Rohm BD6095GU Mulitifunction backlight led driver for small lcd panels (charge pump type) Datasheet

LED Drivers for LCD Backlights
Mulitifunction Backlight LED Driver
for Small LCD Panels (Charge Pump Type)
BD6095GUL,BD6095GU
No.11040EAT31
●Description
BD6095GUL/BD6095GU is “Intelligent LED Driver” that is the most suitable for the cellular phone.
It has many functions that are needed to "the upper side" of the cellular phone.
It has ALC function, that is “Low Power Consumption System” realized.
It has “Contents Adaptive Interface” (External PWM control), that is “Low Power Consumption System” realized.
It adopts the very thin CSP package that is the most suitable for the slim phone.
●Features
1) Total 5LEDs driver for LCD Backlight
It can set maximum 25.6mA /ch by 128steps (Current DAC) for LCD Display.
3LEDs(LED1~LED3) are same controlled.
Another 2LEDs(LED4~5) can be independent controlled. (Enable and Current setting)
2LEDs(LED4~5) can be attributed to “Main Group”.
“Main Group” can be controlled by Auto Luminous Control (ALC) system.
“Main Group” can be controlled by external PWM signal.
2) 1LED driver for Flash/Torch
It can set maximum 120mA for Flash LED Driver.
It has Flash mode and Torch mode, there can be changed by external pin or register.
3) Auto Luminous Control (ALC)
Main backlight can be controlled by ambient brightness.
Photo Diode, Photo Transistor, Photo IC(Linear/Logarithm) can be connected.
Bias source for ambient light sensor, gain and offset adjustment are built in.
LED driver current as ambient level can be customized.
4) 2ch Series Regulator (LDO)
It has selectable output voltage by the register.
LDO1,LDO2 : Iomax=150mA
5) Charge Pump DC/DC for LED driver
It has x1/x1.33/x1.5/x2 mode that will be selected automatically.
Soft start functions
Over voltage protection (Auto-return type)
Over current protection (Auto-return type)
6) Thermal shutdown (Auto-return type)
7) I2C BUS FS mode (max 400kHz)
2
8) VCSP50L3 (3.75mm , 0.55mmt max) Small and thin CSP package (BD6095GUL)
9) VCSP85H3 (3.75mm2, 1.0mmt max) Small and thin CSP package (BD6095GU)
*This chip is not designed to protect itself against radioactive rays.
*This material may be changed on its way to designing.
*This material is not the official specification.
●Absolute Maximum Ratings (Ta=25 oC)
Parameter
Symbol
Ratings
Unit
Maximum voltage
VMAX
7
V
Power Dissipation
Pd
1500
mW
Operating Temperature Range
Topr
-35 ~ +85
o
C
Storage Temperature Range
Tstg
-55 ~ +150
o
C
note)Power dissipation deleting is 12.0mW/ oC, when it’s used in over 25 oC. (It’s deleting is on the board that is ROHM’s standard)
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
1/41
2011.04 - Rev.A
BD6095GUL,BD6095GU
●Operating conditions
Technical Note
(VBAT≥VIO, Ta=-35~85 oC)
Parameter
VBAT input voltage
VIO pin voltage
Symbol
Ratrings
Unit
VBAT
2.7~5.5
V
VIO
1.65~3.3
V
●Electrical Characteristics (Unless otherwise specified, Ta=25°C, VBAT=3.6V, VIO=1.8V)
Limits
Parameter
Symbol
Unit
Min.
Typ.
Max.
Condition
【Circuit Current】
VBAT Circuit current 1
IBAT1
-
0.1
1.0
μA
RESETB=0V, VIO=0V
VBAT Circuit current 2
IBAT2
-
0.5
3.0
μA
VBAT Circuit current 3
IBAT3
-
90
150
μA
VBAT Circuit current 4
IBAT4
-
61
65
mA
VBAT Circuit current 5
IBAT5
-
83
94
mA
VBAT Circuit current 6
IBAT6
-
93
104
mA
VBAT Circuit current 7
IBAT7
-
124
136
mA
VBAT Circuit current 8
IBAT8
-
0.25
1.0
mA
RESETB=0V, VIO=1.8V
LDO1=LDO2=ON, ILDO=0mA
Other blocks=OFF
DC/DC x1mode, ILED=60mA
VBAT=3.7V, LED Vf=3.0V
DC/DC x1.33mode, ILED=60mA
VBAT=3.1V, LED Vf=3.0V
DC/DC x1.5mode, ILED=60mA
VBAT=2.9V, LED Vf=3.5V
DC/DC x2mode, ILED=60mA
VBAT=3.2V, LED Vf=4.0V
Only ALC block ON
ADCYC=0.5s setting
Except sensor current
【LED Driver】
LED current Step (Setup)
ILEDSTP1
128
Step
LED1~5
LED current Step (At slope)
ILEDSTP2
256
Step
LED1~5
LED current Step (Flash)
ILEDSTPFL
32
Step
LEDFL
White LED Maximum setup current
IMAXWLED
-
mA
LED1~5
Flash LED Maximum setup current
LED1~5 current accuracy
Flash LED current accuracy
-
25.6
IMAXFLED
-
120
-
mA
LEDFL
IWLED
-7%
15
+7%
mA
ILED=15mA setting at VLED=1.0V
IFLED
-7%
60
+7%
mA
ILED=60mA setting at VLED=1.0V
LED current Matching
ILEDMT
-
-
4
%
Between LED1~5 at VLED=1.0V
LED OFF Leak current
ILKLED
-
-
1.0
μA
VLED=4.5V
Maximum Output voltage
VoCP
4.65
5.1
5.55
V
Current Load
IOUT
-
-
250
mA
Oscillator frequency
Over Voltage Protection detect
voltage
Short Circuit current limit
fosc
0.8
1.0
1.2
MHz
OVP
-
-
6.0
V
Ilim
-
125
250
mA
LOW level input voltage
VIL
-0.3
-
HIGH level input voltage
VIH
Hysteresis of Schmitt trigger input
Vhys
LOW level output voltage
(SDA) at 3mA sink current
VOL
【DC/DC(Charge Pump)】
VBAT≥3.2V, VOUT=4V
VOUT=0V
2
【I C Input (SDA, SCL)】
0.75 ×
VIO
0.05 ×
VIO
-
0.25 ×
VIO
VBAT
+0.3
V
V
-
-
V
0
-
0.3
V
lin
-3
-
3
μA
LOW level input voltage
VIL
-0.3
-
HIGH level input voltage
VIH
Input current each I/O pin
Iin
Input current each I/O pin
Input voltage = 0.1×VIO~0.9×VIO
【RESETB】
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
0.75 ×
VIO
-3
2/41
-
0.25 ×
VIO
VBAT
+0.3
3
V
V
μA
Input voltage = 0.1×VIO~0.9×VIO
2011.04 - Rev.A
BD6095GUL,BD6095GU
Technical Note
●Electrical Characteristics (Unless otherwise specified, Ta=25°C, VBAT=3.6V, VIO=1.8V)
Limits
Parameter
Symbol
Unit
Min.
Typ.
Max.
Condition
【Regulator (LDO1)】
Output voltage
Vo1
1.164
1.261
1.455
1.552
1.746
2.134
2.328
2.425
2.522
2.619
2.716
2.813
2.910
3.007
3.104
3.201
1.20
1.30
1.50
1.60
1.80
2.20
2.40
2.50
2.60
2.70
2.80
2.90
3.00
3.10
3.20
3.30
1.236
1.339
1.545
1.648
1.854
2.266
2.472
2.575
2.678
2.781
2.884
2.987
3.090
3.193
3.296
3.399
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA <Initial Voltage>
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Output Current
Io1
-
-
150
mA
Dropout Voltage
Vsat1
-
0.05
0.1
V
Load stability
ΔVo11
-
10
60
mV
Io=1~150mA, Vo=1.8V
Input voltage stability
ΔVo12
-
10
60
mV
Ripple Rejection Ratio
RR1
-
65
-
dB
Short circuit current limit
Ilim1
-
200
400
mA
VBAT=3.4~4.5V, Io=50mA, Vo=1.8V
f=100Hz, Vin=200mVp-p, Vo=1.2V
Io=50mA, BW=20Hz~20kHz
Vo=0V
ROFF1
-
1.0
1.5
kΩ
Output voltage
Vo2
1.164
1.261
1.455
1.552
1.746
2.134
2.328
2.425
2.522
2.619
2.716
2.813
2.910
3.007
3.104
3.201
1.20
1.30
1.50
1.60
1.80
2.20
2.40
2.50
2.60
2.70
2.80
2.90
3.00
3.10
3.20
3.30
1.236
1.339
1.545
1.648
1.854
2.266
2.472
2.575
2.678
2.781
2.884
2.987
3.090
3.193
3.296
3.399
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
Output Current
Io2
-
-
150
mA
Dropout Voltage
Vsat2
-
0.05
0.1
V
Load stability
Δvo21
-
10
60
mV
Io=1~150mA, Vo=2.5V
Input voltage stability
Δvo22
-
10
60
mV
Ripple Rejection Ratio
RR2
-
65
-
dB
Ilim2
-
200
400
mA
VBAT=3.4~4.5V, Io=50mA, Vo=2.5V
f=100Hz, Vin=200mVp-p, Vo=1.2V
Io=50mA, BW=20Hz~20kHz
Vo=0V
ROFF2
-
1.0
1.5
kΩ
Discharge resister at OFF
Vo=1.8V
VBAT=2.5V, Io=50mA, Vo=2.8V
【Regulator (LDO2)】
Short circuit current limit
Discharge resister at OFF
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
3/41
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA <Initial Voltage>
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Io=50mA
Vo=2.5V
VBAT=2.5V, Io=50mA, Vo=2.8V
2011.04 - Rev.A
BD6095GUL,BD6095GU
Technical Note
●Electrical Characteristics (Unless otherwise specified, Ta=25°C, VBAT=3.6V, VIO=1.8V)
Limits
Parameter
Symbol
Unit
Min.
Typ.
Max.
Condition
【Sensor Interface】
2.850
3.0
3.150
V
Io=200μA <Initial Voltage>
2.470
2.6
2.730
V
Io=200μA
IoS
-
-
30
mA
Vo=3.0V
VISS
0
-
VoS x
255/256
V
SBIAS Discharge resister at
OFF
ROFFS
-
1.0
1.5
kΩ
ADC resolution
ADRES
ADC non-linearity error
ADINL
-3
-
+3
LSB
ADC differential non-linearity
error
ADDNL
-1
-
+1
LSB
RSSENS
1
-
-
MΩ
L level input voltage
VILA
-0.3
-
0.3
V
H level input voltage
VIHA
1.4
-
VBAT
+0.3
V
IinA
-
3.6
10
μA
PWpwm
80
-
-
μs
L level output voltage
VOLS
-
-
0.2
V
IOL=1mA
H level output voltage
VOHS
VoS
-0.2
-
-
V
IOH=1mA
L level input voltage
VILF
-0.3
-
0.3
V
H level input voltage
VIHF
1.4
-
VBAT
+0.3
V
IinF
-
3.6
10
μA
SBIAS Output voltage
SBIAS Output current
SSENS Input range
SSENS Input impedance
VoS
8
bit
【WPWMIN】
Input current
PWM input minimum High
pulse width
Vin=1.8V
【GC1, GC2】
【FLASHCNT】
Input current
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
4/41
Vin=1.8V
2011.04 - Rev.A
BD6095GUL,BD6095GU
Technical Note
●Block Diagram / Application Circuit example
C3P
C3N
C2P
C2N
C1P
C1N
1μF (6.3V)
1μF (6.3V)
1μF (6.3V)
VBAT
VBATCP
VOUT
Charge Pump
VBAT1
VBATLDO
x1 / x1.33 / x1.5 / x2
10µF
2.2μF
(6.3V)
LED1
LED2
OVP
Charge Pump
Mode Control
LED3
LED terminal voltage feedback
Back Light
VIO
LED4
LED5
RESETB
SCL
I/O
SDA
Level
I2C interface
Shift
Digital Control
LEDFL
TSD
Flash
WPWMIN
FLASHCNT
IREF
To LED1~5
LEDFL
VREF
LDO1
BH1600FVC
Vo selectable
Io=150mA
SBIAS
LDO2
1μF
Vo selectable
Io=150mA
GC1
1μF
LDO2O
1μF
LED
control
Sensor
I/F
SSENS
LDO1O
GC2
SGND
T4
(Open)
T3
(Open)
T2
T1
LEDGND
CPGND
ALC
Fig.1 Block Diagram / Application Circuit example
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
5/41
2011.04 - Rev.A
BD6095GUL,BD6095GU
Technical Note
●Pin Arrangement [Bottom View]
F
T4
LDO1O
SSENS
VBAT1
SBIAS
T3
E
VBATLDO
LDO2O
GC2
GC1
SGND
VIO
D
WPWMIN
LED1
FLASHCNT
SDA
SCL
C1N
C
LED3
LED2
RESETB
C1P
C2N
B
LED4
LED5
LEDGND
VOUT
VBATCP
C2P
A
T1
LEDFL
CPGND
C3N
C3P
T2
1
2
3
4
5
6
Index
Total: 35 balls
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
6/41
2011.04 - Rev.A
BD6095GUL,BD6095GU
Technical Note
●Package
●BD6095GUL
VCSP50L3
SIZE :
3.75mm
A ball pitch : 0.5mm
Height :
0.55mm max
BD6095
Lot No.
( Unit : mm )
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
7/41
2011.04 - Rev.A
BD6095GUL,BD6095GU
Technical Note
●BD6095GU
VCSP85H3
SIZE :
3.75mm
A ball pitch : 0.5mm
Height :
1.0mm max
D6095
Lot No.
( Unit : mm )
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
8/41
2011.04 - Rev.A
BD6095GUL,BD6095GU
Technical Note
●Pin Functions
No
Ball No.
Pin Name
I/O
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
B5
F4
E1
A1
A6
F6
F1
E6
C4
D4
D5
A3
B3
D6
C5
C6
B6
A4
A5
B4
F2
E2
D2
C2
C1
B1
B2
A2
F5
F3
E4
E3
E5
D1
D3
VBATCP
VBAT1
VBATLDO
T1
T2
T3
T4
VIO
RESETB
SDA
SCL
CPGND
LEDGND
C1N
C1P
C2N
C2P
C3N
C3P
VOUT
LDO1O
LDO2O
LED1
LED2
LED3
LED4
LED5
LEDFL
SBIAS
SSENS
GC1
GC2
SGND
WPWMIN
FLASHCNT
I
I
O
O
I
I/O
I
I/O
I/O
I/O
I/O
I/O
I/O
O
O
O
I
I
I
I
I
I
O
I
O
O
I
I
※
ESD Diode
For
For
Power
Ground
GND
GND
GND
VBAT
GND
VBAT
GND
VBAT
GND
VBAT
GND
VBAT
GND
VBAT
GND
VBAT
GND
VBAT
GND
VBAT
VBAT
VBAT
GND
GND
VBAT
GND
GND
VBAT
GND
GND
GND
VBAT
GND
VBAT
GND
GND
GND
GND
GND
GND
GND
VBAT
GND
VBAT
GND
VBAT
GND
VBAT
GND
VBAT
VBAT
GND
VBAT
GND
Functions
Equivalent
Circuit
Power supply for charge pump
Power supply
Power supply for LDO
Test Input Pin (short to Ground)
Test Input Pin (short to Ground)
Test Output Pin (Open)
Test Output Pin (Open)
Power supply for I/O and Digital
Reset input (L: reset, H: reset cancel)
I2C data input / output
I2C clock input
Ground
Ground
Charge Pump capacitor is connected
Charge Pump capacitor is connected
Charge Pump capacitor is connected
Charge Pump capacitor is connected
Charge Pump capacitor is connected
Charge Pump capacitor is connected
Charge Pump output pin
LDO1 output pin
LDO2 output pin
LED cathode connection 1
LED cathode connection 2
LED cathode connection 3
LED cathode connection 4
LED cathode connection 5
LED cathode connection for Flash
Bias output for the Ambient Light Sensor
Ambient Light Sensor input
Ambient Light Sensor gain control output 1
Ambient Light Sensor gain control output 2
Ground
External PWM input for Back Light
External enable for Flash
A
A
A
S
S
M
N
C
H
I
H
B
B
F
G
F
G
F
G
A
Q
Q
E
E
E
E
E
E
Q
N
X
X
B
L
L
The LED terminal that isn't used is to short-circuit to the ground. But, the setup of a register concerned with LED that isn't used is prohibited.
Total: 35 Pin
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
9/41
2011.04 - Rev.A
BD6095GUL,BD6095GU
Technical Note
●Equivalent Circuit
A
B
F
VBAT
J
VBAT
N
R
VBAT
VBAT
G
VIO
K
VIO
VBAT
O
VBAT
VBAT
S
VBAT
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
VIO
VBAT
C
VBAT
E
H
VBAT
VIO
I
VBAT
VIO
L
VBAT
VBAT
M
VBAT
VBAT
P
VBAT
VBAT
Q
VBAT
VBAT
T
VIO
VBAT
X
VoS
VBAT
10/41
2011.04 - Rev.A
BD6095GUL,BD6095GU
Technical Note
●I2C BUS format
The writing/reading operation is based on the I2C slave standard.
・Slave address
A7
A6
A5
A4
A3
A2
1
1
1
0
1
1
A1
0
R/W
1/0
・Bit Transfer
SCL transfers 1-bit data during H. SCL cannot change signal of SDA during H at the time of bit transfer. If SDA changes
while SCL is H, START conditions or STOP conditions will occur and it will be interpreted as a control signal.
SDA
SCL
SDA a state of stability:
SDA
It can change
Data are effective
・START and STOP condition
When SDA and SCL are H, data is not transferred on the I2C- bus. This condition indicates, if SDA changes from H to L
while SCL has been H, it will become START (S) conditions, and an access start, if SDA changes from L to H while SCL
has been H, it will become STOP (P) conditions and an access end.
SDA
SCL
S
P
STOP condition
START condition
・Acknowledge
It transfers data 8 bits each after the occurrence of START condition. A transmitter opens SDA after transfer 8bits data, and
a receiver returns the acknowledge signal by setting SDA to L.
DATA OUTPUT
BY TRANSMITTER
not acknowledge
DATA OUTPUT
BY RECEIVER
acknowledge
SCL
S
1
8
9
clock pulse for
acknowledgement
START condition
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
2
11/41
2011.04 - Rev.A
BD6095GUL,BD6095GU
Technical Note
・Writing protocol
A register address is transferred by the next 1 byte that transferred the slave address and the write-in command. The 3rd
byte writes data in the internal register written in by the 2nd byte, and after 4th byte or, the increment of register address is
carried out automatically. However, when a register address turns into the last address, it is set to 00h by the next
transmission. After the transmission end, the increment of the address is carried out.
*1
S X X X X X X X 0 A A7 A6 A5 A4 A3 A2 A1 A0 A D7 D6 D5 D4 D3 D2 D1 D0 A
slave address
register address
*1
D7 D6 D5 D4 D3 D2 D1 D0 A P
DATA
DATA
register address
increment
R/W=0(write)
register address
increment
A=acknowledge(SDA LOW)
A=not acknowledge(SDA HIGH)
S=START condition
P=STOP condition
*1: Write Timing
from master to slave
from slave to master
・Reading protocol
It reads from the next byte after writing a slave address and R/W bit. The register to read considers as the following address
accessed at the end, and the data of the address that carried out the increment is read after it. If an address turns into the
last address, the next byte will read out 00h. After the transmission end, the increment of the address is carried out.
S X X X X X X X
1 A D7 D6 D5 D4 D3 D2 D1 D0 A
slave address
D7 D6 D5 D4 D3 D2 D1 D0 A P
DATA
DATA
register address
increment
R/W=1(read)
register address
increment
A=acknowledge(SDA LOW)
A=not acknowledge(SDA HIGH)
S=START condition
P=STOP condition
from master to slave
from slave to master
・Multiple reading protocols
After specifying an internal address, it reads by repeated START condition and changing the data transfer direction. The
data of the address that carried out the increment is read after it. If an address turns into the last address, the next byte will
read out 00h. After the transmission end, the increment of the address is carried out.
S X X X X X X X 0 A A7 A6 A5 A4 A3 A2 A1 A0 A Sr X X X X X X X 1 A
slave address
register address
slave address
R/W=0(write)
R/W=1(read)
D7 D6 D5 D4 D3D2 D1D0 A
DATA
D7D6 D5D4D3D2D1D0 A P
DATA
register address
increment
register address
increment
A=acknowledge(SDA LOW)
A=not acknowledge(SDA HIGH)
S=START condition
P=STOP condition
Sr=repeated START condition
from master to slave
from slave to master
As for reading protocol and multiple reading protocols, please do A(not acknowledge) after doing the final reading operation.
It stops with read when ending by A(acknowledge), and SDA stops in the state of Low when the reading data of that time is
0. However, this state returns usually when SCL is moved, data is read, and A(not acknowledge) is done.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
12/41
2011.04 - Rev.A
BD6095GUL,BD6095GU
Technical Note
●Timing diagram
SDA
t BUF
t SU;DAT
t LOW
t HD;STA
SCL
t HD;STA
S
t SU;STO
t SU;STA
t HD;DAT
Sr
t HIGH
P
●Electrical Characteristics(Unless otherwise specified, Ta=25 oC, VBAT=3.6V, VIO=1.8V)
Standard-mode
Parameter
Symbol
Min.
Typ.
Max.
【I2C BUS format】
S
Min.
Fast-mode
Typ.
Max.
Unit
SCL clock frequency
fSCL
0
-
100
0
-
400
kHz
LOW period of the SCL clock
tLOW
4.7
-
-
1.3
-
-
μs
HIGH period of the SCL clock
tHIGH
4.0
-
-
0.6
-
-
μs
Hold time (repeated) START condition
After this period, the first clock is generated
tHD;STA
4.0
-
-
0.6
-
-
μs
Set-up time for a repeated START condition
tSU;STA
4.7
-
-
0.6
-
-
μs
Data hold time
tHD;DAT
0
-
3.45
0
-
0.9
μs
Data set-up time
tSU;DAT
250
-
-
100
-
-
ns
Set-up time for STOP condition
tSU;STO
4.0
-
-
0.6
-
-
μs
Bus free time between a STOP
and START condition
tBUF
4.7
-
-
1.3
-
-
μs
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
13/41
2011.04 - Rev.A
BD6095GUL,BD6095GU
Technical Note
●Register List
Address
W/R
00h
Register data
Function
D7
D6
D5
D4
D3
D2
D1
D0
W
-
-
-
-
-
-
-
SFTRST
Software Reset
01h
W
-
LED5MD(1)
LED5MD(0)
LED4MD
-
WPWMEN
ALCEN
MLEDMD
LED, ALC Control
02h
W
FLASHEN
TORCHEN
SLEDEN
MLEDEN
-
-
LDO2EN
LDO1EN
Power Control
03h
W
-
IMLED(6)
IMLED(5)
IMLED(4)
IMLED(3)
IMLED(2)
IMLED(1)
IMLED(0)
“Main Group” LED Current Setting
at non-ALC mode
04h
W
-
ISLED(6)
ISLED(5)
ISLED(4)
ISLED(3)
ISLED(2)
ISLED(1)
ISLED(0)
“Sub Group” LED Current Setting
05h
W
-
-
-
IFTLED(4)
IFTLED(3)
IFTLED(2)
IFTLED(1)
IFTLED(0)
Flash LED “Torch mode”
Current Setting
06h
W
-
-
-
IFFLED(4)
IFFLED(3)
IFFLED(2)
IFFLED(1)
IFFLED(0)
Flash LED “Flash mode”
Current Setting
07h
W
08h
W
THL(3)
THL(2)
THL(1)
THL(0)
TLH(3)
TLH(2)
TLH(1)
TLH(0)
09h
-
-
-
-
-
-
-
-
-
-
0Ah
-
-
-
-
-
-
-
-
-
-
0Bh
W
ADCYC(1)
ADCYC(0)
GAIN(1)
GAIN(0)
STYPE
VSB
MDCIR
SBIASON
ALC mode setting
0Ch
W
SOFS(3)
SOFS(2)
SOFS(1)
SOFS(0)
SGAIN(3)
SGAIN(2)
SGAIN(1)
SGAIN(0)
ADC Data adjustment
0Dh
R
-
-
-
-
AMB(3)
AMB(2)
AMB(1)
AMB(0)
0Eh
W
-
IU0(6)
IU0(5)
IU0(4)
IU0(3)
IU0(2)
IU0(1)
IU0(0)
Main Current at Ambient level 0h
0Fh
W
-
IU1(6)
IU1(5)
IU1(4)
IU1(3)
IU1(2)
IU1(1)
IU1(0)
Main Current at Ambient level 1h
10h
W
-
IU2(6)
IU2(5)
IU2(4)
IU2(3)
IU2(2)
IU2(1)
IU2(0)
Main Current at Ambient level 2h
11h
W
-
IU3(6)
IU3(5)
IU3(4)
IU3(3)
IU3(2)
IU3(1)
IU3(0)
Main Current at Ambient level 3h
12h
W
-
IU4(6)
IU4(5)
IU4(4)
IU4(3)
IU4(2)
IU4(1)
IU4(0)
Main Current at Ambient level 4h
13h
W
-
IU5(6)
IU5(5)
IU5(4)
IU5(3)
IU5(2)
IU5(1)
IU5(0)
Main Current at Ambient level 5h
14h
W
-
IU6(6)
IU6(5)
IU6(4)
IU6(3)
IU6(2)
IU6(1)
IU6(0)
Main Current at Ambient level 6h
15h
W
-
IU7(6)
IU7(5)
IU7(4)
IU7(3)
IU7(2)
IU7(1)
IU7(0)
Main Current at Ambient level 7h
16h
W
-
IU8(6)
IU8(5)
IU8(4)
IU8(3)
IU8(2)
IU8(1)
IU8(0)
Main Current at Ambient level 8h
17h
W
-
IU9(6)
IU9(5)
IU9(4)
IU9(3)
IU9(2)
IU9(1)
IU9(0)
Main Current at Ambient level 9h
18h
W
-
IUA(6)
IUA(5)
IUA(4)
IUA(3)
IUA(2)
IUA(1)
IUA(0)
Main Current at Ambient level Ah
19h
W
-
IUB(6)
IUB(5)
IUB(4)
IUB(3)
IUB(2)
IUB(1)
IUB(0)
Main Current at Ambient level Bh
1Ah
W
-
IUC(6)
IUC(5)
IUC(4)
IUC(3)
IUC(2)
IUC(1)
IUC(0)
Main Current at Ambient level Ch
1Bh
W
-
IUD(6)
IUD(5)
IUD(4)
IUD(3)
IUD(2)
IUD(1)
IUD(0)
Main Current at Ambient level Dh
1Ch
W
-
IUE(6)
IUE(5)
IUE(4)
IUE(3)
IUE(2)
IUE(1)
IUE(0)
Main Current at Ambient level Eh
1Dh
W
-
IUF(6)
IUF(5)
IUF(4)
IUF(3)
IUF(2)
IUF(1)
IUF(0)
Main Current at Ambient level Fh
LDO2VSEL(3) LDO2VSEL(2) LDO2VSEL(1) LDO2VSEL(0) LDO1VSEL(3) LDO1VSEL(2) LDO1VSEL(1)
LDO1VSEL(0)
LDO1, LDO2 Vout Setting
Main Current transition
Ambient level
Input "0” for "-".
Prohibit to accessing the address that isn’t mentioned.
The time indicated by register explanation is the TYP time made by dividing of the built-in OSC.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
14/41
2011.04 - Rev.A
BD6095GUL,BD6095GU
●Register Map
Address 00h
Technical Note
< Software Reset >
Address
R/W
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
00h
W
-
-
-
-
-
-
-
SFTRST
Initial
Value
00h
-
-
-
-
-
-
-
0
Bit3
Bit2
Bit1
Bit0
-
WPWMEN
ALCEN
MLEDMD
-
0
0
0
Bit [7:1] :
Bit0 :
Address 01h
(Not used)
SFTRST Software Reset Command
“0” :
Reset cancel
“1” :
Reset (All register initializing)
Refer to “The explanation of Reset” for detail.
< LED, ALC Control >
Address
R/W
Bit7
01h
W
-
Initial
Value
00h
-
Bit7 :
Bit6
Bit5
Bit4
LED5MD(1) LED5MD(0) LED4MD
0
0
0
(Not used)
Bit [6:5] : LED5MD(1:0)
LED5 Group Select (Main/Sub/OFF)
“00” : LED5 OFF
“01” : reserved
“10” : LED5 “Sub Group”
“11” : LED5 “Main Group”
Refer to “The explanation of LED Driver” for detail.
Bit4 :
LED4MD
LED4 Group Select (Main/Sub)
“0” :
LED4 “Sub Group”
“1” :
LED4 “Main Group”
Refer to “The explanation of LED Driver” for detail.
Bit3 :
(Not used)
Bit2 :
WPWMEN External PWM Input “WPWMIN” terminal Enable Control (Valid/Invalid)
“0” :
WPWMIN input invalid
“1” :
WPWMIN input valid
Refer to “(11) Current Adjustment” of “The explanation of ALC” for detail.
Bit1 :
ALCEN
ALC Function Control (ON/OFF)
“0” :
ALC function OFF
“1” :
ALC function ON
Refer to “(1) Auto Luminous Control ON/OFF” of “The explanation of ALC” for detail.
Bit0 :
MLEDMD
“Main Group” LED Mode Select (Non ALC / with ALC)
“0” :
Non ALC mode
“1” :
ALC mode
Refer to “(1) Auto Luminous Control ON/OFF” of “The explanation of ALC” for detail.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
15/41
2011.04 - Rev.A
BD6095GUL,BD6095GU
Address 02h
Technical Note
< Power Control >
Address
R/W
02h
W
Initial
Value
00h
Bit7
Bit6
FLASHEN TORCHEN
0
0
Bit [7:6] : FLASHEN, TORCHEN
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
SLEDEN
MLEDEN
-
-
LDO2EN
LDO1EN
0
0
-
-
0
0
LEDFL Control (Flash ON / Torch ON / OFF)
(At FLASHCNT=L)
“00” :
“01” :
“10” :
“11” :
LEDFL:
OFF,
LEDFL: Torch mode ON,
LEDFL: Flash mode ON,
reserved
(At FLASHCNT=H)
"FLASHCNT" means external pin.
Flash mode ON
Flash mode ON
Flash mode ON
For Torch/Flash, refer to “Flash LED Current Setting” (address 05h, 06h)
At FLASHCNT=H, even if RESETB=L, the Flash mode becomes ON, and LED is turned on.
But, the setup of LED current becomes the minimum setting in this case.
(Because the setting of LED current is reset at the time of RESETB=L.)
Refer to “The explanation of LED Driver” for detail.
Bit5 :
SLEDEN
Sub Group LED Control (ON/OFF)
“0” :
“Sub Group” LED OFF
“1” :
“Sub Group” LED ON
Bit4 :
MLEDEN Main Group LED Control (ON/OFF)
“0” :
“Main Group” LED OFF
“1” :
“Main Group” LED ON
Bit [3:2] : (Not used)
Bit1 :
LDO2EN
LDO2 Control (ON/OFF)
“0” :
LDO2 OFF
“1” :
LDO2 ON
Bit0 :
LDO1EN
LDO1 Control (ON/OFF)
“0” :
LDO1 OFF
“1” :
LDO1 ON
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
16/41
2011.04 - Rev.A
BD6095GUL,BD6095GU
Address 03h
Technical Note
< “Main Group” LED Current Setting at non-ALC mode >
Address
R/W
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
03h
W
-
IMLED(6)
IMLED(5)
IMLED(4)
IMLED(3)
IMLED(2)
IMLED(1)
IMLED(0)
Initial
Value
00h
-
0
0
0
0
0
0
0
Bit7 :
(Not used)
Bit [6:0] : IMLED(6:0)
Main Group LED Current Setting at non-ALC mode
“0000000” :
“0000001” :
“0000010” :
“0000011” :
“0000100” :
“0000101” :
“0000110” :
“0000111” :
“0001000” :
“0001001” :
“0001010” :
“0001011” :
“0001100” :
“0001101” :
“0001110” :
“0001111” :
“0010000” :
“0010001” :
“0010010” :
“0010011” :
“0010100” :
“0010101” :
“0010110” :
“0010111” :
“0011000” :
“0011001” :
“0011010” :
“0011011” :
“0011100” :
“0011101” :
“0011110” :
“0011111” :
“0100000” :
“0100001” :
“0100010” :
“0100011” :
“0100100” :
“0100101” :
“0100110” :
“0100111” :
“0101000” :
“0101001” :
“0101010” :
“0101011” :
“0101100” :
“0101101” :
“0101110” :
“0101111” :
“0110000” :
“0110001” :
“0110010” :
“0110011” :
“0110100” :
“0110101” :
“0110110” :
“0110111” :
“0111000” :
“0111001” :
“0111010” :
“0111011” :
“0111100” :
“0111101” :
“0111110” :
“0111111” :
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
0.2 mA
0.4 mA
0.6 mA
0.8 mA
1.0 mA
1.2 mA
1.4 mA
1.6 mA
1.8 mA
2.0 mA
2.2 mA
2.4 mA
2.6 mA
2.8 mA
3.0 mA
3.2 mA
3.4 mA
3.6 mA
3.8 mA
4.0 mA
4.2 mA
4.4 mA
4.6 mA
4.8 mA
5.0 mA
5.2 mA
5.4 mA
5.6 mA
5.8 mA
6.0 mA
6.2 mA
6.4 mA
6.6 mA
6.8 mA
7.0 mA
7.2 mA
7.4 mA
7.6 mA
7.8 mA
8.0 mA
8.2 mA
8.4 mA
8.6 mA
8.8 mA
9.0 mA
9.2 mA
9.4 mA
9.6 mA
9.8 mA
10.0 mA
10.2 mA
10.4 mA
10.6 mA
10.8 mA
11.0 mA
11.2 mA
11.4 mA
11.6 mA
11.8 mA
12.0 mA
12.2 mA
12.4 mA
12.6 mA
12.8 mA
“1000000” :
“1000001” :
“1000010” :
“1000011” :
“1000100” :
“1000101” :
“1000110” :
“1000111” :
“1001000” :
“1001001” :
“1001010” :
“1001011” :
“1001100” :
“1001101” :
“1001110” :
“1001111” :
“1010000” :
“1010001” :
“1010010” :
“1010011” :
“1010100” :
“1010101” :
“1010110” :
“1010111” :
“1011000” :
“1011001” :
“1011010” :
“1011011” :
“1011100” :
“1011101” :
“1011110” :
“1011111” :
“1100000” :
“1100001” :
“1100010” :
“1100011” :
“1100100” :
“1100101” :
“1100110” :
“1100111” :
“1101000” :
“1101001” :
“1101010” :
“1101011” :
“1101100” :
“1101101” :
“1101110” :
“1101111” :
“1110000” :
“1110001” :
“1110010” :
“1110011” :
“1110100” :
“1110101” :
“1110110” :
“1110111” :
“1111000” :
“1111001” :
“1111010” :
“1111011” :
“1111100” :
“1111101” :
“1111110” :
“1111111” :
17/41
13.0 mA
13.2 mA
13.4 mA
13.6 mA
13.8 mA
14.0 mA
14.2 mA
14.4 mA
14.6 mA
14.8 mA
15.0 mA
15.2 mA
15.4 mA
15.6 mA
15.8 mA
16.0 mA
16.2 mA
16.4 mA
16.6 mA
16.8 mA
17.0 mA
17.2 mA
17.4 mA
17.6 mA
17.8 mA
18.0 mA
18.2 mA
18.4 mA
18.6 mA
18.8 mA
19.0 mA
19.2 mA
19.4 mA
19.6 mA
19.8 mA
20.0 mA
20.2 mA
20.4 mA
20.6 mA
20.8 mA
21.0 mA
21.2 mA
21.4 mA
21.6 mA
21.8 mA
22.0 mA
22.2 mA
22.4 mA
22.6 mA
22.8 mA
23.0 mA
23.2 mA
23.4 mA
23.6 mA
23.8 mA
24.0 mA
24.2 mA
24.4 mA
24.6 mA
24.8 mA
25.0 mA
25.2 mA
25.4 mA
25.6 mA
2011.04 - Rev.A
BD6095GUL,BD6095GU
Address 04h
Technical Note
< “Sub Group” LED Current Setting >
Address
R/W
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
04h
W
-
ISLED(6)
ISLED(5)
ISLED(4)
ISLED(3)
ISLED(2)
ISLED(1)
ISLED(0)
Initial
Value
00h
-
0
0
0
0
0
0
0
Bit7 :
(Not used)
Bit [6:0] : ISLED(6:0)
Sub Group LED Current Setting
“0000000” :
“0000001” :
“0000010” :
“0000011” :
“0000100” :
“0000101” :
“0000110” :
“0000111” :
“0001000” :
“0001001” :
“0001010” :
“0001011” :
“0001100” :
“0001101” :
“0001110” :
“0001111” :
“0010000” :
“0010001” :
“0010010” :
“0010011” :
“0010100” :
“0010101” :
“0010110” :
“0010111” :
“0011000” :
“0011001” :
“0011010” :
“0011011” :
“0011100” :
“0011101” :
“0011110” :
“0011111” :
“0100000” :
“0100001” :
“0100010” :
“0100011” :
“0100100” :
“0100101” :
“0100110” :
“0100111” :
“0101000” :
“0101001” :
“0101010” :
“0101011” :
“0101100” :
“0101101” :
“0101110” :
“0101111” :
“0110000” :
“0110001” :
“0110010” :
“0110011” :
“0110100” :
“0110101” :
“0110110” :
“0110111” :
“0111000” :
“0111001” :
“0111010” :
“0111011” :
“0111100” :
“0111101” :
“0111110” :
“0111111” :
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
0.2 mA
0.4 mA
0.6 mA
0.8 mA
1.0 mA
1.2 mA
1.4 mA
1.6 mA
1.8 mA
2.0 mA
2.2 mA
2.4 mA
2.6 mA
2.8 mA
3.0 mA
3.2 mA
3.4 mA
3.6 mA
3.8 mA
4.0 mA
4.2 mA
4.4 mA
4.6 mA
4.8 mA
5.0 mA
5.2 mA
5.4 mA
5.6 mA
5.8 mA
6.0 mA
6.2 mA
6.4 mA
6.6 mA
6.8 mA
7.0 mA
7.2 mA
7.4 mA
7.6 mA
7.8 mA
8.0 mA
8.2 mA
8.4 mA
8.6 mA
8.8 mA
9.0 mA
9.2 mA
9.4 mA
9.6 mA
9.8 mA
10.0 mA
10.2 mA
10.4 mA
10.6 mA
10.8 mA
11.0 mA
11.2 mA
11.4 mA
11.6 mA
11.8 mA
12.0 mA
12.2 mA
12.4 mA
12.6 mA
12.8 mA
“1000000” :
“1000001” :
“1000010” :
“1000011” :
“1000100” :
“1000101” :
“1000110” :
“1000111” :
“1001000” :
“1001001” :
“1001010” :
“1001011” :
“1001100” :
“1001101” :
“1001110” :
“1001111” :
“1010000” :
“1010001” :
“1010010” :
“1010011” :
“1010100” :
“1010101” :
“1010110” :
“1010111” :
“1011000” :
“1011001” :
“1011010” :
“1011011” :
“1011100” :
“1011101” :
“1011110” :
“1011111” :
“1100000” :
“1100001” :
“1100010” :
“1100011” :
“1100100” :
“1100101” :
“1100110” :
“1100111” :
“1101000” :
“1101001” :
“1101010” :
“1101011” :
“1101100” :
“1101101” :
“1101110” :
“1101111” :
“1110000” :
“1110001” :
“1110010” :
“1110011” :
“1110100” :
“1110101” :
“1110110” :
“1110111” :
“1111000” :
“1111001” :
“1111010” :
“1111011” :
“1111100” :
“1111101” :
“1111110” :
“1111111” :
18/41
13.0 mA
13.2 mA
13.4 mA
13.6 mA
13.8 mA
14.0 mA
14.2 mA
14.4 mA
14.6 mA
14.8 mA
15.0 mA
15.2 mA
15.4 mA
15.6 mA
15.8 mA
16.0 mA
16.2 mA
16.4 mA
16.6 mA
16.8 mA
17.0 mA
17.2 mA
17.4 mA
17.6 mA
17.8 mA
18.0 mA
18.2 mA
18.4 mA
18.6 mA
18.8 mA
19.0 mA
19.2 mA
19.4 mA
19.6 mA
19.8 mA
20.0 mA
20.2 mA
20.4 mA
20.6 mA
20.8 mA
21.0 mA
21.2 mA
21.4 mA
21.6 mA
21.8 mA
22.0 mA
22.2 mA
22.4 mA
22.6 mA
22.8 mA
23.0 mA
23.2 mA
23.4 mA
23.6 mA
23.8 mA
24.0 mA
24.2 mA
24.4 mA
24.6 mA
24.8 mA
25.0 mA
25.2 mA
25.4 mA
25.6 mA
2011.04 - Rev.A
BD6095GUL,BD6095GU
Address 05h
Technical Note
< Flash LED “Torch mode” Current Setting >
Address
R/W
Bit7
Bit6
Bit5
05h
W
-
-
-
Initial
Value
00h
-
-
-
Bit4
Bit3
Bit2
Bit1
Bit0
IFTLED(4) IFTLED(3) IFTLED(2) IFTLED(1) IFTLED(0)
0
0
0
0
0
Bit [7:5] : (Not used)
Bit [4:0] : IFTLED(4:0)
“00000” :
“00001” :
“00010” :
“00011” :
“00100” :
“00101” :
“00110” :
“00111” :
“01000” :
“01001” :
“01010” :
“01011” :
“01100” :
“01101” :
“01110” :
“01111” :
“10000” :
“10001” :
“10010” :
“10011” :
“10100” :
“10101” :
“10110” :
“10111” :
“11000” :
“11001” :
“11010” :
“11011” :
“11100” :
“11101” :
“11110” :
“11111” :
“Torch mode” of LEDFL Current Setting
3.75 mA
7.50 mA
11.25 mA
15.00 mA
18.75 mA
22.50 mA
26.25 mA
30.00 mA
33.75 mA
37.50 mA
41.25 mA
45.00 mA
48.75 mA
52.50 mA
56.25 mA
60.00 mA
63.75 mA
67.50 mA
71.25 mA
75.00 mA
78.75 mA
82.50 mA
86.25 mA
90.00 mA
93.75 mA
97.50 mA
101.25 mA
105.00 mA
108.75 mA
112.50 mA
116.25 mA
120.00 mA
(Initial value)
* LED Current : 120 x 1/32 mA Step ( =3.75 mA Step)
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
19/41
2011.04 - Rev.A
BD6095GUL,BD6095GU
Address 06h
Technical Note
< Flash LED “Flash mode” Current Setting >
Address
R/W
Bit7
Bit6
Bit5
06h
W
-
-
-
Initial
Value
00h
-
-
-
Bit4
Bit3
Bit2
Bit1
Bit0
IFFLED(4) IFFLED(3) IFFLED(2) IFFLED(1) IFFLED(0)
0
0
0
0
0
Bit [7:5] : (Not used)
Bit [4:0] : IFFLED(4:0)
“00000” :
“00001” :
“00010” :
“00011” :
“00100” :
“00101” :
“00110” :
“00111” :
“01000” :
“01001” :
“01010” :
“01011” :
“01100” :
“01101” :
“01110” :
“01111” :
“10000” :
“10001” :
“10010” :
“10011” :
“10100” :
“10101” :
“10110” :
“10111” :
“11000” :
“11001” :
“11010” :
“11011” :
“11100” :
“11101” :
“11110” :
“11111” :
“Flash mode” of LEDFL Current Setting
3.75 mA
7.50 mA
11.25 mA
15.00 mA
18.75 mA
22.50 mA
26.25 mA
30.00 mA
33.75 mA
37.50 mA
41.25 mA
45.00 mA
48.75 mA
52.50 mA
56.25 mA
60.00 mA
63.75 mA
67.50 mA
71.25 mA
75.00 mA
78.75 mA
82.50 mA
86.25 mA
90.00 mA
93.75 mA
97.50 mA
101.25 mA
105.00 mA
108.75 mA
112.50 mA
116.25 mA
120.00 mA
(Initial value)
* LED Current : 120 x 1/32 mA Step ( =3.75 mA Step)
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
20/41
2011.04 - Rev.A
BD6095GUL,BD6095GU
Address 07h
Technical Note
< LDO1 Vout Control, LDO2 Vout Control >
Address
R/W
07h
W
Initial
Value
74h
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
LDO2VSEL(3)LDO2VSEL(2)LDO2VSEL(1)LDO2VSEL(0)LDO1VSEL(3)LDO1VSEL(2)LDO1VSEL(1)LDO1VSEL(0)
0
1
Bit [7:4] : LDO2VSEL(3:0)
“0000” :
“0001” :
“0010” :
“0011” :
“0100” :
“0101” :
“0110” :
“0111” :
“1000” :
“1001” :
“1010” :
“1011” :
“1100” :
“1101” :
“1110” :
“1111” :
1.20 V
1.30 V
1.50 V
1.60 V
1.80 V
2.20 V
2.40 V
2.50 V
2.60 V
2.70 V
2.80 V
2.90 V
3.00 V
3.10 V
3.20 V
3.30 V
1
1
0
1
0
0
LDO2 Output Voltage Control
(Initial value)
Bit [3:0] : LDO1VSEL(3:0)
LDO1 Output Voltage Control
“0000” : 1.20 V
“0001” : 1.30 V
“0010” : 1.50 V
“0011” : 1.60 V
“0100” : 1.80 V
(Initial value)
“0101” : 2.20 V
“0110” : 2.40 V
“0111” : 2.50 V
“1000” : 2.60 V
“1001” : 2.70 V
“1010” : 2.80 V
“1011” : 2.90 V
“1100” : 3.00 V
“1101” : 3.10 V
“1110” : 3.20 V
“1111” : 3.30 V
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
21/41
2011.04 - Rev.A
BD6095GUL,BD6095GU
Address 08h
Technical Note
< Main Current transition >
Address
R/W
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
08h
W
THL(3)
THL(2)
THL(1)
THL(0)
TLH(3)
TLH(2)
TLH(1)
TLH(0)
Initial
Value
C7h
1
1
0
0
0
1
1
1
Bit [7:4] : THL(3:0)
Main LED current Down transition per 0.2mA step
“0000” :
0.256 ms
“0001” :
0.512 ms
“0010” :
1.024 ms
“0011” :
2.048 ms
“0100” :
4.096 ms
“0101” :
8.192 ms
“0110” :
16.38 ms
“0111” :
32.77 ms
“1000” :
65.54 ms
“1001” :
131.1 ms
“1010” :
196.6 ms
“1011” :
262.1 ms
“1100” :
327.7 ms
(Initial value)
“1101” :
393.2 ms
“1110” :
458.8 ms
“1111” :
524.3 ms
Setting time is counted based on the switching frequency of Charge Pump.
The above value becomes the value of the Typ (1MHz) time.
Refer to “(9) Slope Process” of “The explanation of ALC” for detail.
Bit [3:0] : TLH(3:0)
Main LED current Up transition per 0.2mA step
“0000” :
0.256 ms
“0001” :
0.512 ms
“0010” :
1.024 ms
“0011” :
2.048 ms
“0100” :
4.096 ms
“0101” :
8.192 ms
“0110” :
16.38 ms
“0111” :
32.77 ms
(Initial value)
“1000” :
65.54 ms
“1001” :
131.1 ms
“1010” :
196.6 ms
“1011” :
262.1 ms
“1100” :
327.7 ms
“1101” :
393.2 ms
“1110” :
458.8 ms
“1111” :
524.3 ms
Setting time is counted based on the switching frequency of Charge Pump.
The above value becomes the value of the Typ (1MHz) time.
Refer to “(9) Slope Process” of “The explanation of ALC” for detail.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
22/41
2011.04 - Rev.A
BD6095GUL,BD6095GU
Address 0Bh
Technical Note
< ALC mode setting >
Address
R/W
0Bh
W
Initial
Value
81h
Bit7
Bit6
ADCYC(1) ADCYC(0)
1
0
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
GAIN(1)
GAIN(0)
STYPE
VSB
MDCIR
SBIASON
0
0
0
0
0
1
Bit [7:6] : ADCYC(1:0)
ADC Measurement Cycle
“00” :
0.52 s
“01” :
1.05 s
“10” :
1.57 s (Initial value)
“11” :
2.10 s
Refer to “(4) A/D conversion” of “The explanation of ALC” for detail.
Bit [5:4] : GAIN(1:0)
Sensor Gain Switching Function Control (This is effective only at STYPE=“0”.)
“00” :
Auto Change (Initial value)
“01” :
High
“10” :
Low
“11” :
Fixed
Refer to “(3) Gain control” of “The explanation of ALC” for detail.
Bit3 :
STYPE
Ambient Light Sensor Type Select (Linear/Logarithm)
“0” :
For Linear sensor (Initial value)
“1” :
For Log sensor
Refer to “(7) Ambient level detection” of “The explanation of ALC” for detail.
Bit2 :
VSB
SBIAS Output Voltage Control
“0” :
SBIAS output voltage 3.0V
(Initial value)
“1” :
SBIAS output voltage 2.6V
Refer to “(2) I/V conversion” of “The explanation of ALC” for detail.
Bit1 :
MDCIR
LED Current Reset Select by Mode Change
“0” :
LED current non-reset when mode change
(Initial value)
“1” :
LED current reset when mode change
Refer to “(10) LED current reset when mode change” of “The explanation of ALC” for detail.
Bit0 :
SBIASON
SBIAS Control (ON/OFF)
“0” :
Measurement cycle synchronous
“1” :
Usually ON (at ALCEN=1) (Initial value)
Refer to “(4) A/D conversion” of “The explanation of ALC” for detail.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
23/41
2011.04 - Rev.A
BD6095GUL,BD6095GU
Address 0Ch
Technical Note
< ADC Data adjustment >
Address
R/W
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
0Ch
W
SOFS(3)
SOFS(2)
SOFS(1)
SOFS(0)
SGAIN(3)
SGAIN(2)
SGAIN(1)
SGAIN(0)
Initial
Value
00h
0
0
0
0
0
0
0
0
Bit [7:4] : SOFS(3:0)
“1000” :
“1001” :
“1010” :
“1011” :
“1100” :
“1101” :
“1110” :
“1111” :
“0000” :
“0001” :
“0010” :
“0011” :
“0100” :
“0101” :
“0110” :
“0111” :
AD Data Offset Adjustment
-8 LSB
-7 LSB
-6 LSB
-5 LSB
-4 LSB
-3 LSB
-2 LSB
-1 LSB
non-adjust
+1 LSB
+2 LSB
+3 LSB
+4 LSB
+5 LSB
+6 LSB
+7 LSB
Offset adjust is performed to ADC data.
Refer to “(5) ADC data Gain/offset adjustment” of “The explanation of ALC” for detail.
Bit [3:0] : SGAIN(3:0)
“1000” :
“1001” :
“1010” :
“1011” :
“1100” :
“1101” :
“1110” :
“1111” :
“0000” :
“0001” :
“0010” :
“0011” :
“0100” :
“0101” :
“0110” :
“0111” :
AD Data Gain Adjustment
reserved
reserved
-37.50%
-31.25%
-25.00%
-18.75%
-12.50%
-6.25%
non-adjust
+6.25%
+12.50%
+18.75%
+25.00%
+31.25%
+37.50%
reserved
Gain adjust is performed to ADC data.
The data after adjustment are round off by 8-bit data.
Refer to “(5) ADC data Gain/offset adjustment” of “The explanation of ALC” for detail.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
24/41
2011.04 - Rev.A
BD6095GUL,BD6095GU
Address 0Dh
Technical Note
< Ambient level (Read Only) >
Address
R/W
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
0Dh
R
-
-
-
-
AMB(3)
AMB(2)
AMB(1)
AMB(0)
Initial
Value
-
-
-
-
-
-
-
-
-
Bit [7:4] : (Not used)
Bit [3:0] : AMB(3:0)
“0000” :
“0001” :
“0010” :
“0011” :
“0100” :
“0101” :
“0110” :
“0111” :
“1000” :
“1001” :
“1010” :
“1011” :
“1100” :
“1101” :
“1110” :
“1111” :
Ambient Level
0h
1h
2h
3h
4h
5h
6h
7h
8h
9h
Ah
Bh
Ch
Dh
Eh
Fh
The data can be read through I2C.
Refer to “(7) Ambient level detection” of “The explanation of ALC” for detail.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
25/41
2011.04 - Rev.A
BD6095GUL,BD6095GU
Technical Note
Address 0Eh~1Dh < Main Current at Ambient level 0h~Fh >
Address
R/W
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
0Eh~1Dh
W
-
IU*(6)
IU*(5)
IU*(4)
IU*(3)
IU*(2)
IU*(1)
IU*(0)
Initial
Value
-
Refer to after page for initial table.
“*” means 0~F.
Bit7 :
(Not used)
Bit [6:0] : IU*(6:0)
Main Current at Ambient Level for 0h~Fh
“0000000” :
“0000001” :
“0000010” :
“0000011” :
“0000100” :
“0000101” :
“0000110” :
“0000111” :
“0001000” :
“0001001” :
“0001010” :
“0001011” :
“0001100” :
“0001101” :
“0001110” :
“0001111” :
“0010000” :
“0010001” :
“0010010” :
“0010011” :
“0010100” :
“0010101” :
“0010110” :
“0010111” :
“0011000” :
“0011001” :
“0011010” :
“0011011” :
“0011100” :
“0011101” :
“0011110” :
“0011111” :
“0100000” :
“0100001” :
“0100010” :
“0100011” :
“0100100” :
“0100101” :
“0100110” :
“0100111” :
“0101000” :
“0101001” :
“0101010” :
“0101011” :
“0101100” :
“0101101” :
“0101110” :
“0101111” :
“0110000” :
“0110001” :
“0110010” :
“0110011” :
“0110100” :
“0110101” :
“0110110” :
“0110111” :
“0111000” :
“0111001” :
“0111010” :
“0111011” :
“0111100” :
“0111101” :
“0111110” :
“0111111” :
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
0.2 mA
0.4 mA
0.6 mA
0.8 mA
1.0 mA
1.2 mA
1.4 mA
1.6 mA
1.8 mA
2.0 mA
2.2 mA
2.4 mA
2.6 mA
2.8 mA
3.0 mA
3.2 mA
3.4 mA
3.6 mA
3.8 mA
4.0 mA
4.2 mA
4.4 mA
4.6 mA
4.8 mA
5.0 mA
5.2 mA
5.4 mA
5.6 mA
5.8 mA
6.0 mA
6.2 mA
6.4 mA
6.6 mA
6.8 mA
7.0 mA
7.2 mA
7.4 mA
7.6 mA
7.8 mA
8.0 mA
8.2 mA
8.4 mA
8.6 mA
8.8 mA
9.0 mA
9.2 mA
9.4 mA
9.6 mA
9.8 mA
10.0 mA
10.2 mA
10.4 mA
10.6 mA
10.8 mA
11.0 mA
11.2 mA
11.4 mA
11.6 mA
11.8 mA
12.0 mA
12.2 mA
12.4 mA
12.6 mA
12.8 mA
“1000000” :
“1000001” :
“1000010” :
“1000011” :
“1000100” :
“1000101” :
“1000110” :
“1000111” :
“1001000” :
“1001001” :
“1001010” :
“1001011” :
“1001100” :
“1001101” :
“1001110” :
“1001111” :
“1010000” :
“1010001” :
“1010010” :
“1010011” :
“1010100” :
“1010101” :
“1010110” :
“1010111” :
“1011000” :
“1011001” :
“1011010” :
“1011011” :
“1011100” :
“1011101” :
“1011110” :
“1011111” :
“1100000” :
“1100001” :
“1100010” :
“1100011” :
“1100100” :
“1100101” :
“1100110” :
“1100111” :
“1101000” :
“1101001” :
“1101010” :
“1101011” :
“1101100” :
“1101101” :
“1101110” :
“1101111” :
“1110000” :
“1110001” :
“1110010” :
“1110011” :
“1110100” :
“1110101” :
“1110110” :
“1110111” :
“1111000” :
“1111001” :
“1111010” :
“1111011” :
“1111100” :
“1111101” :
“1111110” :
“1111111” :
26/41
13.0 mA
13.2 mA
13.4 mA
13.6 mA
13.8 mA
14.0 mA
14.2 mA
14.4 mA
14.6 mA
14.8 mA
15.0 mA
15.2 mA
15.4 mA
15.6 mA
15.8 mA
16.0 mA
16.2 mA
16.4 mA
16.6 mA
16.8 mA
17.0 mA
17.2 mA
17.4 mA
17.6 mA
17.8 mA
18.0 mA
18.2 mA
18.4 mA
18.6 mA
18.8 mA
19.0 mA
19.2 mA
19.4 mA
19.6 mA
19.8 mA
20.0 mA
20.2 mA
20.4 mA
20.6 mA
20.8 mA
21.0 mA
21.2 mA
21.4 mA
21.6 mA
21.8 mA
22.0 mA
22.2 mA
22.4 mA
22.6 mA
22.8 mA
23.0 mA
23.2 mA
23.4 mA
23.6 mA
23.8 mA
24.0 mA
24.2 mA
24.4 mA
24.6 mA
24.8 mA
25.0 mA
25.2 mA
25.4 mA
25.6 mA
2011.04 - Rev.A
BD6095GUL,BD6095GU
Technical Note
●Explanation for operate
1. The explanation of Reset
There are two kinds of reset, software reset and hardware reset.
●Software reset
・All the registers are initialized by SFTRST="1".
・SFTRST is an automatically returned to "0". (Auto Return 0).
●Hardware reset
・It shifts to hardware reset by changing RESETB pin “H” → “L”.
・The condition of all the registers under hardware reset pin is returned to the initial value, and it stops accepting all address.
・It’s possible to release from a state of hardware reset by changing RESETB pin “L” → “H”.
・RESETB pin has delay circuit. It doesn’t recognize as hardware reset in “L” period under 5μs.
・Even if RESETB=L, at FLASHCNT=H, Flash mode becomes ON by minimum setting.
●Reset Sequence
・When hardware reset was done during software reset, software reset is canceled whenhardware reset is canceled.
(Because the initial value of software reset is “0”)
2. The explanation of Thermal shutdown
The blocks which thermal shutdown function is effective in the following.
Charge pump
LED Driver
LDO1, LDO2, SBIAS
o
A thermal shutdown function works in about 190 C.
o
Detection temperature has a hysteresis, and detection release temperature is about 170 C.(Design reference value)
3. The explanation of Charge Pump for LED driver
Charge Pump block is designed for the power supply for LED driver.
It has the x1.0/x1.33/x1.5/x2.0 mode. It changes to the most suitable mode automatically by Vf of LED and the battery
voltage. It has the mode of x1.33 and it can be higher efficiency than traditional.
●Start
Charge Pump circuit operates when any LED turns ON.
●Soft start
When the start of the Charge Pump circuit is done, it has the soft start function to prevent a rush current.
VBAT
T VBATON
T VBATOFF
VIO
T VIOON=min 0.1ms
T VIOOFF=min 1ms
RESETB
T RSTB=min 0.1ms
T RST=min 0ms
EN (*1)
T SOFT
VOUT
LED Current
(*1) An EN signal in the upper figure means the following;
“EN is high” = Any LED turns ON
But if Ta >TSD, EN Signal doesn’t become effective.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
27/41
2011.04 - Rev.A
BD6095GUL,BD6095GU
Technical Note
●Charge Pump Mode transition
The transition of boost multiple transits automatically by Vf of LED and the battery voltage.
STANDBY
ALL off
Any LED on
1
○
Ta<TTSD
VBAT>2.3V(typ)
SOFT
CP x1.0 mode
After “VOUT>1.5V(typ)” detected, 142us(typ) wait
X1.0
CP x1.0 mode
mode up=”H”
mode down=”H”
X1.33
CP x1.33 mode
mode up=”H”
mode down=”H”
X1.5
CP x1.5mode
mode up=”H”
mode down=”H”
X2.0
CP x2.0mode
All LED OFF
RESET
BD6095GUL/BD6095GU changes the four charge pump movement mode automatically to realize low consumption power.
< Mode Up >
A LED terminal voltage is monitored, and the movement mode is changed to ×1→×1.33, ×1.33→×1.5 and ×1.5→×2
automatically when a LED terminal voltage is lower than 0.2V (typ).
At this time, the maximum output voltage of the charge pump is restricted to 5.1V (typ).
< Mode Down >
The rise in the battery voltage, the off control of LED lighting, “Main Group” LED current value and the data writing to
the address 04h,05h,06h (LED Current Setting) is monitored, and the movement mode is changed to
×2→×1.5→×1.33→×1 automatically.
This mode down movement lasts until a mode up movement happens.
At Flash mode and Torch mode, the mode down doesn't happen.
The thresholds of rise in a battery voltage are 2.9V, 3.3V, 3.7V and 4.1V (typ).
And, as for the off control of LED lighting, it is shown that MLEDEN, SLEDEN, TORCHEN, FLASHEN and
FLASHCNT transited in “1” →“0”.
●Over Voltage protection / Over Current protection
Charge Pump circuit output (VOUT) is equipped with the over-voltage protection and the over current protection
function. A VOUT over-voltage detection voltage is about 5.5V(typ). (VOUT at the time of rise in a voltage)
A detection voltage has a hysteresis, and a detection release voltage is about 5.1V(typ).
And, when VOUT output short to ground, input current of the battery terminal is limited by an over current protection
function.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
28/41
2011.04 - Rev.A
BD6095GUL,BD6095GU
Technical Note
4. The explanation of LED Driver
●LED1~LED3
LED1~LED3 are same controlled. These are using for “Main backlight” and we call it “Main Group”.
Current setting: IMLED(6:0)
ON/OFF: MLEDEN (ON=1, OFF=0)
●LED4~LED5
LED4 and LED5 can be independent controlled. There are attributed to “Main Group” or “Sub Group”.
If these are attributed to “Main Group”, these are controlled by same as LED1~LED3.
<Independent Control>
Current setting: ISLED(6:0)
ON/OFF: SLEDEN (ON=1, OFF=0)
<Attribute to “Main Group”>
Current setting: IMLED(6:0)
ON/OFF: MLEDEN (ON=1, OFF=0)
●The number of LED Lighting (LED1~LED5)
The number of lighting for Main/Sub LED can be set up grouping by the register
The setting of the number of lighting is as the following.
The Main/Sub LED is independently controlled by register MLEDEN, SLEDEN.
LED5MD(1)
LED5MD(0)
LED4MD
LED1
LED2
LED3
0
0
0
Main
Main
0
0
1
Main
Main
1
0
0
Main
1
0
1
1
1
0
1
1
1
LED4
LED5
Main
Sub
OFF
Main
Main
OFF
Main
Main
Sub
Sub
Main
Main
Main
Main
Sub
Main
Main
Main
Sub
Main
Main
Main
Main
Main
Main
Main/Sub
Setting Example
3/0,3/1
4/0
3/0,3/2
4/0,4/1
4/0,4/1
5/0
The change of the Grouping setting with turning it on is prohibited.
The LED terminal that isn’t used must be connected to the ground.
●LEDFL
LEDFL is for Flash. It has the two mode, “Torch” and “Flash”.
Torch mode current: IFTLED(4:0)
Flash mode current: IFFLED(4:0)
ON/OFF: TORCHEN, FLASHEN, FLASHCNT (refer to “Power Control” address 02h)
Flash mode is started by the rise edge of FLASHEN or FLASHCNT.
At FLASHCNT=H, even if RESETB=L, the Flash mode becomes ON, and LED is turned on.
(But, the setup of LED current becomes the minimum setting in this case because current setting is reset.)
Please set FLASHCNT=L when you don't turn on Flash.
TORCHEN
TORCHEN
FLASHEN or
FLASHCNT
FLASHEN or
FLASHCNT
IFFLED (4:0)
LED current
IFFLED (4:0)
IFTLED (4:0)
< Torch mode >
LED current
< Flash mode >
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
< Torch mode >
< OFF >
29/41
< Flash mode >
< OFF >
2011.04 - Rev.A
BD6095GUL,BD6095GU
Technical Note
5. The explanation of ALC (Auto Luminous Control)
LCD backlight current adjustment is possible in the basis of the data detected by external ambient light sensor.
• Extensive selection of the ambient light sensors (Photo Diode, Photo Transistor, Photo IC(linear/logarithm)) is
possible by building adjustment feature of Sensor bias, gain adjustment and offset adjustment.
2
• Ambient data is changed into ambient level by digital data processing, and it can be read through I C I/F.
• Register setting can customize a conversion to LED current. (Initial value is pre-set.)
• Natural dimming of LED driver is possible with the adjustment of the current transition speed.
Usually ON / intermittent
PWM enabling
Output Voltage
WPWMIN
Offset Correction
SBIAS
SBIAS
Gain Correction
Conversion
Table
Sensor type
Slope Timer
LED*
Mode Select
Sensor
SSENS
GC1
GC2
ADC
Data
Correction
Average
Slope
process
Current
Logarithmic Conv.
Conversion
Ambient Level detect
LCD
BackLight
Main Group
LED Driver
Gain
Control
Sensor Gain Control
Main current setting
Ambient Level
Sensor I/F
LED control
* Wave form in this explanation just shows operation image, not shows absolute value precisely.
(1) Auto Luminous Control ON/OFF
・ ALC block can be independent setting ON/OFF.
・ It can use only to measure the Ambient level.
Register : ALCEN
Register : MLEDEN
Register : MLEDMD
・ Refer to under about the associate ALC mode and Main LED current.
ALCEN
MLEDEN
MLEDMD
0
0
0
1
1
1
0
1
1
0
1
1
x
0
1
x
0
1
Sensor I/F
LED control
Mode
Main LED current
OFF
OFF
ON
Non ALC
mode
IMLED(6:0)
OFF
( AMB(3:0)=0h )
OFF
ON
ON
ALC mode
IU0(6:0) (*1)
IMLED(6:0)
ALC mode (*2)
(*1) At this mode, because Sensor I/F is OFF, AMB(3:0)=0h.
So, Main LED current is selected IU0(6:0).
(*2) At this mode, Main LED current is selected IU0(6:0)~IUF(6:0)
It becomes current value corresponding to each brightness.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
30/41
2011.04 - Rev.A
BD6095GUL,BD6095GU
(2) I/V conversion
・ The bias voltage and external resistance for the I-V conversion (Rs)
are adjusted with adaptation of sensor characteristic
・ The bias voltage is selectable by register setup.
Register : VSB
“0” : SBIAS output voltage 3.0V
“1” : SBIAS output voltage 2.6V
Sensor Current (Iout)
Technical Note
Ambient
SBIAS
VSSENS
VCC
Sensor IC
A/D
Iout
IOUT
SSENS
GND
Rs
SGND
BD6095GUL
Rs : Sense resistance (A sensor output current is changed into the voltage value.)
SBIAS : Bias power supply terminal for the sensor (3.0V / 2.6V by register setting)
SSENS Voltage (=Iout x Rs)
SBIAS
SSENS voltage
Rs is large
Rs is small
Ambient
SSENS : Sense voltage input terminal
SSENS Voltage = Iout x Rs
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
31/41
2011.04 - Rev.A
BD6095GUL,BD6095GU
Technical Note
SSENS Voltage
(3) Gain control
・ Sensor gain switching function is built in to extend the dynamic range.
・ It is controlled by register setup.
・ When automatic gain control is off, the gain status can be set up
in the manual.
Register : GAIN(1:0)
・ GC1 and GC2 are outputted corresponding to each gain status.
High Gain mode
Low Gain mode
SSENS Voltage
Ambient
Auto Gain mode
Ambient
Example 1 (Use BH1600FVC)
SBIAS
SBIAS
SSENS
SSENS
SSENS
GC1
GC1
GC1
GC2
GC2
GC2
SGND
SGND
SGND
BH1600
GC1
GND
GC2
1
Application
example
Example 3
SBIAS
9.5 (*1)
VCC IOUT
Example 2
Resister values are relative
Operating mode
Auto
GAIN(1:0) setting
Gain status
GC1 output
GC2 output
00
High Low
L
L
Manual
High
Low
01
10
High
Low
L
L
Auto
00
High Low
L
L
Manual
High
Low
01
10
High
Low
L
L
Fixed
11
L
: This means that it becomes High with A/D measurement cycle synchronously.
(*1) : Set up the relative ratio of the resistance in the difference in the brightness change of the High Gain mode and the Low Gain mode carefully.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
32/41
2011.04 - Rev.A
BD6095GUL,BD6095GU
Technical Note
(4) A/D conversion
・ The detection of ambient data is done periodically for the low power.
・ SBIAS and ADC are turned off except for the ambient measurement.
・ The sensor current may be shut in this function, it can possible to decrease the current consumption.
・ SBIAS pin and SSENS pin are pull-down in internal when there are OFF.
・ SBIAS circuit has the two modes. (Usually ON mode or intermittent mode)
Register : ADCYC(1:0)
Register : SBIASON
16 times
ALCEN
ADCYC(1:0)
ADC Cycle
SBIAS Output
Twait= 64ms(typ)
(Wait time)
When SBIASON=1
ADC Movement
TAD= 16.4ms(typ)
AD start signal
(A/D conversion time)
GC1, GC2
GC1, GC2=00
TADone= 1.024ms(typ)
AMB(3:0)
AMB(3:0)
16 times measurement
Toprt= 80.4ms(typ)
(Operate time)
(5) ADC data Gain / offset adjustment
・ To correct the characteristic dispersion of the sensor,
Gain and offset adjustment to ADC output data is possible.
・ They are controlled by register setup.
Register : SGAIN(3:0)
Register : SOFS(3:0)
Ambient
SSENS Voltage
SSENS Voltage
SSENS Voltage
< Gain Adjustment >
Ambient
Gain adjustment
SGAIN(3:0)
Ambient
Ambient
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
SSENS Voltage
SSENS Voltage
SSENS Voltage
< Offset Adjustment >
Ambient
33/41
Offset adjustment
SOFS(3:0)
Ambient
2011.04 - Rev.A
BD6095GUL,BD6095GU
Technical Note
(6) Average filter
・ Average filter is built in to rid noise or flicker.
・ Average is 16 times
(7) Ambient level detection
・ Averaged A/D value is converted to Ambient level corresponding to Gain control and sensor type.
・ Ambient level is judged to rank of 16 steps by ambient data.
・ The type of ambient light sensor can be chosen by register.
(Linear type sensor / Logarithm type sensor)
Register : STYPE
“0” : For Linear sensor
“1” : For Log sensor
・ Ambient level is output through I2C.
Register : AMB(3:0)
STYPE
0
GAIN(1:0)
Gain
Status
Ambient
level
00
Low
10
01
11
xx
Low
High
-
-
SSENS voltage
0h
VoS×0/256
VoS×0/256
VoS×0/256
1h
VoS×1/256
VoS×1/256
VoS×1/256
2h
VoS×2/256
VoS×2/256
VoS×2/256
VoS×3/256
VoS×4/256
VoS×5/256
VoS×7/256
VoS×8/256
VoS×12/256
VoS×13/256
VoS×21/256
VoS×22/256
VoS×37/256
VoS×38/256
VoS×65/256
VoS×66/256
VoS×113/256
VoS×114/256
VoS×199/256
VoS×200/256
VoS×255/256
VoS×3/256
VoS×4/256
VoS×5/256
VoS×7/256
VoS×8/256
VoS×12/256
VoS×13/256
VoS×21/256
VoS×22/256
VoS×37/256
VoS×38/256
VoS×65/256
VoS×66/256
VoS×113/256
VoS×114/256
VoS×199/256
VoS×200/256
VoS×255/256
VoS×3/256
VoS×4/256
VoS×5/256
VoS×6/256
VoS×7/256
VoS×9/256
VoS×10/256
VoS×13/256
VoS×14/256
VoS×19/256
VoS×20/256
VoS×27/256
VoS×28/256
VoS×38/256
VoS×39/256
VoS×53/256
VoS×54/256
VoS×74/256
VoS×75/256
VoS×104/256
VoS×105/256
VoS×144/256
VoS×145/256
VoS×199/256
VoS×200/256
VoS×255/256
3h
4h
5h
VoS×0/256
6h
VoS×1/256
VoS×0/256
VoS×1/256
VoS×2/256
VoS×2/256
VoS×3/256
VoS×3/256
VoS×4/256
VoS×4/256
8h
VoS×6/256
VoS×6/256
VoS×7/256
VoS×7/256
9h
VoS×11/256
VoS×11/256
VoS×12/256
VoS×12/256
Ah
VoS×20/256
VoS×20/256
VoS×21/256
VoS×21/256
Bh
VoS×36/256
VoS×36/256
VoS×37/256
VoS×37/256
Ch
VoS×64/256
VoS×64/256
VoS×65/256
VoS×65/256
Dh
VoS×114/256
VoS×114/256
VoS×115/256
VoS×115/256
Eh
VoS×199/256
VoS×199/256
VoS×200/256
VoS×200/256
Fh
VoS×255/256
VoS×255/256
This is in case of not adjustments of the gain/offset control.
In the Auto Gain control mode, sensor gain changes in gray-colored ambient level.
“ ⁄ ” : This means that this zone is not outputted in this mode.
7h



High
1
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
34/41
VoS×0/256
VoS×17/256
VoS×18/256
VoS×26/256
VoS×27/256
VoS×36/256
VoS×37/256
VoS×47/256
VoS×48/256
VoS×59/256
VoS×60/256
VoS×71/256
VoS×72/256
VoS×83/256
VoS×84/256
VoS×95/256
VoS×96/256
VoS×107/256
VoS×108/256
VoS×119/256
VoS×120/256
VoS×131/256
VoS×132/256
VoS×143/256
VoS×144/256
VoS×155/256
VoS×156/256
VoS×168/256
VoS×169/256
VoS×181/256
VoS×182/256
VoS×255/256
2011.04 - Rev.A
BD6095GUL,BD6095GU
(8) LED current assignment
・ LED current can be assigned as each of 16 steps of the ambient level.
・ Setting of a user can do by overwriting, though it prepares for the
table setup in advance.
Register : IU*(6:0)
Main LED Current
Technical Note
Conversion table
can be changed
Ambient Level
Conversion Table (initial value)
Ambient
Level
Setting data
Current value
Ambient
Level
Setting data
Current value
0h
1h
2h
3h
4h
5h
6h
7h
11h
13h
15h
18h
1Eh
25h
2Fh
3Bh
3.6mA
4.0mA
4.4mA
5.0mA
6.2mA
7.6mA
9.6mA
12.0mA
8h
9h
Ah
Bh
Ch
Dh
Eh
Fh
48h
56h
5Fh
63h
63h
63h
63h
63h
14.6mA
17.4mA
19.2mA
20.0mA
20.0mA
20.0mA
20.0mA
20.0mA
Current Data which is set
LED Current
Main LED current
(9) Slope process
・ Slope process is given to LED current to dim naturally.
・ LED current changes in the 256Step gradation in sloping.
・ Up(dark→bright),Down(bright→dark) LED current transition speed
are set individually.
Register : THL(3:0)
Register : TLH(3:0)
・ Main LED current changes as follows at the time as the slope.
TLH (THL) is setup of time of the current step 2/256.
TLH(3:0)
THL
(3:0)
Up/Down transition Speed
is set individually
TLH
time
Zoom
THL
Main LED Current
25.6mA
=0.1mA
256
TLH(3:0)
time
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
35/41
2011.04 - Rev.A
BD6095GUL,BD6095GU
Technical Note
(10) LED current reset when mode change
・ When mode is changed (ALC↔Non ALC),
it can select the way to sloping.
Register : MDCIR
“0” : LED current non-reset when mode change
“1” : LED current reset when mode change
Main LED current
NonALC
mode
ALC
mode
IMLED(6:0)
NonALC
mode
IMLED(6:0)
IU*(6:0)
MDCIR= “0”
0mA
time
Main LED current
NonALC
mode
ALC
mode
IMLED(6:0)
NonALC
mode
IMLED(6:0)
IU*(6:0)
MDCIR= “1”
0mA
time
(11) Current adjustment
・ When it is permitted by the register setting, PWM drive by the external terminal (WPWMIN) is possible.
Register : WPWMEN
・ It is suitable for the intensity correction by external control,
because PWM based on Main LED current of register setup or ALC control.
0
WPWMIN
(External input)
L
ON
0
H
ON
WPWMEN
Back light current
1
L
Forced OFF
1
H
ON
Current ON is depending on “MLEDEN”.
PWM input invalid
PWM input valid
M LED EN
In te rn a l S o ft-S ta rt T im e
D C /D C
W P W M IN
O u tp u t
in p u t
W PW M EN
L E D C u rre n t
It c a n b e in p u tte d W P W M IN b e fo re M L E D E N = 1 .
It c a n b e s e t W P W M E N = 1 b e fo re M L E D E N = 1 .
P W M m o v e m e n t is e ffe c tiv e a t th e tim e L E D c u rre n t ris e u p .
P W M H ig h p u ls e w id th m u s t b e m o re th a n 8 0 µ s .
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
36/41
2011.04 - Rev.A
BD6095GUL,BD6095GU
Technical Note
6. The explanation of I/O
When the RESETB pin is Low, the input buffers (SDA and SCL) are disabling for the Low consumption power.
VBAT
VIO
RESETB=L, Output “H”
SCL
(SDA)
EN
LOGIC
Level
Shift
RESETB
7. The explanation of the start of LDO1~LDO2
It must start as follows.
VBAT
T VBATON
VIO
T VBATOFF
T VIOON=min 0.1ms
T VIOOFF=min 1ms
RESETB
T R STB=min 0.1ms
T RST=min 0ms
LDO1EN or LDO2EN
T RISE = max 1ms(TBD)
LDO1O or LDO2O
(LDO output)
<Start Sequence>
VBAT ON (Enough rise up) → VIO ON (Enough rise up) → Reset release → LDO ON
(Register access acceptable)
<End Sequence>
LDO OFF → Reset → VIO OFF (Enough fall down) → VBAT OFF
8. The explanation of the terminal management of the function that isn’t used
Set up the terminal that isn't used as follows.
The LED terminal which isn't used : Short to ground
Don't do the control concerned with this terminal.
T1, T2 : Short to ground
T3, T4 : Open
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
37/41
2011.04 - Rev.A
BD6095GUL,BD6095GU
Technical Note
●PCB pattern of the Power dissipation measuring board
1st layer(component)
2nd layer
3rd layer
4th layer
5th layer
6th layer
7th layer
8th layer(solder)
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
38/41
2011.04 - Rev.A
BD6095GUL,BD6095GU
Technical Note
●Notes for use
(1) Absolute Maximum Ratings
An excess in the absolute maximum ratings, such as supply voltage, temperature range of operating conditions, etc., can
break down devices, thus making impossible to identify breaking mode such as a short circuit or an open circuit. If any
special mode exceeding the absolute maximum ratings is assumed, consideration should be given to take physical safety
measures including the use of fuses, etc.
(2) Power supply and ground line
Design PCB pattern to provide low impedance for the wiring between the power supply and the ground lines. Pay
attention to the interference by common impedance of layout pattern when there are plural power supplies and ground
lines. Especially, when there are ground pattern for small signal and ground pattern for large current included the external
circuits, please separate each ground pattern. Furthermore, for all power supply pins to ICs, mount a capacitor between
the power supply and the ground pin. At the same time, in order to use a capacitor, thoroughly check to be sure the
characteristics of the capacitor to be used present no problem including the occurrence of capacity dropout at a low
temperature, thus determining the constant.
(3) Ground voltage
Make setting of the potential of the ground pin so that it will be maintained at the minimum in any operating state.
Furthermore, check to be sure no pins are at a potential lower than the ground voltage including an actual electric
transient.
(4) Short circuit between pins and erroneous mounting
In order to mount ICs on a set PCB, pay thorough attention to the direction and offset of the ICs. Erroneous mounting can
break down the ICs. Furthermore, if a short circuit occurs due to foreign matters entering between pins or between the
pin and the power supply or the ground pin, the ICs can break down.
(5) Operation in strong electromagnetic field
Be noted that using ICs in the strong electromagnetic field can malfunction them.
(6) Input pins
In terms of the construction of IC, parasitic elements are inevitably formed in relation to potential. The operation of the
parasitic element can cause interference with circuit operation, thus resulting in a malfunction and then breakdown of the
input pin. Therefore, pay thorough attention not to handle the input pins, such as to apply to the input pins a voltage lower
than the ground respectively, so that any parasitic element will operate. Furthermore, do not apply a voltage to the input
pins when no power supply voltage is applied to the IC. In addition, even if the power supply voltage is applied, apply to
the input pins a voltage lower than the power supply voltage or within the guaranteed value of electrical characteristics.
(7) External capacitor
In order to use a ceramic capacitor as the external capacitor, determine the constant with consideration given to a
degradation in the nominal capacitance due to DC bias and changes in the capacitance due to temperature, etc.
(8) Thermal shutdown circuit (TSD)
This LSI builds in a thermal shutdown (TSD) circuit. When junction temperatures become detection temperature or higher,
the thermal shutdown circuit operates and turns a switch OFF. The thermal shutdown circuit, which is aimed at isolating
the LSI from thermal runaway as much as possible, is not aimed at the protection or guarantee of the LSI. Therefore, do
not continuously use the LSI with this circuit operating or use the LSI assuming its operation.
(9) Thermal design
Perform thermal design in which there are adequate margins by taking into account the permissible dissipation (Pd) in
actual states of use.
(10) LDO
Use each output of LDO by the independence. Don’t use under the condition that each output is short-circuited because it
has the possibility that an operation becomes unstable.
(11) About the pin for the test, the un-use pin
Prevent a problem from being in the pin for the test and the un-use pin under the state of actual use. Please refer to a
function manual and an application notebook. And, as for the pin that doesn't specially have an explanation, ask our
company person in charge.
(12) About the rush current
For ICs with more than one power supply, it is possible that rush current may flow instantaneously due to the internal
powering sequence and delays. Therefore, give special consideration to power coupling capacitance, power wiring, width
of ground wiring, and routing of wiring.
(13) About the function description or application note or more.
The function description and the application notebook are the design materials to design a set. So, the contents of the
materials aren't always guaranteed. Please design application by having fully examination and evaluation include the
external elements.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
39/41
2011.04 - Rev.A
BD6095GUL,BD6095GU
Technical Note
●Power dissipation (On the ROHM’s standard board)
1.6
1500mW
1.4
Power Dissipation Pd (W)
1.2
1.0
0.8
0.6
0.4
0.2
0.0
0
25
50
75
100
125
150
Ta(℃)
Information of the ROHM’s standard board
Material : glass-epoxy
Size :
Refer to after page.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
40/41
2011.04 - Rev.A
BD6095GUL,BD6095GU
Technical Note
●Ordering part number
B
D
6
Part No.
0
9
5
G
Part No.
6095
U
L
Package
GUL : VCSP50L3
GU : VCSP85H3
-
E
2
Packaging and forming specification
E2: Embossed tape and reel
VCSP50L3(BD6095GUL)
0.1±0.05
0.08 S
35- φ 0.25± 0.05
A
0.05 A B
(φ0.15)INDEX POST
F
E
D
C
B
A
S
Embossed carrier tape
Quantity
2500pcs
Direction
of feed
E2
The direction is the 1pin of product is at the upper left when you hold
( reel on the left hand and you pull out the tape on the right hand
B
1 2 3 4 5 6
0.625± 0.1
)
0.625±0.1
3.75± 0.1
Tape
P=0.5×5
1PIN MARK
0.55MAX
3.75±0.1
<Tape and Reel information>
1pin
P=0.5× 5
Reel
(Unit : mm)
Direction of feed
∗ Order quantity needs to be multiple of the minimum quantity.
VCSP85H3 (BD6095GU)
3.75±0.05
1.0MAX
0.25± 0.1
3.75± 0.05
<Tape and Reel information>
1PIN MARK
A
0.05 A B
F
E
D
C
B
A
2500pcs
Direction
of feed
E2
The direction is the 1pin of product is at the upper left when you hold
( reel on the left hand and you pull out the tape on the right hand
B
1 2 3 4 5 6
0.625±0.05
)
P=0.5 × 5
0.06 S
35- φ 0.3±0.05
(φ0.15)INDEX POST
Embossed carrier tape
Quantity
0.625± 0.05
S
Tape
1pin
P=0.5×5
Reel
(Unit : mm)
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
41/41
Direction of feed
∗ Order quantity needs to be multiple of the minimum quantity.
2011.04 - Rev.A
Notice
Notes
No copying or reproduction of this document, in part or in whole, is permitted without the
consent of ROHM Co.,Ltd.
The content specified herein is subject to change for improvement without notice.
The content specified herein is for the purpose of introducing ROHM's products (hereinafter
"Products"). If you wish to use any such Product, please be sure to refer to the specifications,
which can be obtained from ROHM upon request.
Examples of application circuits, circuit constants and any other information contained herein
illustrate the standard usage and operations of the Products. The peripheral conditions must
be taken into account when designing circuits for mass production.
Great care was taken in ensuring the accuracy of the information specified in this document.
However, should you incur any damage arising from any inaccuracy or misprint of such
information, ROHM shall bear no responsibility for such damage.
The technical information specified herein is intended only to show the typical functions of and
examples of application circuits for the Products. ROHM does not grant you, explicitly or
implicitly, any license to use or exercise intellectual property or other rights held by ROHM and
other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the
use of such technical information.
The Products specified in this document are intended to be used with general-use electronic
equipment or devices (such as audio visual equipment, office-automation equipment, communication devices, electronic appliances and amusement devices).
The Products specified in this document are not designed to be radiation tolerant.
While ROHM always makes efforts to enhance the quality and reliability of its Products, a
Product may fail or malfunction for a variety of reasons.
Please be sure to implement in your equipment using the Products safety measures to guard
against the possibility of physical injury, fire or any other damage caused in the event of the
failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM
shall bear no responsibility whatsoever for your use of any Product outside of the prescribed
scope or not in accordance with the instruction manual.
The Products are not designed or manufactured to be used with any equipment, device or
system which requires an extremely high level of reliability the failure or malfunction of which
may result in a direct threat to human life or create a risk of human injury (such as a medical
instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuelcontroller or other safety device). ROHM shall bear no responsibility in any way for use of any
of the Products for the above special purposes. If a Product is intended to be used for any
such special purpose, please contact a ROHM sales representative before purchasing.
If you intend to export or ship overseas any Product or technology specified herein that may
be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to
obtain a license or permit under the Law.
Thank you for your accessing to ROHM product informations.
More detail product informations and catalogs are available, please contact us.
ROHM Customer Support System
http://www.rohm.com/contact/
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
R1120A
Similar pages