ON MC33063AVD 1.5 a, step−up/down/ inverting switching regulator Datasheet

MC34063A, MC33063A,
NCV33063A
1.5 A, Step−Up/Down/
Inverting Switching
Regulators
http://onsemi.com
The MC34063A Series is a monolithic control circuit containing the
primary functions required for DC−to−DC converters. These devices
consist of an internal temperature compensated reference, comparator,
controlled duty cycle oscillator with an active current limit circuit,
driver and high current output switch. This series was specifically
designed to be incorporated in Step−Down and Step−Up and
Voltage−Inverting applications with a minimum number of external
components. Refer to Application Notes AN920A/D and AN954/D
for additional design information.
MARKING
DIAGRAMS
8
SOIC−8
D SUFFIX
CASE 751
8
3x063
ALYWA
G
1
1
Features
•
•
•
•
•
•
•
•
Operation from 3.0 V to 40 V Input
Low Standby Current
Current Limiting
Output Switch Current to 1.5 A
Output Voltage Adjustable
Frequency Operation to 100 kHz
Precision 2% Reference
Pb−Free Packages are Available
8
3x063AP1
AWL
YYWWG
PDIP−8
P, P1 SUFFIX
CASE 626
Ipk
Sense
6
2
3
Comparator
+
−
x
A
L, WL
Y, YY
W, WW
G or G
Q1
100
Ipk
Oscillator CT
VCC
1
Switch
Collector
Q2
R
Switch
Emitter
= 3 or 4
= Assembly Location
= Wafer Lot
= Year
= Work Week
= Pb−Free Package
PIN CONNECTIONS
Timing
Capacitor
1.25 V
Reference
Regulator
Comparator 5
Inverting
Input
33063AVP
AWL
YYWWG
1
1
7
8
8
Drive 8
Collector
S Q
1
4
GND
(Bottom View)
This device contains 51 active transistors.
Switch
Collector
1
8
Driver
Collector
Switch
Emitter
2
7
Ipk Sense
Timing
Capacitor
3
6
VCC
GND
4
5
Comparator
Inverting
Input
(Top View)
Figure 1. Representative Schematic Diagram
ORDERING INFORMATION
See detailed ordering and shipping information in the package
dimensions section on page 11 of this data sheet.
© Semiconductor Components Industries, LLC, 2007
February, 2007 − Rev. 19
1
Publication Order Number:
MC34063A/D
MC34063A, MC33063A, NCV33063A
MAXIMUM RATINGS
Symbol
Value
Unit
Power Supply Voltage
Rating
VCC
40
Vdc
Comparator Input Voltage Range
VIR
−0.3 to + 40
Vdc
Switch Collector Voltage
VC(switch)
40
Vdc
Switch Emitter Voltage (VPin 1 = 40 V)
VE(switch)
40
Vdc
VCE(switch)
40
Vdc
Switch Collector to Emitter Voltage
Driver Collector Voltage
VC(driver)
40
Vdc
Driver Collector Current (Note 1)
IC(driver)
100
mA
ISW
1.5
A
Switch Current
Power Dissipation and Thermal Characteristics
Plastic Package, P, P1 Suffix
TA = 25°C
Thermal Resistance
PD
1.25
W
RqJA
100
°C/W
SOIC Package, D Suffix
TA = 25°C
PD
625
mW
RqJA
160
°C/W
Operating Junction Temperature
TJ
+150
°C
Operating Ambient Temperature Range
TA
Thermal Resistance
MC34063A
°C
0 to +70
MC33063AV, NCV33063A
−40 to +125
MC33063A
−40 to + 85
Storage Temperature Range
Tstg
−65 to +150
°C
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect
device reliability.
1. Maximum package power dissipation limits must be observed.
2. This device series contains ESD protection and exceeds the following tests: Human Body Model 4000 V per MIL−STD−883, Method 3015.
Machine Model Method 400 V.
3. NCV prefix is for automotive and other applications requiring site and change control.
http://onsemi.com
2
MC34063A, MC33063A, NCV33063A
ELECTRICAL CHARACTERISTICS (VCC = 5.0 V, TA = Tlow to Thigh [Note 4], unless otherwise specified.)
Characteristics
Symbol
Min
Typ
Max
Unit
fosc
24
33
42
kHz
OSCILLATOR
Frequency (VPin 5 = 0 V, CT = 1.0 nF, TA = 25°C)
Ichg
24
35
42
mA
Idischg
140
220
260
mA
Discharge to Charge Current Ratio (Pin 7 to VCC, TA = 25°C)
Idischg/Ichg
5.2
6.5
7.5
−
Current Limit Sense Voltage (Ichg = Idischg, TA = 25°C)
Vipk(sense)
250
300
350
mV
Saturation Voltage, Darlington Connection
( ISW = 1.0 A, Pins 1, 8 connected)
VCE(sat)
−
1.0
1.3
V
Saturation Voltage (Note 6)
(ISW = 1.0 A, RPin 8 = 82 W to VCC, Forced b ] 20)
VCE(sat)
−
0.45
0.7
V
hFE
50
75
−
−
IC(off)
−
0.01
100
mA
1.225
1.21
1.25
−
1.275
1.29
−
−
1.4
1.4
5.0
6.0
IIB
−
−20
−400
nA
ICC
−
−
4.0
mA
Charge Current (VCC = 5.0 V to 40 V, TA = 25°C)
Discharge Current (VCC = 5.0 V to 40 V, TA = 25°C)
OUTPUT SWITCH (Note 5)
DC Current Gain (ISW = 1.0 A, VCE = 5.0 V, TA = 25°C)
Collector Off−State Current (VCE = 40 V)
COMPARATOR
Threshold Voltage
TA = 25°C
TA = Tlow to Thigh
Vth
Threshold Voltage Line Regulation (VCC = 3.0 V to 40 V)
MC33063A, MC34063A
MC33063AV, NCV33063A
V
Regline
Input Bias Current (Vin = 0 V)
mV
TOTAL DEVICE
Supply Current (VCC = 5.0 V to 40 V, CT = 1.0 nF, Pin 7 = VCC,
VPin 5 > Vth, Pin 2 = GND, remaining pins open)
4. Tlow = 0°C for MC34063A, − 40°C for MC33063A, AV, NCV33063A
Thigh = +70°C for MC34063A, + 85°C for MC33063A, +125°C for MC33063AV, NCV33063A
5. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient temperature as possible.
6. If the output switch is driven into hard saturation (non−Darlington configuration) at low switch currents (≤ 300 mA) and high driver currents
(≥ 30 mA), it may take up to 2.0 ms for it to come out of saturation. This condition will shorten the off time at frequencies ≥ 30 kHz, and is
magnified at high temperatures. This condition does not occur with a Darlington configuration, since the output switch cannot saturate. If a
non−Darlington configuration is used, the following output drive condition is recommended:
IC output
Forced b of output switch :
w 10
IC driver – 7.0 mA *
* The 100 W resistor in the emitter of the driver device requires about 7.0 mA before the output switch conducts.
http://onsemi.com
3
1000
VCC = 5.0 V
Pin 7 = VCC
Pin 5 = GND
TA = 25°C
500
200
100
50
ton
20
10
5.0
toff
2.0
200 mV/DIV
V OSC, OSCILLATOR VOLTAGE (V)
t on−off, OUTPUT SWITCH ON-OFF TIME ( μs)
MC34063A, MC33063A, NCV33063A
VCC = 5.0 V
Pin 7 = VCC
Pin 2 = GND
1.0
0.01 0.02
0.05 0.1 0.2
0.5 1.0 2.0
CT, OSCILLATOR TIMING CAPACITOR (nF)
5.0 10
10 ms/DIV
Figure 2. Output Switch On−Off Time versus
Oscillator Timing Capacitor
Figure 3. Timing Capacitor Waveform
VCE(sat), SATURATION VOLTAGE (V)
VCE(sat), SATURATION VOLTAGE (V)
1.8
1.7
1.6
1.5
1.4
1.3
VCC = 5.0 V
Pins 1, 7, 8 = VCC
Pins 3, 5 = GND
TA = 25°C
(See Note 7)
1.2
1.1
1.0
0
0.2
0.4
0.6
0.8
1.0
1.2
IE, EMITTER CURRENT (A)
1.4
1.1
1.0
0.9
0.3
0.2
Forced b = 20
0.1
0
0
0.2
0.4
0.6
0.8
1.0
1.2
IC, COLLECTOR CURRENT(A)
1.4
1.6
Figure 5. Common Emitter Configuration Output
Switch Saturation Voltage versus
Collector Current
3.6
380
3.2
I CC, SUPPLY CURRENT (mA)
VCC = 5.0 V
Ichg = Idischg
320
300
280
260
240
220
200
−55
VCC = 5.0 V
Pin 7 = VCC
Pins 2, 3, 5 = GND
TA = 25°C
(See Note 7)
0.5
0.4
1.6
400
360
340
Darlington Connection
0.8
0.7
0.6
Figure 4. Emitter Follower Configuration Output
Saturation Voltage versus Emitter Current
VIPK(sense), CURRENT LIMIT SENSE VOLTAGE (V)
Pins 1, 5, 8 = Open
CT = 1.0 nF
TA = 25°C
2.8
2.4
2.0
1.6
1.2
CT = 1.0 nF
Pin 7 = VCC
Pin 2 = GND
0.8
0.4
0
−25
0
25
50
75
TA, AMBIENT TEMPERATURE (°C)
100
0
125
Figure 6. Current Limit Sense Voltage
versus Temperature
5.0
10
15
20
25
30
VCC, SUPPLY VOLTAGE (V)
35
40
Figure 7. Standby Supply Current versus
Supply Voltage
7. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient temperature as possible.
http://onsemi.com
4
MC34063A, MC33063A, NCV33063A
170 mH
L
8
1
180
S Q
Q2
R
Q1
7
2
1N5819
Ipk
Rsc
0.22
Vin
12 V
OSC
6
+
CT
3
CT
VCC
100
+
−
Comp.
1.25 V
Ref
Reg
1500
pF
5
4
1.0 mH
R2
R1
Vout
28 V/175 mA
47 k
2.2 k
Vout
+
330
+
CO
100
Optional Filter
Test
Conditions
Results
Line Regulation
Vin = 8.0 V to 16 V, IO = 175 mA
30 mV = ±0.05%
Load Regulation
Vin = 12 V, IO = 75 mA to 175 mA
10 mV = ±0.017%
Output Ripple
Vin = 12 V, IO = 175 mA
400 mVpp
Efficiency
Vin = 12 V, IO = 175 mA
87.7%
Output Ripple With Optional Filter
Vin = 12 V, IO = 175 mA
40 mVpp
Figure 8. Step−Up Converter
http://onsemi.com
5
MC34063A, MC33063A, NCV33063A
8
1
7
R
Vout
8
7
2
Rsc
Vin
1
Vout
2
Rsc
Vin
6
6
R ³ 0 for
constant Vin
Figure 9. External Current Boost Connections for IC Peak Greater than 1.5 A
9a. External NPN Switch
9b. External NPN Saturated Switch
(See Note 8)
8. If the output switch is driven into hard saturation (non−Darlington configuration) at low switch currents (≤ 300 mA) and high driver currents
(≥ 30 mA), it may take up to 2.0 ms to come out of saturation. This condition will shorten the off time at frequencies ≥ 30 kHz, and is magnified
at high temperatures. This condition does not occur with a Darlington configuration, since the output switch cannot saturate. If a
non−Darlington configuration is used, the following output drive condition is recommended.
http://onsemi.com
6
MC34063A, MC33063A, NCV33063A
8
1
S Q
Q2
R
Q1
7
2
Ipk
Rsc
0.33
Vin
25 V
OSC
6
100
+
CT
1N5819
3
L
CT
VCC
+
−
1.25 V
Ref
Reg
Comp.
220 mH
470
pF
5
4
3.6 k
R1
1.0 mH
Vout
5.0 V/500 mA
R2
+
1.2 k
470
+
CO
Vout
100
Optional Filter
Test
Conditions
Results
Line Regulation
Vin = 15 V to 25 V, IO = 500 mA
12 mV = ±0.12%
Load Regulation
Vin = 25 V, IO = 50 mA to 500 mA
3.0 mV = ±0.03%
Output Ripple
Vin = 25 V, IO = 500 mA
120 mVpp
Short Circuit Current
Vin = 25 V, RL = 0.1 W
1.1 A
Efficiency
Vin = 25 V, IO = 500 mA
83.7%
Output Ripple With Optional Filter
Vin = 25 V, IO = 500 mA
40 mVpp
Figure 10. Step−Down Converter
8
1
1
V
8
7
Vout
Rsc
Vin
7
2
2
Rsc
6
Vin
6
Figure 11. External Current Boost Connections for IC Peak Greater than 1.5 A
11a. External NPN Switch
11b. External PNP Saturated Switch
http://onsemi.com
7
MC34063A, MC33063A, NCV33063A
8
1
S Q
Q2
R
Q1
7
2
Ipk
Rsc
0.24
OSC
6
Vin
4.5 V to 6.0 V
88 mH
L
CT
VCC
3
+
100
+
−
Comp.
+
1.25 V
Ref
Reg
5
1500
pF
1N5819
4
1.0 mH
R1
Vout
−12 V/100 mA
953
R2
1000 mf
8.2 k
+
Vout
CO
+
100
Optional Filter
Test
Conditions
Results
Line Regulation
Vin = 4.5 V to 6.0 V, IO = 100 mA
3.0 mV = ± 0.012%
Load Regulation
Vin = 5.0 V, IO = 10 mA to 100 mA
0.022 V = ± 0.09%
Output Ripple
Vin = 5.0 V, IO = 100 mA
500 mVpp
Short Circuit Current
Vin = 5.0 V, RL = 0.1 W
910 mA
Efficiency
Vin = 5.0 V, IO = 100 mA
62.2%
Output Ripple With Optional Filter
Vin = 5.0 V, IO = 100 mA
70 mVpp
Figure 12. Voltage Inverting Converter
8
1
1
Vout
8
7
2
7
Vout
Vin
3
6
Vin
2
3 +
6
+
4
4
Figure 13. External Current Boost Connections for IC Peak Greater than 1.5 A
13a. External NPN Switch
13b. External PNP Saturated Switch
http://onsemi.com
8
MC34063A, MC33063A, NCV33063A
5.45′′
2.500′′
(Top view, copper foil as seen through the board from the component side)
MC34063A
MC34063A
MC34063A
(Top View, Component Side)
*Optional Filter.
Figure 14. Printed Circuit Board and Component Layout
(Circuits of Figures 8, 10, 12)
INDUCTOR DATA
Converter
Inductance (mH)
Turns/Wire
Step−Up
170
38 Turns of #22 AWG
Step−Down
220
48 Turns of #22 AWG
Voltage−Inverting
88
28 Turns of #22 AWG
All inductors are wound on Magnetics Inc. 55117 toroidal core.
http://onsemi.com
9
MC34063A, MC33063A, NCV33063A
Calculation
Step−Up
ton/toff
V out ) V F * V in(min)
V in(min) * V sat
(ton + toff)
Ipk(switch)
2I
CO
ǒ
out(max)
10−5
ǒ
4.0 x
Ǔ
t on
) 1
t
off
Ǔ
off
t on
) 1
t
off
(ton + toff) − toff
t
10−5
(ton + toff) − toff
4.0 x 10−5 ton
ton
2I out(max)
0.3/Ipk(switch)
9
t on ) t
off
t on
) 1
t
off
ton
(V in(min) * V sat)
I
pk(switch)
1
f
t on ) t
(ton + toff) − toff
4.0 x
|V out| ) V F
V * V sat
in
1
f
off
t on
) 1
t
off
CT
Voltage−Inverting
V out ) V F
* V sat * V out
in(min)
t on ) t
ton
L(min)
V
1
f
toff
Rsc
Step−Down
on(max)
ǒ
0.3/Ipk(switch)
2I
Ǔ
(V in(min) * V sat * V out)
I
pk(switch)
t
I pk(switch)(t on ) t off)
8V
ripple(pp)
I outt on
V ripple(pp)
on(max)
ǒ
out(max)
ǒ
Ǔ
t on
) 1
t
off
0.3/Ipk(switch)
(V in(min) * V sat)
I
pk(switch)
9
Ǔ
t
on(max)
I outt on
V ripple(pp)
Vsat = Saturation voltage of the output switch.
VF = Forward voltage drop of the output rectifier.
The following power supply characteristics must be chosen:
ǒ
Ǔ
Vin − Nominal input voltage.
Vout − Desired output voltage, |V out| + 1.25 1 ) R2
R1
Iout − Desired output current.
fmin − Minimum desired output switching frequency at the selected values of Vin and IO.
Vripple(pp) − Desired peak−to−peak output ripple voltage. In practice, the calculated capacitor value will need to be increased due to its
equivalent series resistance and board layout. The ripple voltage should be kept to a low value since it will directly affect the
line and load regulation.
NOTE: For further information refer to Application Note AN920A/D and AN954/D.
Figure 15. Design Formula Table
http://onsemi.com
10
MC34063A, MC33063A, NCV33063A
ORDERING INFORMATION
Package
Shipping †
SOIC−8
98 Units / Rail
MC33063ADG
SOIC−8
(Pb−Free)
98 Units / Rail
MC33063ADR2
SOIC−8
2500 Units / Tape & Reel
SOIC−8
(Pb−Free)
2500 Units / Tape & Reel
PDIP−8
50 Units / Rail
PDIP−8
(Pb−Free)
50 Units / Rail
SOIC−8
98 Units / Rail
MC33063AVDG
SOIC−8
(Pb−Free)
98 Units / Rail
MC33063AVDR2
SOIC−8
Device
MC33063AD
MC33063ADR2G
MC33063AP1
MC33063AP1G
MC33063AVD
MC33063AVDR2G
SOIC−8
(Pb−Free)
NCV33063AVDR2*
SOIC−8
NCV33063AVDR2G*
MC33063AVP
2500 Units / Tape & Reel
SOIC−8
(Pb−Free)
PDIP−8
50 Units / Rail
PDIP−8
(Pb−Free)
50 Units / Rail
SOIC−8
98 Units / Rail
MC34063ADG
SOIC−8
(Pb−Free)
98 Units / Rail
MC34063ADR2
SOIC−8
2500 Units / Tape & Reel
SOIC−8
(Pb−Free)
2500 Units / Tape & Reel
PDIP−8
50 Units / Rail
PDIP−8
(Pb−Free)
50 Units / Rail
MC33063AVPG
MC34063AD
MC34063ADR2G
MC34063AP1
MC34063AP1G
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specification Brochure, BRD8011/D.
*NCV33063A: Tlow = −40°C, Thigh = +125°C. Guaranteed by design. NCV prefix is for automotive and other applications requiring site and
change control.
http://onsemi.com
11
MC34063A, MC33063A, NCV33063A
PACKAGE DIMENSIONS
SOIC−8 NB
D SUFFIX
CASE 751−07
ISSUE AG
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A AND B DO NOT INCLUDE
MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)
PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 (0.005) TOTAL
IN EXCESS OF THE D DIMENSION AT
MAXIMUM MATERIAL CONDITION.
6. 751−01 THRU 751−06 ARE OBSOLETE. NEW
STANDARD IS 751−07.
−X−
A
8
5
S
B
1
0.25 (0.010)
M
Y
M
4
K
−Y−
G
C
N
X 45 _
DIM
A
B
C
D
G
H
J
K
M
N
S
SEATING
PLANE
−Z−
0.10 (0.004)
H
D
0.25 (0.010)
M
Z Y
S
X
M
J
S
SOLDERING FOOTPRINT*
1.52
0.060
7.0
0.275
4.0
0.155
0.6
0.024
1.270
0.050
SCALE 6:1
mm Ǔ
ǒinches
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
http://onsemi.com
12
MILLIMETERS
MIN
MAX
4.80
5.00
3.80
4.00
1.35
1.75
0.33
0.51
1.27 BSC
0.10
0.25
0.19
0.25
0.40
1.27
0_
8_
0.25
0.50
5.80
6.20
INCHES
MIN
MAX
0.189
0.197
0.150
0.157
0.053
0.069
0.013
0.020
0.050 BSC
0.004
0.010
0.007
0.010
0.016
0.050
0 _
8 _
0.010
0.020
0.228
0.244
MC34063A, MC33063A, NCV33063A
PACKAGE DIMENSIONS
PDIP−8
P, P1 SUFFIX
CASE 626−05
ISSUE L
8
NOTES:
1. DIMENSION L TO CENTER OF LEAD WHEN
FORMED PARALLEL.
2. PACKAGE CONTOUR OPTIONAL (ROUND OR
SQUARE CORNERS).
3. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
5
−B−
1
4
F
−A−
NOTE 2
L
C
J
−T−
MILLIMETERS
MIN
MAX
9.40
10.16
6.10
6.60
3.94
4.45
0.38
0.51
1.02
1.78
2.54 BSC
0.76
1.27
0.20
0.30
2.92
3.43
7.62 BSC
−−−
10_
0.76
1.01
INCHES
MIN
MAX
0.370
0.400
0.240
0.260
0.155
0.175
0.015
0.020
0.040
0.070
0.100 BSC
0.030
0.050
0.008
0.012
0.115
0.135
0.300 BSC
−−−
10_
0.030
0.040
N
SEATING
PLANE
D
H
DIM
A
B
C
D
F
G
H
J
K
L
M
N
M
K
G
0.13 (0.005)
M
T A
M
B
M
SENSEFET is a trademark of Semiconductor Components Industries, LLC.
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: [email protected]
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81−3−5773−3850
http://onsemi.com
13
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative
MC34063A/D
Similar pages