Sanyo LC66408A Four-bit single-chip microcontrollers with 4, 6, and 8 kb of on-chip rom Datasheet

CMOS LSI
LC66354C, 66356C, 66358C
No. 5484
Four-Bit Single-Chip Microcontrollers
with 4, 6, and 8 KB of On-Chip ROM
Preliminary
Overview
The LC66354C, LC66356C, and LC66358C are 4-bit
CMOS microcontrollers that integrate on a single chip all
the functions required in a system controller, including
ROM, RAM, I/O ports, a serial interface, comparator
inputs, three-value inputs, timers, and interrupt functions.
These three microcontrollers are available in a 42-pin
package.
These products differ from the earlier LC66358A Series
and LC66358B Series in the power-supply voltage range,
the operating speed, and other points.
• Evaluation LSIs
— LC66599 (evaluation chip) + EVA85/800-TB6630X
— LC66E308 (on-chip EPROM microcontroller)
used together.
Package Dimensions
unit: mm
3025B-DIP42S
[LC66354C/66356C/66358C]
42
22
1
21
0.25
13.8
0.51
min
3.8
4.25
5.1
max
37.9
0.95
0.48
1.15
1.78
SANYO: DIP42S
unit: mm
3156-QFP48E
[LC66354C/66356C/66358C]
1.5
1.5
36
1.0
14.0
1.6
1.5
25
0.15
24
37
1.5
1.0
17.2
14.0
1.6
17.2
48
13
12
1
0.1
2.70
(STAND OFF)
0.35
3.0max
• On-chip ROM capacities of 4, 6, and 8 kilobytes, and an
on-chip RAM capacity of 512 × 4 bits.
• Fully supports the LC66000 Series common instruction
set (128 instructions).
• I/O ports: 36 pins
• 8-bit serial interface: two circuits (can be connected in
cascade to form a 16-bit interface)
• Instruction cycle time: 0.92 to 10 µs (at 2.5 to 5.5 V)
— For the earlier LC66358A Series: 1.96 to 10 µs (at
3.0 to 5.5 V) and 3.92 to 10 µs (at 2.2 to 5.5 V)
— For the earlier LC66358B Series: 0.92 to 10 µs (at
3.0 to 5.5 V)
• Powerful timer functions and prescalers
— Time limit timer, event counter, pulse width
measurement, and square wave output using a 12-bit
timer.
— Time limit timer, event counter, PWM output, and
square wave output using an 8-bit timer.
— Time base function using a 12-bit prescaler.
• Powerful interrupt system with 8 interrupt factors and 8
interrupt vector locations.
— External interrupts: 3 factors/3 vector locations
— Internal interrupts: 5 factors/5 vector locations
• Flexible I/O functions
Comparator inputs, three-value inputs, 20-mA drive
outputs, 15-V high-voltage pins, and pull-up/open-drain
options.
• Optional runaway detection function (watchdog timer)
• 8-bit I/O functions
• Power saving functions using halt and hold modes.
• Packages: DIP42S, QIP48E (QFP48E)
15.24
Features and Functions
0.8
15.6
SANYO: QFP48E
SANYO Electric Co.,Ltd. Semiconductor Bussiness Headquarters
TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110 JAPAN
22897HA (OT) No. 5484-1/21
LC66354C, 66356C, 66358C
Series Organization
Type No.
No. of
pins
ROM capacity
RAM
capacity
Package
LC66304A/306A/308A
42
4 K/6 K/8 KB
512 W
DIP42S
QFP48E
LC66404A/406A/408A
42
4 K/6 K/8 KB
512 W
DIP42S
QFP48E
LC66506B/508B/512B/516B
64
6 K/8 K/12 K/16 KB
512 W
DIP64S
QFP64A
LC66354A/356A/358A
42
4 K/6 K/8 KB
512 W
DIP42S
QFP48E
LC66354S/356S/358S
42
4 K/6 K/8 KB
512 W
QFP44M
Features
Normal versions
4.0 to 6.0 V/0.92 µs
Low-voltage versions
2.2 to 5.5 V/3.92 µs
LC66556A/558A/562A/566A
64
6 K/8 K/12 K/16 KB
512 W
DIP64S
QFP64E
LC66354B/356B/358B
42
4 K/6 K/8 KB
512 W
DIP42S
QFP48E
LC66556B/558B
64
6 K/8 KB
512 W
DIP64S
QFP64E
LC66562B/566B
64
12 K/16 KB
512 W
DIP64S
QFP64E
LC66354C/356C/358C
42
4 K/6 K/8 KB
512 W
DIP42S
QFP48E
2.5 to 5.5 V/0.92 µs
LC662304A/2306A/2308A
42
4 K/6 K/8 KB
512 W
DIP42S
QFP48E
QFP48E
On-chip DTMF generator versions
3.0 to 5.5 V/0.95 µs
LC662312A/2316A
42
12 K/16 KB
512 W
DIP42S
LC665304A/665306A/665308A
48
4 K/6 K/8 KB
512 W
DIP48S
QFP48E
LC665312A/5316A
48
12 K/16 KB
512 W
DIP48S
QFP48E
LC66E308
42
EPROM 8 KB
512 W
DIC42S
with window
QFC48
with window
LC66P308
42
OTPROM 8 KB
512 W
DIP42S
QFP48E
DIC42S
with window
QFC48
with window
LC66E408
42
EPROM 8 KB
512 W
LC66P408
42
OTPROM 8 KB
512 W
DIP42S
QFP48E
DIC64S
with window
QFC64
with window
LC66E516
64
EPROM 16 KB
512 W
LC66P516
64
OTPROM 16 KB
512 W
DIP64S
QFP64E
QFC48
with window
LC66E2316
42
EPROM 16 KB
512 W
DIC42S
with window
LC66E5316
52/48
EPROM 16 KB
512 W
DIC52S
with window
QFC48
with window
LC66P2316*
42
OTPROM 16 KB
512 W
DIP42S
QFP48E
LC66P5316
48
OTPROM 16 KB
512 W
DIP48S
QFP48E
Low-voltage high-speed versions
3.0 to 5.5 V/0.92 µs
Dual oscillator support
3.0 to 5.5 V/0.95 µs
Window and OTP evaluation versions
4.5 to 5.5 V/0.92 µs
4.5 to 5.5 V/0.95 µs
4.0 to 5.5 V/0.95 µs
Note: * Under development
No. 5484-2/21
LC66354C, 66356C, 66358C
Pin Assignments
DIP42S
P00
P01
P02
P03
P10
P11
P12
P13
SI0/P20
SO0/P21
SCK0/P22
INT0/P23
INT1/P30
POUT0/P31
POUT1/P32
HOLD/P33
P40
P41
TEST
VSS
OSC1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
LC66354C
356C
358C
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
PE1/TRB
PE0/TRA
VDD
PD3/CMP3
PD2/CMP2
PD1/CMP1
PD0/CMP0
PC3/VREF1
PC2/VREF0
P63/PIN1
P62/SCK1
P61/SO1
P60/SI1
P53/INT2
P52
P51
P50
P43
P42
RES
OSC2
PD1/CMP1
PD0/CMP0
PC3/VREF1
PC2/VREF0
P63/PIN1
P62/SCK1
NC
P61/S01
P60/S11
P53/INT2
P52
P51
QFP48E
36 35 34 33 32 31 30 29 28 27 26 25
CMP2/PD2
CMP3/PD3
VDD
TRA/PE0
TRB/PE1
NC
NC
P00
P01
P02
P03
P10
37
38
39
40
41
42
43
44
45
46
47
48
LC66354C
356C
358C
24
23
22
21
20
19
18
17
16
15
14
13
P50
P43
P42
RES
OSC2
NC
NC
OSC1
VSS
TEST
P41
P40
P11
P12
P13
S10/P20
S00/P21
NC
SCK0/P22
INT0/P23
INT1/P30
POUT0/P31
POUT1/P32
HOLD/P33
1 2 3 4 5 6 7 8 9 10 11 12
Top view
We recommend the use of reflow-soldering techniques to solder-mount QFP packages.
Please consult with your Sanyo representative for details on process conditions if the package itself is to be directly
immersed in a dip-soldering bath (dip-soldering techniques).
No. 5484-3/21
LC66354C, 66356C, 66358C
System Block Diagram
RAM STACK
(512W)
RES
TEST
OSC1
ROM
(4K/6K/8K)
C
FLAG
SYSTEM
CONTROL
E DD DD
SP M P P P P
R H L YX
OSC2
HOLD
TRA
TRB
CMP0
CMP1
CMP2
CMP3
PE
PD
PC
Z
E
ALU
A
MPX
PRESCALER
PC
TIMER0
SERIAL I/O 0
POUT0
SI0
SO0
SCK0
INT0
SERIAL I/O 1
INT1. INT2
SI1
SO1
SCK1
PIN1. POUT1
MPX
INTERRUPT
CONTROL
P0
P1
MPX
P2
P3
TIMER1
P4
P5
P6
Differences between the LC66354C, LC66356C, and LC66358C and the LC6630X Series
Item
LC6630X Series
(Including the LC66599 evaluation chip)
LC6635XC Series
System differences
Hardware wait time (number of cycles)
when hold mode is cleared
65536 cycles
About 64 ms at 4 MHz (Tcyc = 1 µs)
16384 cycles
About 16 ms at 4 MHz (Tcyc = 1 µs)
Value of timer 0 after a reset
(Including the value after hold mode is
cleared)
Set to FF0.
Set to FFC.
Difference in major features
Operating power-supply voltage and
operating speed (cycle time)
• LC66304A/306A/308A
4.0 to 6.0 V/0.92 to 10 µs
• LC66E308/P308
4.5 to 5.5 V/0.92 to 10 µs
2.5 to 5.5 V/0.92 to 10 µs
• LC6635XA
2.2 to 5.5 V/3.92 to 10 µs
3.0 to 5.5 V/1.96 to 10 µs
• LC6635XB
3.0 to 5.5 V/0.92 to 10 µs
Note: 1. An RC oscillator cannot be used with the LC66354C, LC66356C, and LC66358C.
2. There are other differences, including differences in output currents and port input voltages.
For details, see the data sheets for the LC66308A, LC66E308, and LC66P308.
3. Pay close attention to the differences listed here when using the LC66E308 and LC66P308 for evaluation.
No. 5484-4/21
LC66354C, 66356C, 66358C
Pin Function Overview
Pin
I/O
P00
P01
P02
P03
I/O
I/O ports P00 to P03
• Input or output in 4-bit or 1-bit units
• P00 to P03 support the halt mode control
function
• Pch: Pull-up MOS type
• Nch: Intermediate sink current
type
• Pull-up MOS or Nch
OD output
• Output level on reset
High or low
(option)
P10
P11
P12
P13
I/O
I/O ports P10 to P13
Input or output in 4-bit or 1-bit units
• Pch: Pull-up MOS type
• Nch: Intermediate sink current
type
• Pull-up MOS or Nch
OD output
• Output level on reset
High or low
(option)
I/O
I/O ports P20 to P23
• Input or output in 4-bit or 1-bit units
• P20 is also used as the serial input SI0
pin.
• P21 is also used as the serial output
SO0 pin.
• P22 is also used as the serial clock
SCK0 pin.
• P23 is also used as the INT0 interrupt
request pin, and also as the timer 0
event counting and pulse width
measurement input.
• Pch: CMOS type
• Nch: Intermediate sink current
type
• Nch: +15-V handling when OD
option selected
CMOS or Nch OD
output
H
I/O
I/O ports P30 to P32
• Input or output in 3-bit or 1-bit units
• P30 is also used as the INT1 interrupt
request.
• P31 is also used for the square wave
output from timer 0.
• P32 is also used for the square wave
output from timer 1.
• Pch: CMOS type
• Nch: Intermediate sink current
type
• Nch: +15-V handling when OD
option selected
CMOS or Nch OD
output
H
P20/SI0
P21/SO0
P22/SCK0
P23/INT0
P30/INT1
P31/POUT0
P32/POUT1
P33/HOLD
P40
P41
P42
P43
P50
P51
P52
P53/INT2
Overview
Output driver type
Options
State after a reset
I
Hold mode control input
• Hold mode is set up by the HOLD
instruction when HOLD is low.
• In hold mode, the CPU is restarted by
setting HOLD to the high level.
• This pin can be used as input port P33
along with P30 to P32.
• When the P33/HOLD pin is at the low
level, the CPU will not be reset by a low
level on the RES pin. Therefore,
applications must not set P33/HOLD low
when power is first applied.
I/O
I/O ports P40 to P43
• Input or output in 4-bit or 1-bit units
• Input or output in 8-bit units when used
in conjunction with P50 to P53.
• Can be used for output of 8-bit ROM
data when used in conjunction with P50
to P53.
• Pch: Pull-up MOS type
• Nch: Intermediate sink current
type
• Nch: +15-V handling when OD
option selected
Pull-up MOS or Nch OD
output
H
I/O
I/O ports P50 to P53
• Input or output in 4-bit or 1-bit units
• Input or output in 8-bit units when used
in conjunction with P40 to P43.
• Can be used for output of 8-bit ROM
data when used in conjunction with P40
to P43.
• P53 is also used as the INT2 interrupt
request.
• Pch: Pull-up MOS type
• Nch: Intermediate sink current
type
• Nch: +15-V handling when OD
option selected
Pull-up MOS or Nch OD
output
H
Continued on next page.
No. 5484-5/21
LC66354C, 66356C, 66358C
Continued from preceding page.
Pin
P60/SI0
P61/SO1
P62/SCK1
P63/PIN1
PC2/VREF0
PC3/VREF1
I/O
I/O
I/O
Overview
I/O ports P60 to P63
• Input or output in 4-bit or 1-bit units
• P60 is also used as the serial input SI1
pin.
• P61 is also used as the serial output
SO1 pin.
• P62 is also used as the serial clock
SCK1 pin.
• P63 is also used for the event count
input to timer 1.
I/O ports PC2 and PC3
• Input or output in 2-bit or 1-bit units
• PC2 is also used as the VREF0
comparator comparison voltage pin.
• PC3 is also used as the VREF1
comparator comparison voltage pin.
PD0/CMP0
PD1/CMP1
PD2/CMP2
PD3/CMP3
I
Dedicated input ports PD0 to PD3
• These pins can be switched in software
to function as comparator inputs.
• The comparison voltage for PD0 is
provided by VREF0.
• The comparison voltage for PD1 to PD3
is provided by VREF1.
• Pins PD0 and PD1 can be set to the
comparator function individually, but pins
PD2 and PD3 are set together.
PE0/TRA
PE1/TRB
I
Dedicated input ports
These pins can be switched in software to
function as three-value inputs.
OSC1
I
OSC2
O
• Pch: CMOS type
• Nch: Intermediate sink current
type
• Nch: +15-V handling when OD
option selected
• Pch: CMOS type
• Nch: Intermediate sink current
type
System clock oscillator connections
When an external clock is used, leave
OSC2 open and connect the clock signal
to OSC1.
RES
I
System reset input
When the P33/HOLD pin is at the high
level, a low level input to the RES pin will
initialize the CPU.
TEST
I
CPU test pin
This pin must be connected to VSS during
normal operation.
VDD
VSS
Output driver type
Options
State after a reset
CMOS or Nch OD
output
H
CMOS or Nch OD
output
H
Normal input
Normal input
Use of either a ceramic
oscillator or an external
clock can be selected.
Power supply pins
Note: Pull-up MOS type: The output circuit includes a MOS transistor that pulls the pin up to VDD.
CMOS output: Complementary output.
OD output: Open-drain output.
No. 5484-6/21
LC66354C, 66356C, 66358C
User Options
1. Port 0 and 1 output level at reset option
The output levels at reset for I/O ports 0 and 1, in independent 4-bit groups, can be selected from the following two
options.
Option
Conditions and notes
1. Output high at reset
The four bits of ports 0 or 1 are set in a group
2. Output low at reset
The four bits of ports 0 or 1 are set in a group
2. Oscillator circuit options
Option
Circuit
OSC1
1. External clock
2. Ceramic oscillator
Conditions and notes
The input has Schmitt characteristics
C1
OSC1
Ceramic oscillator
C2
OSC2
Note: There is no RC oscillator option.
3. Watchdog timer option
A runaway detection function (watchdog timer) can be selected as an option.
4. Port output type options
• The output type of each bit (pin) in ports P0, P1, P2, P3 (except for the P33/HOLD pin), P4, P5, P6, and PC can be
selected individually from the following two options.
Option
Circuit
Conditions and notes
Output data
1. Open-drain output
Input data
The port P2, P3, P5, and P6 inputs have Schmitt
characteristics.
DSB
Output data
2. Output with built-in pull-up
resistor
Input data
The port P2, P3, P5, and P6 inputs have Schmitt
characteristics.
The CMOS outputs (ports P2, P3, P6, and PC)
and the pull-up MOS outputs (P0, P1, P4, and
P5) are distinguished by the drive capacity of the
p-channel transistor.
DSB
• The port PD comparator input and the port PE three-value input are selected in software.
No. 5484-7/21
LC66354C, 66356C, 66358C
Specifications
Absolute Maximum Ratings at Ta = 25°C, VSS = 0 V
Parameter
Maximum supply voltage
Input voltage
Symbol
VDD max
VIN1
VIN2
Output voltage
Total pin current
Allowable power dissipation
Ratings
P2, P3 (except for the P33/HOLD pin), P4, P5,
and P6
All other inputs
VOUT1
P2, P3 (except for the P33/HOLD pin), P4, P5,
and P6
VOUT2
All other inputs
ION
Output current per pin
Conditions
VDD
P0, P1, P2, P3 (except for the P33/HOLD pin),
P4, P5, P6, and PC
Unit
Note
–0.3 to +7.0
V
–0.3 to +15.0
V
1
–0.3 to VDD + 0.3
V
2
–0.3 to +15.0
V
1
–0.3 to VDD + 0.3
V
2
mA
3
20
–IOP1
P0, P1, P4, P5
2
mA
4
–IOP2
P2, P3 (except for the P33/HOLD pin), P6, and PC
4
mA
4
Σ ION1
P0, P1, P2, P3 (except for the P33/HOLD pin),
P40, and P41
75
mA
3
Σ ION2
P5, P6, P42, P43, PC
75
mA
3
Σ IOP1
P0, P1, P2, P3 (except for the P33/HOLD pin),
P40, and P41
25
mA
4
Σ IOP2
P5, P6, P42, P43, PC
4
Pd max
Ta = –30 to +70°C
DIP42S
QFP48E
25
mA
600
mW
430
mW
Operating temperature
Topr
–30 to +70
°C
Storage temperature
Tstg
–55 to +125
°C
5
Note: 1. Applies to pins with open-drain output specifications. For pins with other than open-drain output specifications, the ratings in the pin column for that
pin apply.
2. For the oscillator input and output pins, levels up to the free-running oscillation level are allowed.
3. Sink current
4. Source current (Applies to pins with pull-up output and CMOS output specifications.)
5. We recommend the use of reflow soldering techniques to solder mount QFP packages.
Please consult with your Sanyo representative for details on process conditions if the package itself is to be directly immersed in a dip-soldering
bath (dip-soldering techniques).
No. 5484-8/21
LC66354C, 66356C, 66358C
Allowable Operating Ranges at Ta = –30 to +70°C, VSS = 0 V, VDD = 2.5 to 5.5 V, unless otherwise specified.
Parameter
Operating supply voltage
Memory retention supply voltage
Input high-level voltage
Mid-level input voltage
Common-mode input
voltage range
Input low-level voltage
Operating frequency
(instruction cycle time)
Symbol
VDD
Conditions
min
typ
max
Unit
Note
VDD: 0.92 ≤ Tcyc ≤ 10 µs
2.5
5.5
V
VDDH
VDD: During hold mode
1.8
5.5
V
VIH1
P2, P3 (except for the P33/HOLD pin), P4, P5,
and P6: N-channel output transistor off
0.8 VDD
+13.5
V
1
VIH2
P33/HOLD, RES, OSC1:
N-channel output transistor off
0.8 VDD
VDD
V
2
VIH3
P0, P1, PC, PD, PE:
N-channel output transistor off
0.8 VDD
VDD
V
3
VIH4
PE: With 3-value input used, VDD = 3.0 to 5.5 V
0.8 VDD
VDD
V
VIM
PE: With 3-value input used, VDD = 3.0 to 5.5 V
0.4 VDD
0.6 VDD
V
VCMM1
PD0, PC2: When the comparator input is used,
VDD = 3.0 to 5.5 V
1.5
VDD
V
VCMM2
PD1, PD2, PD3, PC3: When the comparator
input is used, VDD = 3.0 to 5.5 V
VSS
VDD – 1.5
V
VIL1
P2, P3 (except for the P33/HOLD pin), P5, P6,
RES, and OSC1: N-channel output transistor off
0.2 VDD
V
VIL2
P33/HOLD: VDD = 1.8 to 5.5 V
0.2 VDD
V
VIL3
P0, P1, P4, PC, PD, PE, TEST:
N-channel output transistor off
VSS
0.2 VDD
V
VIL4
PE: With 3-value input used, VDD = 3.0 to 5.5 V
VSS
0.2 VDD
0.4
(10)
4.35
(0.92)
MHz
(µs)
4.35
MHz
fop
(Tcyc)
2
3
V
[External clock input conditions]
Frequency
Pulse width
Rise and fall times
fext
OSC1: Defined by Figure 1. Input the clock
signal to OSC1 and leave OSC2 open.
(External clock input must be selected as the
oscillator circuit option.)
0.4
textH, textL
OSC1: Defined by Figure 1. Input the clock
signal to OSC1 and leave OSC2 open.
(External clock input must be selected as the
oscillator circuit option.)
100
textR, textF
OSC1: Defined by Figure 1. Input the clock
signal to OSC1 and leave OSC2 open.
(External clock input must be selected as the
oscillator circuit option.)
ns
30
ns
Note: 1. Applies to pins with open-drain specifications. However, VIH2 applies to the P33/HOLD pin.
When ports P2, P3, and P6 have CMOS output specifications they cannot be used as input pins.
2. Applies to pins with open-drain specifications.
3. When RE is used as a three-value input, VIH4, VIM, and VIL4 apply. When the ports PC pins have CMOS output specifications they cannot be used
as input pins.
No. 5484-9/21
LC66354C, 66356C, 66358C
Electrical Characteristics at Ta = –30 to +70°C, VSS = 0 V, VDD = 2.5 to 5.5 V unless otherwise specified.
Parameter
Symbol
Input high-level current
Unit
Note
5.0
µA
1
P0, P1, PC, OSC1, RES, P33/HOLD:
VIN = VDD, with the output Nch transistor off
1.0
µA
1
IIH3
PD, PE, PC2, PC3: VIN = VDD,
with the output Nch transistor off
1.0
µA
1
IIL1
Input ports other than PD, PE, PC2, and PC3:
VIN = VSS, with the output Nch transistor off
–1.0
µA
2
IIL2
PC2, PC3, PD, PE: VIN = VSS,
with the output Nch transistor off
–1.0
µA
2
V
3
V
4
mA
4
5
IIH1
IIH2
Input low-level current
VOH1
Output high-level voltage
VOH2
Output pull-up current
IPO
Comparator offset voltage
min
P2, P3 (except for the P33/HOLD pin),
P6, and PC: IOH = –1 mA
VDD – 1.0
P2, P3 (except for the P33/HOLD pin),
P6, and PC: IOH = –0.1 mA
VDD – 0.5
P0, P1, P4, P5: IOH = –50 µA
VDD – 1.0
P0, P1, P4, P5: IOH = –30 µA
VDD – 0.5
P0, P1, P4, P5: VIN = VSS, VDD = 5.5 V
typ
max
–1.6
VOL1
P0, P1, P2, P3, P4, P5, P6, and PC
(except for the P33/HOLD pin): IOL = 1.6 mA
0.4
V
VOL2
P0, P1, P2, P3, P4, P5, P6, and PC
(except for the P33/HOLD pin): IOL = 8 mA
1.5
V
Output low-level voltage
Output off leakage current
Conditions
P2, P3 (except for the P33/HOLD pin),
P4, P5, and P6: VIN = 13.5 V, with the output
Nch transistor off
IOFF1
P2, P3, P4, P5, P6: VIN = 13.5 V
5.0
µA
5
IOFF2
P0, P1, PC: VIN = VDD
1.0
µA
5
VOFF1
PD1 to PD3: VIN = VSS to VDD – 1.5 V,
VDD = 3.0 to 5.5 V
±50
±300
mV
VOFF2
PD0: VIN = 1.5 to VDD, VDD = 3.0 to 5.5 V
±50
±300
mV
[Schmitt characteristics]
Hysteresis voltage
VHIS
High-level threshold voltage
Vt H
Low-level threshold voltage
Vt L
0.1 VDD
P2, P3, P5, P6, OSC1 (EXT), RES
0.5 VDD
0.8 VDD
V
0.2 VDD
0.5 VDD
V
[Ceramic oscillator]
Oscillator frequency
fCF
OSC1, OSC2: Figure 2, 4 MHz
Oscillator stabilization time
fCFS
Figure 3, 4 MHz
4.0
MHz
10
ms
[Serial clock]
Cycle time
Input
Output
Low-level and high-level Input
pulse widths
Output
Rise an fall times
Output
tCKCY
tCKL
SCK0, SCK1: With the timing of Figure 4 and
the test load of Figure 5.
tCKH
0.9
µs
2.0
Tcyc
0.4
µs
1.0
Tcyc
tCKR, tCKF
0.1
µs
[Serial input]
Data setup time
tICK
Data hold time
tCKI
SI0, SI1: With the timing of Figure 4.
Stipulated with respect to the rising edge (↑) of
SCK0 or SCK1.
0.3
µs
0.3
µs
[Serial output]
Output delay time
tCKO
SO0, SO1: With the timing of Figure 4 and
the test load of Figure 5. Stipulated with respect
to the falling edge (↓) of SCK0 or SCK1.
0.3
Continued on next page.
No. 5484-10/21
LC66354C, 66356C, 66358C
Continued from preceding page.
Parameter
Symbol
Conditions
min
typ
max
Unit
tIOH, tIOL
INT0: Figure 6, conditions under which the INT0
interrupt can be accepted, conditions under
which the timer 0 event counter or pulse width
measurement input can be accepted
2
Tcyc
tIIH, tIIL
INT1, INT2: Figure 6, conditions under which
the corresponding interrupt can be accepted
2
Tcyc
PIN1 high and low-level
pulse widths
tPINH, tPINL
PIN1: Figure 6, conditions under which the
timer 1 event counter input can be accepted
2
Tcyc
RES high and low-level
pulse widths
tRSH, tRSL
RES: Figure 6, conditions under which reset
can be applied.
3
Tcyc
Note
[Pulse conditions]
INT0 high and low-level
High and low-level pulse widths
for interrupt inputs other than INT0
Comparator response speed
TRS
PD: Figure 7, VDD = 3.0 to 5.5 V
Operating current drain
IDD OP
Halt mode current drain
IDDHALT
Hold mode current drain
IDDHOLD
20
ms
VDD: 4-MHz ceramic oscillator
3.0
5.0
mA
VDD: 4-MHz external clock
3.0
5.0
mA
VDD: 4-MHz ceramic oscillator
1.0
2.0
mA
VDD: 4-MHz external clock
1.0
2.0
mA
0.01
10
µA
VDD: VDD = 1.8 to 5.5 V
6
Note: 1. With the output Nch transistor off in shared I/O ports with the open-drain output specifications. These pins cannot be used as input pins if the
CMOS output specifications are selected.
2. With the output Nch transistor off in shared I/O ports with the open-drain output specifications. The rating for the pull-up output specification pins is
stipulated in terms of the output pull-up current IPO. These pins cannot be used as input pins if the CMOS output specifications are selected.
3. With the output Nch transistor off for CMOS output specification pins.
4. With the output Nch transistor off for pull-up output specification pins.
5. With the output Nch transistor off for open-drain output specification pins.
6. Reset state
VDD
0.8VDD
OSC1
0.2VDD
(OSC2)
VSS
textL
External clock OPEN
textF
textH
textR
1/fext
Figure 1 External Clock Input Waveform
VDD
OSC1
OSC2
Operating VDD
minimum value
0V
OSC
Rd
Stable oscillation
Ceramic
oscillator
Oscillator
unstable period
t CFS
C2
C1
Figure 2 Ceramic Oscillator Circuit
Figure 3 Oscillator Stabilization Period
Table 1 Guaranteed Ceramic Oscillator Constants
4 MHz
(Murata Mfg. Co., Ltd.)
CSA4.00MG
C1 = 33 pF ± 10%
C2 = 33 pF ± 10%
Rd = 0 Ω
4 MHz
(Kyocera Corporation)
KBR4.0MS
C1 = 33 pF ± 10%
C2 = 33 pF ± 10%
Rd = 0 Ω
No. 5484-11/21
LC66354C, 66356C, 66358C
tCKCY
tCKL
SCK0
SCK1
0.2VDD (input)
0.4VDD (output)
tCKR
tCKH
tCKF
0.8VDD (input)
VDD-1V (output)
tICK tCKI
SI0
0.8VDD
0.2VDD
SI1
R=1kΩ
tCK0
SO0
SO1
TEST
point
VDD-1
0.4VDD
Figure 4 Serial I/O Timing
C=50pF
Figure 5 Timing Load
tI0H
tI1H
tPINH
tRSH
0.8VDD
0.2VDD
tI0L
tI1L
tPINL
tRSL
Figure 6 Input Timing for the INT0, INT1, INT2, PIN1, and RES pins
V IN
V REF
V IN
VOFF
VOFF
Comparator output data
Trs
Figure 7 Comparator Response Speed Trs Timing
No. 5484-12/21
LC66354C, 66356C, 66358C
LC66XXX Series Instruction Table (by function)
Abbreviations:
AC:
Accumulator
E:
E register
CF:
Carry flag
ZF:
Zero flag
HL:
Data pointer DPH, DPL
XY:
Data pointer DPX, DPY
M:
Data memory
M (HL): Data memory pointed to by the DPH, DPL data pointer
M (XY): Data memory pointed to by the DPX, DPY auxiliary data pointer
M2 (HL): Two words of data memory (starting on an even address) pointed to by the DPH, DPL data pointer
SP:
Stack pointer
M2 (SP): Two words of data memory pointed to by the stack pointer
M4 (SP): Four words of data memory pointed to by the stack pointer
in:
n bits of immediate data
t2:
Bit specification
PCh:
PCm:
PCl:
Fn:
TIMER0:
TIMER1:
SIO:
P:
P (i4):
INT:
( ), [ ]:
←:
:
:
:
+:
–:
—:
t2
11
10
01
00
Bit
23
22
21
20
Bits 8 to 11 in the PC
Bits 4 to 7 in the PC
Bits 0 to 3 in the PC
User flag, n = 0 to 15
Timer 0
Timer 1
Serial register
Port
Port indicated by 4 bits of immediate data
Interrupt enable flag
Indicates the contents of a location
Transfer direction, result
Exclusive or
Logical and
Logical or
Addition
Subtraction
Taking the one's complement
No. 5484-13/21
Instruction code
Mnemonic
D 7 D6 D5 D4 D3 D2 D1 D0
Number of
bytes
Number of
cycles
LC66354C, 66356C, 66358C
Operation
Description
Affected
status
bits
Note
[Accumulator manipulation instructions]
CLA
Clear AC
1 0 0 0
0 0 0 0
1
1
AC ← 0
Clear AC to 0.
(Equivalent to LAI 0.)
ZF
DAA
Decimal adjust AC
in addition
1 1 0 0
0 0 1 0
1 1 1 1
0 1 1 0
2
2
AC ← (AC) + 6
Add six to AC.
(Equivalent to ADI 6.)
ZF
DAS
Decimal adjust AC
in subtraction
1 1 0 0
0 0 1 0
1 1 1 1
1 0 1 0
2
2
AC ← (AC) + 10
(Equivalent to
ADI 0AH.)
Add 10 to AC.
ZF
CLC
Clear CF
0 0 0 1
1 1 1 0
1
1
CF ← 0
Clear CF to 0.
CF
STC
Set CF
0 0 0 1
1 1 1 1
1
1
CF ← 1
Set CF to 1.
CF
ZF
Has a vertical
skip function.
CMA
Complement AC
0 0 0 1
1 0 0 0
1
1
AC ← (AC)
Take the one’s complement
of AC.
IA
Increment AC
0 0 0 1
0 1 0 0
1
1
AC ← (AC) + 1
Increment AC.
ZF, CF
DA
Decrement AC
0 0 1 0
0 1 0 0
1
1
AC ← (AC) – 1
Decrement AC.
ZF, CF
Shift AC (including CF) right.
CF
CF, ZF
RAR
Rotate AC right
through CF
0 0 0 1
0 0 0 0
1
1
AC3 ← (CF),
ACn ← (ACn + 1),
CF ← (AC0)
RAL
Rotate AC left
through CF
0 0 0 0
0 0 0 1
1
1
AC0 ← (CF),
ACn + 1 ← (ACn),
CF ← (AC3)
Shift AC (including CF) left.
Transfer the contents of AC to E.
TAE
Transfer AC to E
0 1 0 0
0 1 0 1
1
1
E ← (AC)
TEA
Transfer E to AC
0 1 0 0
0 1 1 0
1
1
AC ← (E)
Transfer the contents of E to AC.
XAE
Exchange AC with E
0 1 0 0
0 1 0 0
1
1
(AC) ↔ (E)
Exchange the contents of
AC and E.
ZF
[Memory manipulation instructions]
IM
Increment M
0 0 0 1
0 0 1 0
1
1
M (HL) ←
[M (HL)] + 1
Increment M (HL).
ZF, CF
DM
Decrement M
0 0 1 0
0 0 1 0
1
1
M (HL) ←
[M (HL)] – 1
Decrement M (HL).
ZF, CF
IMDR i8
Increment M direct
1 1 0 0
I7 I6 I5 I4
0 1 1 1
I3 I2 I1 I0
2
2
M (i8) ← [M (i8)] + 1
Increment M (i8).
ZF, CF
DMDR i8 Decrement M direct
1 1 0 0
I7 I6 I5 I4
0 0 1 1
I3 I2 I1 I0
2
2
M (i8) ← [M (i8)] – 1
Decrement M (i8).
ZF, CF
SMB t2
Set M data bit
0 0 0 0
1 1 t1 t0
1
1
[M (HL), t2] ← 1
Set the bit in M (HL) specified
by t0 and t1 to 1.
RMB t2
Reset M data bit
0 0 1 0
1 1 t1 t0
1
1
[M (HL), t2] ← 0
Clear the bit in M (HL)
specified by t0 and t1 to 0.
ZF
0 0 0 0
0 1 1 0
1
1
AC ← (AC) +
[M (HL)]
Add the contents of AC and
M (HL) as two’s complement
values and store the result
in AC.
ZF, CF
1 1 0 0
I7 I6 I5 I4
1 0 0 1
I3 I2 I1 I0
2
Add the contents of AC and
M (i8) as two’s complement
AC ← (AC) + [M (i8)]
values and store the result
in AC.
Add the contents of AC,
M (HL) and C as two’s
complement values and
store the result in AC.
ZF, CF
[Arithmetic, logic and comparison instructions]
AD
Add M to AC
ADDR i8 Add M direct to AC
2
ZF, CF
ADC
Add M to AC with CF 0 0 0 0
0 0 1 0
1
1
AC ← (AC) +
[M (HL)] + (CF)
ADI i4
Add immediate data
to AC
1 1 0 0
0 0 1 0
1 1 1 1
I3 I2 I1 I0
2
2
AC ← (AC) +
I3, I2, I1, I0
Add the contents of AC and
the immediate data as two’s
complement values and store
the result in AC.
ZF
SUBC
Subtract AC from M
with CF
0 0 0 1
0 1 1 1
1
1
AC ← [M (HL)] –
(AC) – (CF)
Subtract the contents of AC
and CF from M (HL) as two’s
complement values and store
the result in AC.
ZF, CF
ANDA
And M with AC then
store AC
0 0 0 0
0 1 1 1
1
1
AC ← (AC)
[M (HL)]
Take the logical and of AC
and M (HL) and store the
result in AC.
ZF
ORA
Or M with AC then
store AC
0 0 0 0
0 1 0 1
1
1
AC ← (AC)
[M (HL)]
Take the logical or of AC and
M (HL) and store the result
in AC.
ZF
CF will be zero if
there was a
borrow and one
otherwise.
Continued on next page.
No. 5484-14/21
LC66354C, 66356C, 66358C
Instruction code
Mnemonic
D 7 D6 D5 D4 D3 D2 D1 D0
Number of
bytes
Number of
cycles
Continued from preceding page.
Operation
Affected
status
bits
Description
Note
[Arithmetic, logic and comparison instructions]
EXL
Exclusive or M with
AC then store AC
0 0 0 1
0 1 0 1
1
1
AC ← (AC)
[M (HL)]
Take the logical exclusive or
of AC and M (HL) and store
the result in AC.
ZF
ANDM
And M with AC then
store M
0 0 0 0
0 0 1 1
1
1
M (HL) ← (AC)
[M (HL)]
Take the logical and of AC
and M (HL) and store the
result in M (HL).
ZF
ORM
Or M with AC then
store M
0 0 0 0
0 1 0 0
1
1
M (HL) ← (AC)
[M (HL)]
Take the logical or of AC and
M (HL) and store the result
in M (HL).
ZF
Compare the contents of AC
and M (HL) and set or clear CF
and ZF according to the result.
CM
Compare AC with M
0 0 0 1
0 1 1 0
1
1
[M (HL)] + (AC) + 1
Magnitude
comparison
[M (HL)] > (AC)
[M (HL)] = (AC)
[M (HL)] < (AC)
CF ZF
0
1
1
ZF, CF
0
1
0
Compare the contents of AC
and the immediate data
I3 I2 I1 I0 and set or clear CF
and ZF according to the result.
CI i4
Compare AC with
immediate data
1 1 0 0
1 0 1 0
1 1 1 1
I3 I2 I1 I0
2
2
I3 I2 I1 I0 + (AC) + 1
Magnitude
comparison
I3 I2 I1 I0 > AC
I3 I2 I1 I0 = AC
I3 I2 I1 I0 < AC
CLI i4
CMB t2
Compare DPL with
immediate data
Compare AC bit with
M data bit
1 1 0 0
1 0 1 1
1 1 1 1
I3 I2 I1 I0
2
CF ZF
0
1
1
ZF, CF
0
1
0
2
ZF ← 1
if (DPL) = I3 I2 I1 I0
ZF ← 0
if (DPL) ≠ I3 I2 I1 I0
Compare the contents of DPL
with the immediate data.
Set ZF if identical and clear
ZF if not.
ZF
Compare the corresponding
bits specified by t0 and t1 in
AC and M (HL). Set ZF if
identical and clear ZF if not.
ZF
1 1 0 0
1 1 0 1
1 1 1 1
0 0 t1 t0
2
2
ZF ← 1
if (AC, t2) = [M (HL),
t2]
ZF← 0
if (AC, t2) ≠ [M (HL),
t2]
[Load and store instructions]
LAE
Load AC and E from
M2 (HL)
0 1 0 1
1 1 0 0
1
1
AC ← M (HL),
E ← M (HL + 1)
Load the contents of M2 (HL)
into AC, E.
LAI i4
Load AC with
immediate data
1 0 0 0
I3 I2 I1 I0
1
1
AC ← I3 I2 I1 I0
Load the immediate data
into AC.
ZF
LADR i8
Load AC from M
direct
1 1 0 0
I7 I6 I5 I4
0 0 0 1
I3 I2 I1 I0
2
2
AC ← [M (i8)]
Load the contents of M (i8)
into AC.
ZF
S
Store AC to M
0 1 0 0
0 1 1 1
1
1
M (HL) ← (AC)
Store the contents of AC into
M (HL).
SAE
Store AC and E to
M2 (HL)
0 1 0 1
1 1 1 0
1
1
M (HL) ← (AC)
M (HL + 1) ← (E)
Store the contents of AC, E
into M2 (HL).
LA reg
Load AC from
M (reg)
0 1 0 0
1 0 t0 0
1
1
AC ← [M (reg)]
Has a vertical
skip function
Load the contents of M (reg)
into AC.
The reg is either HL or XY
depending on t0.
ZF
reg
T0
HL
XY
0
1
Continued on next page.
No. 5484-15/21
LC66354C, 66356C, 66358C
Instruction code
Mnemonic
D 7 D6 D5 D4 D3 D2 D1 D0
Number of
bytes
Number of
cycles
Continued from preceding page.
Operation
Description
Affected
status
bits
Note
[Load and store instructions]
LA reg, I
Load AC from M (reg)
0 1 0 0
then increment reg
Load AC from M (reg)
LA reg, D
0 1 0 1
then decrement reg
XA reg
Exchange AC with
M (reg)
Exchange AC with
XA reg, I M (reg) then
increment reg
0 1 0 0
0 1 0 0
1 0 t0 1
1 0 t0 1
1 1 t0 0
1 1 t0 1
1
1
1
1
2
2
1
2
AC ← [M (reg)]
DPL ← (DPL) + 1
or DPY ← (DPY) + 1
Load the contents of M (reg)
into AC. (The reg is either HL
or XY.) Then increment the
contents of either DPL or DPY. ZF
The relationship between t0
and reg is the same as that
for the LA reg instruction.
ZF is set
according to the
result of
incrementing
DPL or DPY.
AC ← [M (reg)]
DPL ← (DPL) – 1
or DPY ← (DPY) – 1
Load the contents of M (reg)
into AC. (The reg is either HL
or XY.) Then decrement the
contents of either DPL or DPY. ZF
The relationship between t0
and reg is the same as that
for the LA reg instruction.
ZF is set
according to the
result of
decrementing
DPL or DPY.
(AC) ↔ [M (reg)]
Exchange the contents of
M (reg) and AC.
The reg is either HL or XY
depending on t0.
reg
T0
HL
XY
0
1
(AC) ↔ [M (reg)]
DPL ← (DPL) + 1
or DPY ← (DPY) + 1
Exchange the contents of
M (reg) and AC. (The reg is
either HL or XY.) Then
increment the contents of
either DPL or DPY. The
relationship between t0 and
reg is the same as that for
the XA reg instruction.
Exchange the contents of
M (reg) and AC. (The reg is
either HL or XY.) Then
decrement the contents of
either DPL or DPY. The
relationship between t0 and
reg is the same as that for
the XA reg instruction.
Exchange AC with
XA reg, D M (reg) then
decrement reg
0 1 0 1
1 1 t0 1
1
2
(AC) ↔ [M (reg)]
DPL ← (DPL) – 1
or DPY ← (DPY) – 1
XADR i8
Exchange AC with
M direct
1 1 0 0
I7 I6 I5 I4
1 0 0 0
I3 I2 I1 I0
2
2
(AC) ↔ [M (i8)]
Exchange the contents of AC
and M (i8).
LEAI i8
Load E & AC with
immediate data
1 1 0 0
I7 I6 I5 I4
0 1 1 0
I3 I2 I1 I0
2
2
E ← I7 I6 I5 I4
AC ← I3 I2 I1 I0
Load the immediate data i8
into E, AC.
RTBL
Read table data from
0 1 0 1
program ROM
2
E, AC ←
[ROM (PCh, E, AC)]
Load into E, AC the ROM data
at the location determined by
replacing the lower 8 bits of
the PC with E, AC.
RTBLP
Read table data from
program ROM then
0 1 0 1
output to P4, 5
Output from ports 4 and 5 the
ROM data at the location
determined by replacing the
lower 8 bits of the PC with
E, AC.
1 0 1 0
1
1 0 0 0
1
2
Port 4, 5 ←
[ROM (PCh, E, AC)]
ZF
ZF is set
according to the
result of
incrementing
DPL or DPY.
ZF
ZF is set
according to the
result of
decrementing
DPL or DPY.
[Data pointer manipulation instructions]
LDZ i4
Load DPH with zero
and DPL with
immediate data
respectively
0 1 1 0
I3 I2 I1 I0
1
1
DPH ← 0
DPL ← I3 I2 I1 I0
Load zero into DPH and the
immediate data i4 into DPL.
LHI i4
Load DPH with
immediate data
1 1 0 0
0 0 0 0
1 1 1 1
I3 I2 I1 I0
2
2
DPH ← I3 I2 I1 I0
Load the immediate data i4
into DPH.
LLI i4
Load DPL with
immediate data
1 1 0 0
0 0 0 1
1 1 1 1
I3 I2 I1 I0
2
2
DPL ← I3 I2 I1 I0
Load the immediate data i4
into DPL.
LHLI i8
Load DPH, DPL with
immediate data
1 1 0 0
I7 I6 I5 I4
0 0 0 0
I3 I2 I1 I0
2
2
DPH ← I7 I6 I5 I4
DPL ← I3 I2 I1 I0
Load the immediate data into
DLH, DPL.
LXYI i8
Load DPX, DPY with
immediate data
1 1 0 0
I7 I6 I5 I4
0 0 0 0
I3 I2 I1 I0
2
2
DPX ← I7 I6 I5 I4
DPY ← I3 I2 I1 I0
Load the immediate data into
DLX, DPY.
Continued on next page.
No. 5484-16/21
LC66354C, 66356C, 66358C
Instruction code
Mnemonic
D 7 D6 D5 D4 D3 D2 D1 D0
Number of
bytes
Number of
cycles
Continued from preceding page.
Operation
Description
Affected
status
bits
Note
[Data pointer manipulation instructions]
IL
Increment DPL
0 0 0 1
0 0 0 1
1
1
DPL ← (DPL) + 1
Increment the contents
of DPL.
ZF
DL
Decrement DPL
0 0 1 0
0 0 0 1
1
1
DPL ← (DPL) – 1
Decrement the contents
of DPL.
ZF
IY
Increment DPY
0 0 0 1
0 0 1 1
1
1
DPY ← (DPY) + 1
Increment the contents
of DPY.
ZF
DY
Decrement DPY
0 0 1 0
0 0 1 1
1
1
DPY ← (DPY) – 1
Decrement the contents
of DPY.
ZF
TAH
Transfer AC to DPH
1 1 0 0
1 1 1 1
1 1 1 1
0 0 0 0
2
2
DPH ← (AC)
Transfer the contents of AC
to DPH.
THA
Transfer DPH to AC
1 1 0 0
1 1 1 0
1 1 1 1
0 0 0 0
2
2
AC ← (DPH)
Transfer the contents of DPH
to AC.
XAH
Exchange AC
with DPH
0 1 0 0
0 0 0 0
1
1
(AC) ↔ (DPH)
Exchange the contents of AC
and DPH.
TAL
Transfer AC to DPL
1 1 0 0
1 1 1 1
1 1 1 1
0 0 0 1
2
2
DPL ← (AC)
Transfer the contents of AC
to DPL.
TLA
Transfer DPL to AC
1 1 0 0
1 1 1 0
1 1 1 1
0 0 0 1
2
2
AC ← (DPL)
Transfer the contents of DPL
to AC.
XAL
Exchange AC
with DPL
0 1 0 0
0 0 0 1
1
1
(AC) ↔ (DPL)
Exchange the contents of AC
and DPL.
TAX
Transfer AC to DPX
1 1 0 0
1 1 1 1
1 1 1 1
0 0 1 0
2
2
DPX ← (AC)
Transfer the contents of AC
to DPX.
TXA
Transfer DPX to AC
1 1 0 0
1 1 1 0
1 1 1 1
0 0 1 0
2
2
AC ← (DPX)
Transfer the contents of DPX
to AC.
XAX
Exchange AC
with DPX
0 1 0 0
0 0 1 0
1
1
(AC) ↔ (DPX)
Exchange the contents of AC
and DPX.
TAY
Transfer AC to DPY
1 1 0 0
1 1 1 1
1 1 1 1
0 0 1 1
2
2
DPY ← (AC)
Transfer the contents of AC
to DPY.
TYA
Transfer DPY to AC
1 1 0 0
1 1 1 0
1 1 1 1
0 0 1 1
2
2
AC ← (DPY)
Transfer the contents of DPY
to AC.
XAY
Exchange AC
with DPY
0 1 0 0
0 0 1 1
1
1
(AC) ↔ (DPY)
Exchange the contents of AC
and DPY.
ZF
ZF
ZF
ZF
[Flag manipulation instructions]
SFB n4
Set flag bit
0 1 1 1
n3 n2 n1 n0
1
1
Fn ← 1
Set the flag specified
by n4 to 1.
RFB n4
Reset flag bit
0 0 1 1
n3 n2 n1 n0
1
1
Fn ← 0
Reset the flag specified
by n4 to 0.
Jump to the location in the
same bank specified by the
immediate data P12.
ZF
[Jump and subroutine instructions]
JMP
addr
Jump in the current
bank
1 1 1 0 P11P10P9 P8
P7 P6 P5 P4 P3 P2 P1 P0
2
2
PC13, 12 ←
PC13, 12
PC11 to 0 ←
P11 to P8
JPEA
Jump to the address
stored at E and AC
in the current page
0 0 1 0
1
1
PC13 to 8 ←
PC13 to 8,
PC7 to 4 ← (E),
PC3 to 0 ← (AC)
Jump to the location
determined by replacing the
lower 8 bits of the PC
by E, AC.
2
PC13 to 11 ← 0,
PC10 to 0 ←
P10 to P0,
M4 (SP) ←
(CF, ZF, PC13 to 0),
SP ← (SP)-4
Call a subroutine.
PC13 to 6,
PC10 ← 0,
PC5 to 2 ← P3 to P0, Call a subroutine on page 0
M4 (SP) ←
in bank 0.
(CF, ZF, PC12 to 0),
SP ← SP-4
CAL
addr
Call subroutine
0 1 1 1
0 1 0 1 0 P10 P9 P8
P7 P6 P5 P4 P3 P2 P1 P0
2
CZP
addr
Call subroutine in the
1 0 1 0
zero page
P 3 P2 P1 P0
1
2
BANK
Change bank
1 0 1 1
1
1
0 0 0 1
This becomes
PC12 + (PC12)
immediately
following a BANK
instruction.
Change the memory bank
and register bank.
Continued on next page.
No. 5484-17/21
LC66354C, 66356C, 66358C
Instruction code
Mnemonic
D 7 D6 D5 D4 D3 D2 D1 D0
Number of
bytes
Number of
cycles
Continued from preceding page.
Operation
Affected
status
bits
Description
Note
[Jump and subroutine instructions]
Store the contents of reg in
M2 (SP). Subtract 2 from SP
after the store.
PUSH
reg
Push reg on M2 (SP)
1 1 0 0
1 1 1 1
1 1 1 1
1 i 1 i0 0
2
2
M2 (SP) ← (reg)
SP ← (SP) – 2
reg
i1
i0
HL
XY
AE
Illegal value
0
0
1
1
0
1
0
1
POP
reg
Pop reg off M2 (SP)
1 1 0 0
1 1 1 0
1 1 1 1
1 i 1 i0 0
2
2
SP ← (SP) + 2
reg ← [M2 (SP)]
Add 2 to SP and then load the
contents of M2(SP) into reg.
The relation between i1i0 and
reg is the same as that for the
PUSH reg instruction.
RT
Return from
subroutine
0 0 0 1
1 1 0 0
1
2
SP ← (SP) + 4
PC ← [M4 (SP)]
Return from a subroutine or
interrupt handling routine. ZF
and CF are not restored.
RTI
Return from interrupt
routine
0 0 0 1
1 1 0 1
1
2
SP ← (SP) + 4
PC ← [M4 (SP)]
CF, ZF ← [M4 (SP)]
Return from a subroutine or
interrupt handling routine. ZF
and CF are restored.
2
PC7 to 0 ←
P 7 P6 P5 P4
P3 P2 P1 P0
if (AC, t2) = 1
Branch to the location in the
same page specified by P7 to
P0 if the bit in AC specified by
the immediate data t1 t0 is one.
2
PC7 to 0 ←
P 7 P6 P5 P4
P3 P2 P1 P0
if (AC, t2) = 0
Branch to the location in the
same page specified by P7 to
P0 if the bit in AC specified by
the immediate data t1 t0 is zero.
2
PC7 to 0 ←
P7 P6 P5 P4
P 3 P2 P1 P0
if [M (HL),t2]
=1
Branch to the location in the
same page specified by P7 to
P0 if the bit in M (HL) specified
by the immediate data t1 t0
is one.
2
PC7 to 0 ←
P7 P6 P5 P4
P 3 P2 P1 P0
if [M (HL),t2]
=0
Branch to the location in the
same page specified by P7 to
P0 if the bit in M (HL) specified
by the immediate data t1 t0
is zero.
ZF, CF
[Branch instructions]
BAt2
addr
BNAt2
addr
BMt2
addr
BNMt2
addr
BPt2
addr
BNPt2
addr
Branch on AC bit
1 1 0 1 0 0 t1 t0
P7 P6 P5 P4 P3 P2 P1 P0
Branch on no AC bit
1 0 0 1 0 0 t1 t0
P7 P6 P5 P4 P3 P2 P1 P0
Branch on M bit
1 1 0 1 0 1 t1 t0
P7 P6 P5 P4 P3 P2 P1 P0
Branch on no M bit
1 0 0 1 0 1 t1 t0
P7 P6 P5 P4 P3 P2 P1 P0
Branch on Port bit
1 1 0 1 1 0 t1 t0
P7 P6 P5 P4 P3 P2 P1 P0
1 0 0 1 1 0 t1 t0
Branch on no Port bit
P7 P6 P5 P4 P3 P2 P1 P0
2
2
2
2
2
2
2
2
PC7 to 0 ←
P7 P6 P5 P4
P 3 P2 P1 P0
if [P (DPL), t2]
=1
PC7 to 0 ←
P7 P6 P5 P4
P 3 P2 P1 P0
if [P (DPL), t2]
=0
Branch to the location in the
same page specified by P7 to
P0 if the bit in port (DPL)
specified by the immediate
data t1 t0 is one.
Internal control
registers can also
be tested by
executing this
instruction
immediately after
a BANK
instruction.
However, this is
limited to
registers that can
be read out.
Branch to the location in the
same page specified by P7 to
P0 if the bit in port (DPL)
specified by the immediate
data t1 t0 is zero.
Internal control
registers can also
be tested by
executing this
instruction
immediately after
a BANK
instruction.
However, this is
limited to
registers that can
be read out.
Continued on next page.
No. 5484-18/21
LC66354C, 66356C, 66358C
Instruction code
Mnemonic
D 7 D6 D5 D4 D3 D2 D1 D0
Number of
bytes
Number of
cycles
Continued from preceding page.
Operation
Description
Affected
status
bits
Note
[Branch instructions]
2
PC7 to 0 ←
P 7 P6 P5 P4
P3 P2 P1 P0
if (CF) = 1
Branch to the location in the
same page specified by P7 to
P0 if CF is one.
BC addr
Branch on CF
1 1 0 1 1 1 0 0
P7 P6 P5 P4 P3 P2 P1 P0
BNC
addr
Branch on no CF
1 0 0 1 1 1 0 0
P7 P6 P5 P4 P3 P2 P1 P0
2
2
PC7 to 0 ←
P 7 P6 P5 P4
P3 P2 P1 P0
if (CF) = 0
Branch to the location in the
same page specified by P7 to
P0 if CF is zero.
BZ addr
Branch on ZF
1 1 0 1 1 1 0 1
P7 P6 P5 P4 P3 P2 P1 P0
2
2
PC7 to 0 ←
P 7 P6 P5 P4
P3 P2 P1 P0
if (ZF) = 1
Branch to the location in the
same page specified by P7 to
P0 if ZF is one.
Branch on no ZF
1 0 0 1 1 1 0 1
P7 P6 P5 P4 P3 P2 P1 P0
2
PC7 to 0 ←
P 7 P6 P5 P4
P3 P2 P1 P0
if (ZF) = 0
Branch to the location in the
same page specified by P7 to
P0 if ZF is zero.
2
PC7 to 0 ←
P7 P6 P5 P4
P 3 P2 P1 P0
if (Fn) = 1
Branch to the location in the
same page specified by P0 to
P7 if the flag (of the 16 user
flags) specified by n3 n2 n1 n0
is one.
Branch to the location in the
same page specified by P0 to
P7 if the flag (of the 16 user
flags) specified by n3 n2 n1 n0
is zero.
BNZ
addr
BFn4
addr
BNFn4
addr
Branch on flag bit
Branch on no flag bit
1 1 1 1 n3 n2 n1 n0
P7 P6 P5 P4 P3 P2 P1 P0
2
2
2
1 0 1 1 n3 n2 n1 n0
P7 P6 P5 P4 P3 P2 P1 P0
2
2
PC7 to 0 ←
P7 P6 P5 P4
P 3 P2 P1 P0
if (Fn) = 0
[I/O instructions]
IP0
Input port 0 to AC
0 0 1 0
0 0 0 0
1
1
AC ← (P0)
Input the contents of port
0 to AC.
ZF
IP
Input port to AC
0 0 1 0
0 1 1 0
1
1
AC ← [P (DPL)]
Input the contents of port
P (DPL) to AC.
ZF
IPM
Input port to M
0 0 0 1
1 0 0 1
1
1
M (HL) ← [P (DPL)]
Input the contents of port
P (DPL) to M (HL).
IPDR i4
Input port to
AC direct
1 1 0 0
0 1 1 0
1 1 1 1
I3 I2 I1 I0
2
2
AC ← [P (i4)]
Input the contents of
P (i4) to AC.
IP45
Input port 4, 5 to
E, AC respectively
1 1 0 0
1 1 0 1
1 1 1 1
0 1 0 0
2
2
E ← [P (4)]
AC ← [P (5)]
Input the contents of ports
P (4) and P (5) to E and AC
respectively.
OP
Output AC to port
0 0 1 0
0 1 0 1
1
1
P (DPL) ← (AC)
Output the contents of AC to
port P (DPL).
OPM
Output M to port
0 0 0 1
1 0 1 0
1
1
P (DPL) ← [M (HL)]
Output the contents of M (HL)
to port P (DPL).
OPDR i4
Output AC to
port direct
1 1 0 0
0 1 1 1
1 1 1 1
I3 I2 I1 I0
2
2
P (i4) ← (AC)
Output the contents of AC
to P (i4).
OP45
Output E, AC to port
4, 5 respectively
1 1 0 0
1 1 0 1
1 1 1 1
0 1 0 1
2
2
P (4) ← (E)
P (5) ← (AC)
Output the contents of E and
AC to ports P (4) and P (5)
respectively.
SPB t2
Set port bit
0 0 0 0
1 0 t1 t0
1
1
[P (DPL), t2] ← 1
Set to one the bit in port
P (DPL) specified by the
immediate data t1 t0.
RPB t2
Reset port bit
0 0 1 0
1 0 t1 t0
1
1
[P (DPL), t2] ← 0
Clear to zero the bit in port
P (DPL) specified by the
immediate data t1 t0.
And port with
ANDPDR
immediate data then
i4, p4
output
1 1 0 0 0 1 0 1
I3 I2 I1 I0 P3 P2 P1 P0
2
2
P (P3 to P0) ←
[P (P3 to P0)]
I3 to I0
Take the logical AND of P (P3
to P0) and the immediate data
ZF
I3 I2 I1 I0 and output the result
to P (P3 to P0).
Or port with
immediate data then
output
1 1 0 0 0 1 0 0
I3 I2 I1 I0 P3 P2 P1 P0
2
2
P (P3 to P0) ←
[P (P3 to P0)]
I3 to I0
Take the logical OR of P (P3
to P0) and the immediate data ZF
I3 I2 I1 I0 and output the result
to P (P3 to P0).
ORPDR
i4, p4
ZF
ZF
Continued on next page.
No. 5484-19/21
LC66354C, 66356C, 66358C
Instruction code
Mnemonic
D 7 D6 D5 D4 D3 D2 D1 D0
Number of
bytes
Number of
cycles
Continued from preceding page.
Operation
Description
Affected
status
bits
Note
[Timer control instructions]
WTTM0
Write timer 0
1 1 0 0
1 0 1 0
1
2
Write the contents of M2 (HL),
TIMER0 ← [M2 (HL)],
AC into the timer 0 reload
(AC)
register.
WTTM1
Write timer 1
1 1 0 0
1 1 1 1
1 1 1 1
0 1 0 0
2
2
Write the contents of E, AC
TIMER1 ← (E), (AC) into the timer 1 reload
register A.
RTIM0
Read timer 0
1 1 0 0
1 0 1 1
1
2
M2 (HL),
AC ← (TIMER0)
Read out the contents of the
timer 0 counter into M2 (HL),
AC.
RTIM1
Read timer 1
1 1 0 0
1 1 1 1
1 1 1 1
0 1 0 1
2
2
E, AC ← (TIMER1)
Read out the contents of the
timer 1 counter into E, AC.
START0 Start timer 0
1 1 0 0
1 1 1 0
1 1 1 1
0 1 1 0
2
2
Start timer 0 counter
Start the timer 0 counter.
START1 Start timer 1
1 1 0 0
1 1 1 0
1 1 1 1
0 1 1 1
2
2
Start timer 1 counter
Start the timer 1 counter.
STOP0
Stop timer 0
1 1 0 0
1 1 1 1
1 1 1 1
0 1 1 0
2
2
Stop timer 0 counter
Stop the timer 0 counter.
STOP1
Stop timer 1
1 1 0 0
1 1 1 1
1 1 1 1
0 1 1 1
2
2
Stop timer 1 counter
Stop the timer 1 counter.
[Interrupt control instructions]
MSET
Set interrupt master
enable flag
1 1 0 0
0 1 0 1
1 1 0 1
0 0 0 0
2
2
MSE ← 1
Set the interrupt master
enable flag to one.
MRESET
Reset interrupt
master enable flag
1 1 0 0
1 0 0 1
1 1 0 1
0 0 0 0
2
2
MSE ← 0
Clear the interrupt master
enable flag to zero.
EIH i4
Enable interrupt high
1 1 0 0
0 1 0 1
1 1 0 1
I3 I2 I1 I0
2
2
EDIH ← (EDIH)
EIL i4
Enable interrupt low
1 1 0 0
0 1 0 0
1 1 0 1
I3 I2 I1 I0
2
2
EDIL ← (EDIL)
DIH i4
Disable interrupt high
1 1 0 0
1 0 0 1
1 1 0 1
I3 I2 I1 I0
2
2
EDIH ← (EDIH)
DIL i4
Disable interrupt low
1 1 0 0
1 0 0 0
1 1 0 1
I3 I2 I1 I0
2
2
EDIL ← (EDIL)
WTSP
Write SP
1 1 0 0
1 1 0 1
1 1 1 1
1 0 1 0
2
2
SP ← (E), (AC)
Transfer the contents of E,
AC to SP.
RSP
Read SP
1 1 0 0
1 1 0 1
1 1 1 1
1 0 1 1
2
2
E, AC ← (SP)
Transfer the contents of SP
to E, AC.
i4
i4
i4
i4
Set the interrupt enable flag
to one.
Set the interrupt enable flag
to one.
Clear the interrupt enable
flag to zero.
ZF
Clear the interrupt enable
flag to zero.
ZF
[Standby control instructions]
HALT
HALT
1 1 0 0
1 1 0 1
1 1 1 1
1 1 1 0
2
2
HALT
Enter halt mode.
HOLD
HOLD
1 1 0 0
1 1 0 1
1 1 1 1
1 1 1 1
2
2
HOLD
Enter hold mode.
STARTS Start serial I O
1 1 0 0
1 1 1 0
1 1 1 1
1 1 1 0
2
2
START SI O
Start SIO operation.
WTSIO
Write serial I O
1 1 0 0
1 1 1 0
1 1 1 1
1 1 1 1
2
2
SIO ← (E), (AC)
Write the contents of E,
AC to SIO.
RSIO
Read serial I O
1 1 0 0
1 1 1 1
1 1 1 1
1 1 1 1
2
2
E, AC ← (SIO)
Read out the contents of SIO
into E, AC.
[Serial I/O control instructions]
[Other instructions]
NOP
No operation
0 0 0 0
0 0 0 0
1
1
No operation
Consume one machine cycle
without performing any
operation.
SB i2
Select bank
1 1 0 0
1 1 0 0
1 1 1 1
0 0 I1 I0
2
2
PC12 ← I1 I0
Specify the memory bank.
Note: The range of for i2 in SB instruction varies according to device. Refer to User’s Manual for that.
No. 5484-20/21
LC66354C, 66356C, 66358C
■ No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace
equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of
which may directly or indirectly cause injury, death or property loss.
■ Anyone purchasing any products described or contained herein for an above-mentioned use shall:
➀ Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and
distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all
damages, cost and expenses associated with such use:
➁ Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on
SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees
jointly or severally.
■ Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for
volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied
regarding its use or any infringements of intellectual property rights or other rights of third parties.
This catalog provides information as of February, 1997. Specifications and information herein are subject to
change without notice.
No. 5484-21/21
Similar pages