5L
TO-92
www.fairchildsemi.com
FSCQ-Series Green Mode Fairchild Power Switch (FPS™)
6. Demo Circuit Part List
Application
Output Power
Input Voltage
Output Voltage (Max Current)
C-TV
102W
Universal input
(90–270 Vac)
12V (0.5A)
18V (0.5A)
125V (0.5A)
24V (1.0A)
Features
Key Design Notes
■ High Efficiency (>83% at 90 Vac Input)
■ 24V output is designed to drop to around 8V in
standby mode
■ Wider Load Range through the Extended
■
■
■
■
Quasi-Resonant Operation
Low Standby Mode Power Consumption (<1W)
Low Component Count
Enhanced System Reliability Through Various
Protection Functions
Internal Soft-Start (20ms)
1. Schematic
T1
EER3540
RT101
5D-9
C102
220µF
400V
BD101
R101
100kΩ
0.25W
1
3
11
R106 C104
1.5kΩ 10µF
50V
1W
1
Drai n
SYNC
3 Vcc IC101
5
FSCQ0965RT
GND
2
C103
10µF
50V
FB
4
C106
47nF
50V
C204
1000µF
35V
C210
470pF
1kV
D204
EGP20D
4
D104
UF4007
12V, 0.5A
10
BEAD101
R102
150kΩ
0.25W
ZD101
18V
1W
D205
EGP20D
C107
1nF
1kV
D102
1N4937
18V, 0.3A
13
12
C205
1000µF
35V
C209
470pF
1kV
D202
EGP20J
D103
1N4148
R105
470Ω
0.25W
R104 D101 R103 6
1.5kΩ 1N4937 5.1Ω
0.25W
0.25W
14
15
16
C105
3.9nF
50V
125V, 0.3A
L201
C201 BEAD
100µF
160V
C207
470pF
1kV
C202
47µF
160V
D203
EGP20D
7
LF101
18
OPTO101
FOD817A
24V, 0.4A
17
C203
1000µF
35V
C208
470pF
1kV
VR201
30kΩ
R205
220kΩ
0.25W
R201
1kΩ
0.25W
FUSE
250V
2.0A
C301
2.2nF
Q201
KA431
27
FSCQ-Series Rev. 1.1.2
R208
1kΩ
0.25W
ZD201
C206
22nF
50V
Normal
ZD202
5.1V
0.5W
R202
1kΩ
0.25W
C101
330nF
275VAC
R203
39kΩ
0.25W
R204
4.7kΩ
0.25W
D201
Q202
KSC945
SW201
R207
5.1kΩ
0.25W
Standby
R206
5.1kΩ
0.25W
www.fairchildsemi.com
FSCQ-Series Green Mode Fairchild Power Switch (FPS™)
FSCQ0965RT Typical Application Circuit
EER3540
Np1 1
18
2
17
3
16
4
15
5
14
6
13
Np2
N24V
Na
N18V
N125V /2
N125V /2
N125V /2
Np2
N12V
Na
7
12
8
11
9
10
N24V
N12V
N125V /2
Np1
N18V
3. Winding Specification
No
Pin (s→f)
Wire
Turns
Winding Method
×1
32
Center Winding
×1
32
Center Winding
0.4φ × 2
13
Center Winding
×2
7
Center Winding
×1
32
Center Winding
×1
32
Center Winding
0.4φ × 2
10
Center Winding
20
Center Winding
1–3
0.6φ
N125V/2
16–15
0.6φ
N24V
18–17
12–13
0.5φ
3–4
0.6φ
N125V/2
15–14
0.6φ
N18V
11–10
0.3φ
Np1
N12V
Np2
Na
7–6
×1
4. Electrical Characteristics
Pin
Specification
Remarks
Inductance
1–3
410µH ± 5%
1kHz, 1V
Leakage Inductance
1–3
10µH Max
2nd all short
5. Core & Bobbin
Core: EER3540
Bobbin: EER3540
Ae: 107 mm2
28
FSCQ-Series Rev. 1.1.2
www.fairchildsemi.com
FSCQ-Series Green Mode Fairchild Power Switch (FPS™)
2. Transformer Schematic Diagram
Part
Value
Note
Part
Fuse
FUSE
Note
Capacitor (Continued)
250V/3A
RT101
Value
C210
470pF/1kV
Ceramic Capacitor
NTC
C301
3.3nF/1kV
AC Ceramic Capacitor
Resistor
BEAD101
BEAD
BEAD201
5µH
5D-9
Inductor
R101
100kΩ
0.25W
3A
R102
150kΩ
0.25W
R103
5.1Ω
0.25W
D101
1N4937
1A, 600V
R104
1.5kΩ
0.25W
D102
1N4937
1A, 600V
R105
470Ω
0.25W
D103
1N4148
0.15A, 50V
R106
1.5kΩ
1W
D104
Short
R107
Open
D105
Open
R201
1kΩ
0.25W
ZD101
1N4746
R202
1kΩ
0.25W
ZD102
Open
R203
39kΩ
0.25W
ZD201
1N5231
5.1V, 0.5W
Diode
18V, 1W
R204
4.7kΩ
0.25W, 1%
D201
1N4148
0.15A, 50V
R205
220kΩ
0.25W, 1%
D202
EGP30J
3A, 600V
R206
5.1kΩ
0.25W
D203
EGP30D
3A, 200V
R207
5.1kΩ
0.25W
D204
EGP20D
2A, 200V
R208
1kΩ
0.25W
D205
EGP20D
2A, 200V
VR201
30kΩ
Bridge Diode
Capacitor
BD101
C101
330n/275VAC
Box Capacitor
C102
220µF/400V
Electrolytic
C103
10µF/50V
Electrolytic
C104
10µF/50V
Electrolytic
C105
3.9nF/50V
Film Capacitor
C106
47nF/50V
Film Capacitor
C107
1nF/1kV
Film Capacitor
C108
Open
C201
100µF/160V
C202
C203
C204
1000µF/35V
Electrolytic
C205
1000µF/35V
Electrolytic
GSIB660
6A, 600V
Line Filter
LF101
14mH
Transformer
T101
EER3540
Switch
SW201
ON/OFF
For MCU Signal
IC
IC101
FSCQ0965RT
Electrolytic
OPT101
FOD817A
47µF/160V
Electrolytic
Q201
KA431LZ
1000µF/35V
Electrolytic
Q202
KSC945
C206
22nF/50V
Film Capacitor
C207
470pF/1kV
Ceramic Capacitor
C208
470pF/1kV
Ceramic Capacitor
C209
470pF/1kV
Ceramic Capacitor
29
FSCQ-Series Rev. 1.1.2
TO-220F-5L
TO-92
www.fairchildsemi.com
FSCQ-Series Green Mode Fairchild Power Switch (FPS™)
6. Demo Circuit Part List
Application
Output Power
Input Voltage
Output Voltage (Max Current)
C-TV
132W
Universal input
(90–270 Vac)
8.5V (0.5A)
15V (0.5A)
140V (0.6A)
24V (1.5A)
Features
Key Design Notes
■ High Efficiency (>83% at 90 Vac Input)
■ 24V output is designed to drop to around 8V in
standby mode
■ Wider Load Range through the Extended
■
■
■
■
Quasi-Resonant Operation
Low Standby Mode Power Consumption (<1W)
Low Component Count
Enhanced System Reliability Through Various
Protection Functions
Internal Soft-Start (20ms)
1. Schematic
T1
EER4042
RT101
5D-11
3
R101
100kΩ
0.25W
BD101
Drain
SYNC
3 Vcc IC101
5
FSCQ1265RT
GND
2
C103
10µF
50V
FB
4
C106
47nF
50V
C210
470pF
1kV
R106 C104
1kΩ 10µF
1W 50V
D105
1N4937
8.5V, 0.5A
13
C107
1nF
1kV
12
C209
470pF
1kV
C205
1000µF
35V
D202
EGP30J
D106
1N4148
R105
470Ω
0.25W
R104 D103 R103 6
1.5kΩ 1N4937 5.1Ω
0.25W
0.25W
14
15
16
C105
3.3nF
50V
C207
470pF
1kV
L202
C201 BEAD
150µF
160V
140V, 0.6A
C202
68µF
160V
D203
EGP30D
24V, 1.5A
17
7
LF101
18
OPTO101
FOD817A
C208
470pF
1kV
R202
1kΩ
0.25W
FUSE
250V
5.0A
C301
3.3nF
30
C203
1000µF
35V
VR201
30kΩ
R201
1kΩ
0.25W
C101
330nF
275VAC
FSCQ-Series Rev. 1.1.2
C204
1000µF
35V
D204
EGP20D
4
1
ZD102
18V
1W
11
BEAD101
R102
150kΩ
0.25W
15V, 0.5A
10
1
C102
330µF
400V
D205
EGP20D
Q201
KA431
LZ
C206
150nF
50V
R203
39kΩ
0.25W
ZD201
5.1V
0.5W
R208
1kΩ
0.25W
R205
240kΩ D201
0.25W 1N4148
R204
4.7kΩ
0.25W
Q202
KSC945
SW201
R207
5.1kΩ
0.25W
R206
10kΩ
0.25W
www.fairchildsemi.com
FSCQ-Series Green Mode Fairchild Power Switch (FPS™)
FSCQ1265RT Typical Application Circuit
Np1
Np2
1
EER4042
18
2
17
3
16
4
15
5
14
6
13
N24V
Na
N15V
N140V /2
N8.5V
N140V /2
N140V / 2
NP2
Na
7
12
8
11
9
10
N140V / 2
N8.5V
NP1
N24V
N15V
3. Winding Specification
No
Pin (s→f)
Wire
0.65φ
Turns
×2
Winding Method
N24
18–17
8
Space Winding
Np1
1–3
0.1φ × 10 × 2
20
Center Winding
N140V/2
16–15
0.1φ × 10 × 2
23
Center Winding
3–4
0.1φ
× 10 × 2
20
Center Winding
N140V/2
15–14
0.1φ
× 10 × 2
22
Center Winding
N8.5V
12–13
0.6φ × 1
3
Space Winding
11–10
0.6φ
×1
6
Space Winding
7–6
0.3φ
×1
13
Space Winding
Np2
N15V
Na
4. Electrical Characteristics
Pin
Specification
Remarks
Inductance
1–4
315µH ± 5%
1kHz, 1V
Leakage Inductance
1–4
10µH Max
2nd all short
5. Core & Bobbin
Core: EER4042
Bobbin: EER4042(18Pin)
Ae: 153 mm2
31
FSCQ-Series Rev. 1.1.2
www.fairchildsemi.com
FSCQ-Series Green Mode Fairchild Power Switch (FPS™)
2. Transformer Schematic Diagram
Part
Value
Note
Part
Fuse
FUSE
250V/5A
RT101
5D-11
C210
470pF/1kV
Ceramic Capacitor
C301
3.3nF/1kV
AC Ceramic Capacitor
Inductor
Resistor
100kΩ
Note
Capacitor (Continued)
NTC
R101
Value
0.25W
BEAD101
BEAD
BEAD201
5µH
3A
R102
150kΩ
0.25W
R103
5.1Ω
0.25W
D101
1N4937
Diode
1A, 600V
R104
1.5kΩ
0.25W
D102
1N4937
1A, 600V
R105
470Ω
0.25W
D103
1N4148
0.15A, 50V
R106
1kΩ
1W
D104
Short
R107
Open
D105
Open
R201
1kΩ
0.25W
ZD101
1N4746
R202
1kΩ
0.25W
ZD102
Open
18V, 1W
R203
39kΩ
0.25W
ZD201
1N5231
5.1V, 0.5W
R204
4.7kΩ
0.25W, 1%
D201
1N4148
0.15A, 50V
R205
240kΩ
0.25W, 1%
D202
EGP30J
3A, 600V
R206
10kΩ
0.25W
D203
EGP30D
3A, 200V
R207
5.1kΩ
0.25W
D204
EGP20D
2A, 200V
R208
1kΩ
0.25W
D205
EGP20D
2A, 200V
VR201
30kΩ
Bridge Diode
Capacitor
BD101
C101
330n/275 Vac
Box Capacitor
C102
330µF/400V
Electrolytic
C103
10µF/50V
Electrolytic
C104
10µF/50V
Electrolytic
C105
3.3nF/50V
Film Capacitor
C106
47nF/50V
Film Capacitor
C107
1nF/1kV
Film Capacitor
C108
Open
C201
150µF/160V
C202
68µF/160V
C203
1000µF/35V
Electrolytic
C204
1000µF/35V
Electrolytic
C205
1000µF/35V
Electrolytic
C206
150nF/50V
Film Capacitor
C207
470pF/1kV
Ceramic Capacitor
C208
470pF/1kV
Ceramic Capacitor
C209
470pF/1kV
Ceramic Capacitor
6A, 600V
Line Filter
LF101
14mH
Transformer
T101
EER4042
SW201
ON/OFF
Switch
For MCU Signal
IC
IC101
FSCQ1265RT
Electrolytic
OPT101
FOD817A
Electrolytic
Q201
KA431LZ
Q202
KSC945
32
FSCQ-Series Rev. 1.1.2
GSIB660
TO-220F-5L
TO-92
www.fairchildsemi.com
FSCQ-Series Green Mode Fairchild Power Switch (FPS™)
6. Demo Circuit Part List
Application
Output Power
Input Voltage
Output Voltage (Max Current)
C-TV
146W
Universal input
(90–270Vac)
8.5V (0.5A)
15V (0.5A)
140V (0.7A)
24V (1.5A)
Features
Key Design Notes
■ High Efficiency (>83% at 90Vac Input)
■ 24V output is designed to drop to around 8V in
standby mode
■ Wider Load Range through the Extended
■
■
■
■
Quasi-Resonant Operation
Low Standby Mode Power Consumption (<1W)
Low Component Count
Enhanced System Reliability Through Various
Protection Functions
Internal Soft-Start (20ms)
1. Schematic
T1
EER4245
RT101
6D-22
3
R101
100kΩ
0.25W
BD101
Drain
SYNC
3 Vcc IC101
5
FSCQ1465RT
GND
2
C103
10µF
50V
FB
4
C106
47nF
50V
C210
470pF
1kV
R106 C104
1kΩ 10µF
1W 50V
D105
1N4937
8.5V, 0.5A
13
C107
1nF
1kV
12
C209
470pF
1kV
C205
1000µF
35V
D202
EGP30J
D106
1N4148
R105
470Ω
0.25W
R104 D103 R103 6
1.5kΩ 1N4937 5.1Ω
0.25W
0.25W
14
15
16
C105
2.7nF
50V
C207
470pF
1kV
L202
C201 BEAD
150µF
160V
140V, 0.6A
C202
68µF
160V
D203
EGP30D
24V, 1.5A
17
7
LF101
18
OPTO101
FOD817A
C208
470pF
1kV
R202
1kΩ
0.25W
FUSE
250V
5.0A
C301
3.3nF
33
C203
1000µF
35V
VR201
30kΩ
R201
1kΩ
0.25W
C101
330nF
275VAC
FSCQ-Series Rev. 1.1.2
C204
1000µF
35V
D204
EGP20D
4
1
ZD102
18V
1W
11
BEAD101
R102
150kΩ
0.25W
15V, 0.5A
10
1
C102
330µF
400V
D205
EGP20D
Q201
KA431
LZ
C206
150nF
50V
R203
39kΩ
0.25W
ZD201
5.1V
0.5W
R208
1kΩ
0.25W
R205
240kΩ D201
0.25W 1N4148
R204
4.7kΩ
0.25W
Q202
KSC945
SW201
R207
5.1kΩ
0.25W
R206
10kΩ
0.25W
www.fairchildsemi.com
FSCQ-Series Green Mode Fairchild Power Switch (FPS™)
FSCQ1465RT Typical Application Circuit
Np1
Np2
1
EER4245
18
2
17
3
16
4
15
5
14
6
13
N24V
Na
N15V
N140V /2
N8.5V
N140V /2
N140V / 2
NP2
Na
7
12
8
11
9
10
N140V / 2
N8.5V
NP1
N24V
N15V
3. Winding Specification
No
Pin (s→f)
N24
18–17
0.08φ
Turns
Winding Method
×2
5
Space Winding
× 20 × 2
13
Center Winding
15
Center Winding
3–4
0.08φ
× 20 × 2
13
Center Winding
15–14
0.08φ
× 20 × 2
14
Center Winding
1–3
16–15
N140V/2
0.65φ
0.08φ × 20 × 2
Np1
N140V/2
Np2
Wire
N8.5V
12–13
0.6φ
×1
2
Space Winding
N15V
11–10
0.6φ × 1
3
Space Winding
0.3φ
8
Space Winding
Na
7–6
×1
4. Electrical Characteristics
Pin
Specification
Remarks
Inductance
1–4
260µH ± 5%
1kHz, 1V
Leakage Inductance
1–4
10µH Max
2nd all short
5. Core & Bobbin
Core: EER4245
Bobbin: EER4245(18Pin)
Ae: 201.8 mm2
34
FSCQ-Series Rev. 1.1.2
www.fairchildsemi.com
FSCQ-Series Green Mode Fairchild Power Switch (FPS™)
2. Transformer Schematic Diagram
Part
Value
Note
Part
Fuse
FUSE
250V/5A
RT101
6D-22
C210
470pF/1kV
Ceramic Capacitor
C301
3.3nF/1kV
AC Ceramic Capacitor
Inductor
Resistor
100kΩ
Note
Capacitor (Continued)
NTC
R101
Value
0.25W
BEAD101
BEAD
BEAD201
5µH
3A
R102
150kΩ
0.25W
R103
5.1Ω
0.25W
D101
1N4937
Diode
1A, 600V
R104
1.5kΩ
0.25W
D102
1N4937
1A, 600V
R105
470Ω
0.25W
D103
1N4148
0.15A, 50V
R106
1kΩ
1W
D104
Short
R107
Open
D105
Open
R201
1kΩ
0.25W
ZD101
1N4746
R202
1kΩ
0.25W
ZD102
Open
18V, 1W
R203
39kΩ
0.25W
ZD201
1N5231
5.1V, 0.5W
R204
4.7kΩ
0.25W, 1%
D201
1N4148
0.15A, 50V
R205
240kΩ
0.25W, 1%
D202
EGP30J
3A, 600V
R206
10kΩ
0.25W
D203
EGP30D
3A, 200V
R207
5.1kΩ
0.25W
D204
EGP20D
2A, 200V
R208
1kΩ
0.25W
D205
EGP20D
2A, 200V
VR201
30kΩ
Bridge Diode
Capacitor
BD101
C101
330n/275VAC
Box Capacitor
C102
330µF/400V
Electrolytic
C103
10µF/50V
Electrolytic
C104
10µF/50V
Electrolytic
C105
2.7nF/50V
Film Capacitor
C106
47nF/50V
Film Capacitor
C107
1nF/1kV
Film Capacitor
C108
Open
C201
150µF/160V
C202
68µF/160V
C203
1000µF/35V
Electrolytic
C204
1000µF/35V
Electrolytic
C205
1000µF/35V
Electrolytic
C206
150nF/50V
Film Capacitor
C207
470pF/1kV
Ceramic Capacitor
C208
470pF/1kV
Ceramic Capacitor
C209
470pF/1kV
Ceramic Capacitor
6A, 600V
Line Filter
LF101
14mH
Transformer
T101
EER3540
SW201
ON/OFF
Switch
For MCU Signal
IC
IC101
FSCQ1465RT
Electrolytic
OPT101
FOD817A
Electrolytic
Q201
KA431LZ
Q202
KSC945
35
FSCQ-Series Rev. 1.1.2
GSIB660
TO-220F-5L
TO-92
www.fairchildsemi.com
FSCQ-Series Green Mode Fairchild Power Switch (FPS™)
6. Demo Circuit Part List
Application
Output Power
Input Voltage
Output Voltage (Max Current)
C-TV
160W
Universal input
(90–270 Vac)
8.5V (0.5A)
15V (0.5A)
140V (0.8A)
24V (1.5A)
Features
Key Design Notes
■ High Efficiency (>83% at 90 Vac Input)
■ 24V output is designed to drop to around 8V in
standby mode
■ Wider Load Range through the Extended
■
■
■
■
Quasi-Resonant Operation
Low Standby Mode Power Consumption (<1W)
Low Component Count
Enhanced System Reliability Through Various
Protection Functions
Internal Soft-Start (20ms)
1. Schematic
T1
EER4245
RT101
6D-22
3
R101
100kΩ
0.25W
BD101
Drain
SYNC
3 Vcc IC101
5
FSCQ1565RT
GND
2
C103
10µF
50V
FB
4
C106
47nF
50V
C210
470pF
1kV
R106 C104
1kΩ 10µF
1W 50V
D105
1N4937
8.5V, 0.5A
13
C107
1nF
1kV
12
C209
470pF
1kV
C205
1000µF
35V
D202
EGP30J
D106
1N4148
R105
470Ω
0.25W
R104 D103 R103 6
1.5kΩ 1N4937 5.1Ω
0.25W
0.25W
14
15
16
C105
2.7nF
50V
C207
470pF
1kV
L202
C201 BEAD
220µF
160V
140V, 0.6A
C202
68µF
160V
D203
EGP30D
24V, 1.5A
17
7
LF101
18
OPTO101
FOD817A
C208
470pF
1kV
R202
1kΩ
0.25W
FUSE
250V
5.0A
C301
3.3nF
36
C203
1000µF
35V
VR201
30kΩ
R201
1kΩ
0.25W
C101
330nF
275VAC
FSCQ-Series Rev. 1.1.2
C204
1000µF
35V
D204
EGP20D
4
1
ZD102
18V
1W
11
BEAD101
R102
150kΩ
0.25W
15V, 0.5A
10
1
C102
470µF
400V
D205
EGP20D
Q201
KA431
LZ
C206
150nF
50V
R203
39kΩ
0.25W
ZD201
5.1V
0.5W
R208
1kΩ
0.25W
R205
240kΩ D201
0.25W 1N4148
R204
4.7kΩ
0.25W
Q202
KSC945
SW201
R207
5.1kΩ
0.25W
R206
10kΩ
0.25W
www.fairchildsemi.com
FSCQ-Series Green Mode Fairchild Power Switch (FPS™)
FSCQ1565RT Typical Application Circuit
Np1
Np2
1
EER4245
18
2
17
3
16
4
15
5
14
6
13
N24V
Na
N15V
N140V /2
N8.5V
N140V /2
N140V / 2
NP2
Na
7
12
8
11
9
10
N140V / 2
N8.5V
NP1
N24V
N15V
3. Winding Specification
No
Pin (s→f)
Wire
0.65φ
Turns
Winding Method
×2
5
Space Winding
1–3
0.08φ
× 20 × 2
13
Center Winding
N140V/2
16–15
0.08φ
Np2
3–4
N24
Np1
N140V/2
18–17
15–14
× 20 × 2
15
Center Winding
0.08φ × 20 × 2
13
Center Winding
0.08φ
14
Center Winding
2
Space Winding
× 20 × 2
12–13
0.6φ
×1
N15V
11–10
0.6φ
×1
3
Space Winding
Na
7–6
0.3φ × 1
8
Space Winding
N8.5V
4. Electrical Characteristics
Pin
Specification
Remarks
Inductance
1–4
220µH ± 5%
1kHz, 1V
Leakage Inductance
1–4
10µH Max
2nd all short
5. Core & Bobbin
Core: EER4245
Bobbin: EER4245(18Pin)
Ae: 201.8 mm2
37
FSCQ-Series Rev. 1.1.2
www.fairchildsemi.com
FSCQ-Series Green Mode Fairchild Power Switch (FPS™)
2. Transformer Schematic Diagram
Part
Value
Note
Part
Fuse
FUSE
250V/5A
RT101
6D-22
C210
470pF/1kV
Ceramic Capacitor
C301
3.3nF/1kV
AC Ceramic Capacitor
Inductor
Resistor
100kΩ
Note
Capacitor (Continued)
NTC
R101
Value
0.25W
BEAD101
BEAD
BEAD201
5µH
3A
R102
150kΩ
0.25W
R103
5.1Ω
0.25W
D101
1N4937
Diode
1A, 600V
R104
1.5kΩ
0.25W
D102
1N4937
1A, 600V
R105
470Ω
0.25W
D103
1N4148
0.15A, 50V
R106
1kΩ
1W
D104
Short
R107
Open
D105
Open
R201
1kΩ
0.25W
ZD101
1N4746
R202
1kΩ
0.25W
ZD102
Open
18V, 1W
R203
39kΩ
0.25W
ZD201
1N5231
5.1V, 0.5W
R204
4.7kΩ
0.25W, 1%
D201
1N4148
0.15A, 50V
R205
240kΩ
0.25W, 1%
D202
EGP30J
3A, 600V
R206
10kΩ
0.25W
D203
EGP30D
3A, 200V
R207
5.1kΩ
0.25W
D204
EGP20D
2A, 200V
R208
1kΩ
0.25W
D205
EGP20D
2A, 200V
VR201
30kΩ
Bridge Diode
Capacitor
BD101
C101
330n/275 Vac
Box Capacitor
C102
470µF/400V
Electrolytic
C103
10µF/50V
Electrolytic
C104
10µF/50V
Electrolytic
C105
2.7nF/50V
Film Capacitor
C106
47nF/50V
Film Capacitor
C107
1nF/1kV
Film Capacitor
C108
Open
C201
220µF/160V
C202
68µF/160V
C203
1000µF/35V
Electrolytic
C204
1000µF/35V
Electrolytic
C205
1000µF/35V
Electrolytic
C206
150nF/50V
Film Capacitor
C207
470pF/1kV
Ceramic Capacitor
C208
470pF/1kV
Ceramic Capacitor
C209
470pF/1kV
Ceramic Capacitor
6A, 600V
Line Filter
LF101
14mH
Transformer
T101
EER4245
SW201
ON/OFF
Switch
For MCU Signal
IC
IC101
FSCQ1565RT
Electrolytic
OPT101
FOD817A
Electrolytic
Q201
KA431LZ
Q202
KSC945
38
FSCQ-Series Rev. 1.1.2
GSIB660
TO-220F-5L
TO-92
www.fairchildsemi.com
FSCQ-Series Green Mode Fairchild Power Switch (FPS™)
6. Demo Circuit Part List
Application
Output Power
Input Voltage
Output Voltage (Max Current)
C-TV
198W
Universal input
(90–270 Vac)
8.5V (1A)
15V (1A)
140V (0.9A)
24V (2A)
Features
Key Design Notes
■ High Efficiency (>83% at 90 Vac Input)
■ 24V output is designed to drop to around 8V in
standby mode
■ Wider Load Range through the Extended
■
■
■
■
Quasi-Resonant Operation
Low Standby Mode Power Consumption (<1W)
Low Component Count
Enhanced System Reliability Through Various
Protection Functions
Internal Soft-Start (20ms)
1. Schematic
T1
EER4942
RT101
6D-22
3
R101
100kΩ
0.25W
BD101
Drain
SYNC
3 Vcc IC101
5
FSCQ1565RP
GND
2
C103
10µF
50V
FB
4
C106
47nF
50V
C210
470pF
1kV
R106 C104
1kΩ 10µF
1W 50V
D105
1N4937
8.5V, 0.5A
13
C107
1nF
1kV
12
C209
470pF
1kV
C205
1000µF
35V
D202
EGP30J
D106
1N4148
R105
470Ω
0.25W
R104 D103 R103 6
1.5kΩ 1N4937 5.1Ω
0.25W
0.25W
14
15
16
C105
2.7nF
50V
C207
470pF
1kV
L202
C201 BEAD
220µF
160V
140V, 0.6A
C202
100µF
160V
D203
EGP30D
24V, 1.5A
17
7
LF101
18
OPTO101
FOD817A
C208
470pF
1kV
R202
1kΩ
0.25W
FUSE
250V
5.0A
C301
3.3nF
39
C203
2200µF
35V
VR201
30kΩ
R201
1kΩ
0.25W
C101
330nF
275VAC
FSCQ-Series Rev. 1.1.2
C204
1000µF
35V
D204
EGP20D
4
1
ZD102
18V
1W
11
BEAD101
R102
150kΩ
0.25W
15V, 0.5A
10
1
C102
470µF
400V
D205
EGP20D
Q201
KA431
LZ
C206
22nF
50V
R203
39kΩ
0.25W
ZD201
5.1V
0.5W
R208
1kΩ
0.25W
R205
240kΩ D201
0.25W 1N4148
R204
4.7kΩ
0.25W
Q202
KSC945
SW201
R207
5.1kΩ
0.25W
R206
10kΩ
0.25W
www.fairchildsemi.com
FSCQ-Series Green Mode Fairchild Power Switch (FPS™)
FSCQ1565RP Typical Application Circuit
Np1
Np2
1
EER4942
18
2
17
3
16
4
15
5
14
6
13
N24V
Na
N15V
N140V /2
N8.5V
N140V /2
N140V / 2
NP2
Na
7
12
8
11
9
10
N140V / 2
N8.5V
NP1
N24V
N15V
3. Winding Specification
No
Pin (s→f)
Wire
Turns
Winding Method
N24
18–17
0.65φ × 2
5
Space Winding
1–3
0.08φ
× 20 × 2
13
Center Winding
16–15
0.08φ
× 20 × 2
15
Center Winding
Np2
3–4
0.08φ
× 20 × 2
13
Center Winding
N140V/2
15–14
0.08φ × 20 × 2
14
Center Winding
Np1
N140V/2
N8.5V
N15V
Na
12–13
0.6φ
×1
2
Space Winding
11–10
0.6φ
×1
3
Space Winding
7–6
0.3φ
×1
8
Space Winding
4. Electrical Characteristics
Pin
Specification
Remarks
Inductance
1–4
210µH ± 5%
1kHz, 1V
Leakage Inductance
1–4
10µH Max
2nd all short
5. Core & Bobbin
Core: EER4942
Bobbin: EER4942(18Pin)
Ae: 231 mm2
40
FSCQ-Series Rev. 1.1.2
www.fairchildsemi.com
FSCQ-Series Green Mode Fairchild Power Switch (FPS™)
2. Transformer Schematic Diagram
Part
Value
Note
Part
Fuse
FUSE
250V/5A
RT101
6D-22
C210
470pF/1kV
Ceramic Capacitor
C301
3.3nF/1kV
AC Ceramic Capacitor
Inductor
Resistor
100kΩ
Note
Capacitor (Continued)
NTC
R101
Value
0.25W
BEAD101
BEAD
BEAD201
5µH
3A
R102
150kΩ
0.25W
R103
5.1Ω
0.25W
D101
1N4937
Diode
1A, 600V
R104
1.5kΩ
0.25W
D102
1N4937
1A, 600V
R105
470Ω
0.25W
D103
1N4148
0.15A, 50V
R106
1kΩ
1W
D104
Short
R107
Open
D105
Open
R201
1kΩ
0.25W
ZD101
1N4746
R202
1kΩ
0.25W
ZD102
Open
18V, 1W
R203
39kΩ
0.25W
ZD201
1N5231
5.1V, 0.5W
R204
4.7kΩ
0.25W, 1%
D201
1N4148
0.15A, 50V
R205
240kΩ
0.25W, 1%
D202
EGP30J
3A, 600V
R206
10kΩ
0.25W
D203
EGP30D
3A, 200V
R207
5.1kΩ
0.25W
D204
EGP20D
2A, 200V
R208
1kΩ
0.25W
D205
EGP20D
2A, 200V
VR201
30kΩ
Bridge Diode
Capacitor
BD101
C101
330n/275 Vac
Box Capacitor
C102
470µF/400V
Electrolytic
C103
10µF/50V
Electrolytic
C104
10µF/50V
Electrolytic
C105
2.7nF/50V
Film Capacitor
C106
47nF/50V
Film Capacitor
C107
1nF/1kV
Film Capacitor
C108
Open
C201
220µF/200V
C202
100µF/200V
C203
GSIB660
6A, 600V
Line Filter
LF101
14mH
Transformer
T101
EER4942
SW201
ON/OFF
Switch
For MCU Signal
IC
IC101
FSCQ1565RP
Electrolytic
OPT101
FOD817A
Electrolytic
Q201
KA431LZ
2200µF/35V
Electrolytic
Q202
KSC945
C204
1000µF/35V
Electrolytic
C205
1000µF/35V
Electrolytic
C206
22nF/50V
Film Capacitor
C207
470pF/1kV
Ceramic Capacitor
C208
470pF/1kV
Ceramic Capacitor
C209
470pF/1kV
Ceramic Capacitor
41
FSCQ-Series Rev. 1.1.2
TO-220F-5L
TO-92
www.fairchildsemi.com
FSCQ-Series Green Mode Fairchild Power Switch (FPS™)
6. Demo Circuit Part List
FSCQ-Series Green Mode Fairchild Power Switch (FPS™)
PCB Layout
42
FSCQ-Series Rev. 1.1.2
www.fairchildsemi.com
FSCQ-Series Green Mode Fairchild Power Switch (FPS™)
Package Dimensions
Dimensions in Millimeters
TO-220F-5L(Forming)
43
FSCQ-Series Rev. 1.1.2
www.fairchildsemi.com
FSCQ-Series Green Mode Fairchild Power Switch (FPS™)
Package Dimensions
Dimensions in Millimeters
TO-3PF-7L(Forming)
15.50 ±0.20
5.85 ±0.20
3.35 ±0.20
ø3.60 ±0.20
10°
(1.00)
(8.40)
0
3–1.50 ±0.30
#2, 4
#1, 3, 5
0.60 +0.20
–0.10
3.18±0.30
1.5°
(7.00)
(2.00)
(9.90)
2.35±0.20
3.35±0.30
R0.90
2.76±0.30
5.00 ±0.30
5–0.60 ±0.10
#5
2.54 ±0.30
23.00 ±0.20
R0.9
2.50 ±0.30
7.00 ±0.30
.90
4–MAX1.00
#1
10°
R0
(1.51)
MAX2.00
A
4.00 ±0.30
14.50 ±0.20
(10.90)
(13.90)
(1.61)
4.50±0.20
10.00 ±0.20
(5–ø1.50 Dp 0.10MAX)
(1.80)
24.50 ±0.20
1.90±0.20
2–ø2.40 ±0.05
Dp 1.60 ±0.03
(1.65)
10°
1.50 ±0.20
2.50±0.20
4.50±0.20
(9.90)
9.50 ±0.20
(12.10)
(5–ø1.60
Dp 0.10MAX)
1.60
LEAD FRAME
±0.30
5°
5°
1.5°
5.85 ±0.20
3.35 ±0.20
2.35 ±0.20
EMC
SCALE 15 / 1
DETAIL A
POLISH AREA
5°
5°
1. (
2. (
3. (
44
FSCQ-Series Rev. 1.1.2
) THESE DIMENSIONS DO NOT INCLUDE MOLD PROTRUSION.
) IS REFERENCE
) IS ASS’Y OUT QUAILTY
www.fairchildsemi.com
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is
not intended to be an exhaustive list of all such trademarks.
ACEx™
FAST®
ActiveArray™
FASTr™
Bottomless™
FPS™
Build it Now™
FRFET™
CoolFET™
GlobalOptoisolator™
CROSSVOLT™ GTO™
DOME™
HiSeC™
EcoSPARK™
I2C™
E2CMOS™
i-Lo™
EnSigna™
ImpliedDisconnect™
FACT™
IntelliMAX™
FACT Quiet Series™
Across the board. Around the world.™
The Power Franchise®
Programmable Active Droop™
ISOPLANAR™
LittleFET™
MICROCOUPLER™
MicroFET™
MicroPak™
MICROWIRE™
MSX™
MSXPro™
OCX™
OCXPro™
OPTOLOGIC®
OPTOPLANAR™
PACMAN™
POP™
Power247™
PowerEdge™
PowerSaver™
PowerTrench®
QFET®
QS™
QT Optoelectronics™
Quiet Series™
RapidConfigure™
RapidConnect™
µSerDes™
ScalarPump™
SILENT SWITCHER®
SMART START™
SPM™
Stealth™
SuperFET™
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
SyncFET™
TCM™
TinyLogic®
TINYOPTO™
TruTranslation™
UHC™
UltraFET®
UniFET™
VCX™
Wire™
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY
PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY
ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT
CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.
LIFE SUPPORT POLICY
FAIRCHILDíS PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.
As used herein:
2. A critical component is any component of a life
1. Life support devices or systems are devices or
support device or system whose failure to perform can
systems which, (a) are intended for surgical implant into
be reasonably expected to cause the failure of the life
the body, or (b) support or sustain life, or (c) whose
support device or system, or to affect its safety or
failure to perform when properly used in accordance
with instructions for use provided in the labeling, can be
effectiveness.
reasonably expected to result in significant injury to the
user.
PRODUCT STATUS DEFINITIONS
Definition of Terms
Datasheet Identification
Product Status
Definition
Advance Information
Formative or
In Design
This datasheet contains the design specifications for
product development. Specifications may change in
any manner without notice.
Preliminary
First Production
This datasheet contains preliminary data, and
supplementary data will be published at a later date.
Fairchild Semiconductor reserves the right to make
changes at any time without notice in order to improve
design.
No Identification Needed
Full Production
This datasheet contains final specifications. Fairchild
Semiconductor reserves the right to make changes at
any time without notice in order to improve design.
Obsolete
Not In Production
This datasheet contains specifications on a product
that has been discontinued by Fairchild semiconductor.
The datasheet is printed for reference information only.
Rev. I18
45
FSCQ-Series Rev. 1.1.2
www.fairchildsemi.com
FSCQ-Series Green Mode Fairchild Power Switch (FPS™)
TRADEMARKS
Similar pages