MC34063A, MC33063A, NCV33063A 1.5 A, Step−Up/Down/ Inverting Switching Regulators http://onsemi.com The MC34063A Series is a monolithic control circuit containing the primary functions required for DC−to−DC converters. These devices consist of an internal temperature compensated reference, comparator, controlled duty cycle oscillator with an active current limit circuit, driver and high current output switch. This series was specifically designed to be incorporated in Step−Down and Step−Up and Voltage−Inverting applications with a minimum number of external components. Refer to Application Notes AN920A/D and AN954/D for additional design information. MARKING DIAGRAMS 8 SOIC−8 D SUFFIX CASE 751 8 3x063 ALYWA G 1 1 Features • • • • • • • • Operation from 3.0 V to 40 V Input Low Standby Current Current Limiting Output Switch Current to 1.5 A Output Voltage Adjustable Frequency Operation to 100 kHz Precision 2% Reference Pb−Free Packages are Available 8 3x063AP1 AWL YYWWG PDIP−8 P, P1 SUFFIX CASE 626 Ipk Sense 6 2 3 Comparator + − x A L, WL Y, YY W, WW G or G Q1 100 Ipk Oscillator CT VCC 1 Switch Collector Q2 R Switch Emitter = 3 or 4 = Assembly Location = Wafer Lot = Year = Work Week = Pb−Free Package PIN CONNECTIONS Timing Capacitor 1.25 V Reference Regulator Comparator 5 Inverting Input 33063AVP AWL YYWWG 1 1 7 8 8 Drive 8 Collector S Q 1 4 GND (Bottom View) This device contains 51 active transistors. Switch Collector 1 8 Driver Collector Switch Emitter 2 7 Ipk Sense Timing Capacitor 3 6 VCC GND 4 5 Comparator Inverting Input (Top View) Figure 1. Representative Schematic Diagram ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 11 of this data sheet. © Semiconductor Components Industries, LLC, 2007 February, 2007 − Rev. 19 1 Publication Order Number: MC34063A/D MC34063A, MC33063A, NCV33063A MAXIMUM RATINGS Symbol Value Unit Power Supply Voltage Rating VCC 40 Vdc Comparator Input Voltage Range VIR −0.3 to + 40 Vdc Switch Collector Voltage VC(switch) 40 Vdc Switch Emitter Voltage (VPin 1 = 40 V) VE(switch) 40 Vdc VCE(switch) 40 Vdc Switch Collector to Emitter Voltage Driver Collector Voltage VC(driver) 40 Vdc Driver Collector Current (Note 1) IC(driver) 100 mA ISW 1.5 A Switch Current Power Dissipation and Thermal Characteristics Plastic Package, P, P1 Suffix TA = 25°C Thermal Resistance PD 1.25 W RqJA 100 °C/W SOIC Package, D Suffix TA = 25°C PD 625 mW RqJA 160 °C/W Operating Junction Temperature TJ +150 °C Operating Ambient Temperature Range TA Thermal Resistance MC34063A °C 0 to +70 MC33063AV, NCV33063A −40 to +125 MC33063A −40 to + 85 Storage Temperature Range Tstg −65 to +150 °C Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. 1. Maximum package power dissipation limits must be observed. 2. This device series contains ESD protection and exceeds the following tests: Human Body Model 4000 V per MIL−STD−883, Method 3015. Machine Model Method 400 V. 3. NCV prefix is for automotive and other applications requiring site and change control. http://onsemi.com 2 MC34063A, MC33063A, NCV33063A ELECTRICAL CHARACTERISTICS (VCC = 5.0 V, TA = Tlow to Thigh [Note 4], unless otherwise specified.) Characteristics Symbol Min Typ Max Unit fosc 24 33 42 kHz OSCILLATOR Frequency (VPin 5 = 0 V, CT = 1.0 nF, TA = 25°C) Ichg 24 35 42 mA Idischg 140 220 260 mA Discharge to Charge Current Ratio (Pin 7 to VCC, TA = 25°C) Idischg/Ichg 5.2 6.5 7.5 − Current Limit Sense Voltage (Ichg = Idischg, TA = 25°C) Vipk(sense) 250 300 350 mV Saturation Voltage, Darlington Connection ( ISW = 1.0 A, Pins 1, 8 connected) VCE(sat) − 1.0 1.3 V Saturation Voltage (Note 6) (ISW = 1.0 A, RPin 8 = 82 W to VCC, Forced b ] 20) VCE(sat) − 0.45 0.7 V hFE 50 75 − − IC(off) − 0.01 100 mA 1.225 1.21 1.25 − 1.275 1.29 − − 1.4 1.4 5.0 6.0 IIB − −20 −400 nA ICC − − 4.0 mA Charge Current (VCC = 5.0 V to 40 V, TA = 25°C) Discharge Current (VCC = 5.0 V to 40 V, TA = 25°C) OUTPUT SWITCH (Note 5) DC Current Gain (ISW = 1.0 A, VCE = 5.0 V, TA = 25°C) Collector Off−State Current (VCE = 40 V) COMPARATOR Threshold Voltage TA = 25°C TA = Tlow to Thigh Vth Threshold Voltage Line Regulation (VCC = 3.0 V to 40 V) MC33063A, MC34063A MC33063AV, NCV33063A V Regline Input Bias Current (Vin = 0 V) mV TOTAL DEVICE Supply Current (VCC = 5.0 V to 40 V, CT = 1.0 nF, Pin 7 = VCC, VPin 5 > Vth, Pin 2 = GND, remaining pins open) 4. Tlow = 0°C for MC34063A, − 40°C for MC33063A, AV, NCV33063A Thigh = +70°C for MC34063A, + 85°C for MC33063A, +125°C for MC33063AV, NCV33063A 5. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient temperature as possible. 6. If the output switch is driven into hard saturation (non−Darlington configuration) at low switch currents (≤ 300 mA) and high driver currents (≥ 30 mA), it may take up to 2.0 ms for it to come out of saturation. This condition will shorten the off time at frequencies ≥ 30 kHz, and is magnified at high temperatures. This condition does not occur with a Darlington configuration, since the output switch cannot saturate. If a non−Darlington configuration is used, the following output drive condition is recommended: IC output Forced b of output switch : w 10 IC driver – 7.0 mA * * The 100 W resistor in the emitter of the driver device requires about 7.0 mA before the output switch conducts. http://onsemi.com 3 1000 VCC = 5.0 V Pin 7 = VCC Pin 5 = GND TA = 25°C 500 200 100 50 ton 20 10 5.0 toff 2.0 200 mV/DIV V OSC, OSCILLATOR VOLTAGE (V) t on−off, OUTPUT SWITCH ON-OFF TIME ( μs) MC34063A, MC33063A, NCV33063A VCC = 5.0 V Pin 7 = VCC Pin 2 = GND 1.0 0.01 0.02 0.05 0.1 0.2 0.5 1.0 2.0 CT, OSCILLATOR TIMING CAPACITOR (nF) 5.0 10 10 ms/DIV Figure 2. Output Switch On−Off Time versus Oscillator Timing Capacitor Figure 3. Timing Capacitor Waveform VCE(sat), SATURATION VOLTAGE (V) VCE(sat), SATURATION VOLTAGE (V) 1.8 1.7 1.6 1.5 1.4 1.3 VCC = 5.0 V Pins 1, 7, 8 = VCC Pins 3, 5 = GND TA = 25°C (See Note 7) 1.2 1.1 1.0 0 0.2 0.4 0.6 0.8 1.0 1.2 IE, EMITTER CURRENT (A) 1.4 1.1 1.0 0.9 0.3 0.2 Forced b = 20 0.1 0 0 0.2 0.4 0.6 0.8 1.0 1.2 IC, COLLECTOR CURRENT(A) 1.4 1.6 Figure 5. Common Emitter Configuration Output Switch Saturation Voltage versus Collector Current 3.6 380 3.2 I CC, SUPPLY CURRENT (mA) VCC = 5.0 V Ichg = Idischg 320 300 280 260 240 220 200 −55 VCC = 5.0 V Pin 7 = VCC Pins 2, 3, 5 = GND TA = 25°C (See Note 7) 0.5 0.4 1.6 400 360 340 Darlington Connection 0.8 0.7 0.6 Figure 4. Emitter Follower Configuration Output Saturation Voltage versus Emitter Current VIPK(sense), CURRENT LIMIT SENSE VOLTAGE (V) Pins 1, 5, 8 = Open CT = 1.0 nF TA = 25°C 2.8 2.4 2.0 1.6 1.2 CT = 1.0 nF Pin 7 = VCC Pin 2 = GND 0.8 0.4 0 −25 0 25 50 75 TA, AMBIENT TEMPERATURE (°C) 100 0 125 Figure 6. Current Limit Sense Voltage versus Temperature 5.0 10 15 20 25 30 VCC, SUPPLY VOLTAGE (V) 35 40 Figure 7. Standby Supply Current versus Supply Voltage 7. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient temperature as possible. http://onsemi.com 4 MC34063A, MC33063A, NCV33063A 170 mH L 8 1 180 S Q Q2 R Q1 7 2 1N5819 Ipk Rsc 0.22 Vin 12 V OSC 6 + CT 3 CT VCC 100 + − Comp. 1.25 V Ref Reg 1500 pF 5 4 1.0 mH R2 R1 Vout 28 V/175 mA 47 k 2.2 k Vout + 330 + CO 100 Optional Filter Test Conditions Results Line Regulation Vin = 8.0 V to 16 V, IO = 175 mA 30 mV = ±0.05% Load Regulation Vin = 12 V, IO = 75 mA to 175 mA 10 mV = ±0.017% Output Ripple Vin = 12 V, IO = 175 mA 400 mVpp Efficiency Vin = 12 V, IO = 175 mA 87.7% Output Ripple With Optional Filter Vin = 12 V, IO = 175 mA 40 mVpp Figure 8. Step−Up Converter http://onsemi.com 5 MC34063A, MC33063A, NCV33063A 8 1 7 R Vout 8 7 2 Rsc Vin 1 Vout 2 Rsc Vin 6 6 R ³ 0 for constant Vin Figure 9. External Current Boost Connections for IC Peak Greater than 1.5 A 9a. External NPN Switch 9b. External NPN Saturated Switch (See Note 8) 8. If the output switch is driven into hard saturation (non−Darlington configuration) at low switch currents (≤ 300 mA) and high driver currents (≥ 30 mA), it may take up to 2.0 ms to come out of saturation. This condition will shorten the off time at frequencies ≥ 30 kHz, and is magnified at high temperatures. This condition does not occur with a Darlington configuration, since the output switch cannot saturate. If a non−Darlington configuration is used, the following output drive condition is recommended. http://onsemi.com 6 MC34063A, MC33063A, NCV33063A 8 1 S Q Q2 R Q1 7 2 Ipk Rsc 0.33 Vin 25 V OSC 6 100 + CT 1N5819 3 L CT VCC + − 1.25 V Ref Reg Comp. 220 mH 470 pF 5 4 3.6 k R1 1.0 mH Vout 5.0 V/500 mA R2 + 1.2 k 470 + CO Vout 100 Optional Filter Test Conditions Results Line Regulation Vin = 15 V to 25 V, IO = 500 mA 12 mV = ±0.12% Load Regulation Vin = 25 V, IO = 50 mA to 500 mA 3.0 mV = ±0.03% Output Ripple Vin = 25 V, IO = 500 mA 120 mVpp Short Circuit Current Vin = 25 V, RL = 0.1 W 1.1 A Efficiency Vin = 25 V, IO = 500 mA 83.7% Output Ripple With Optional Filter Vin = 25 V, IO = 500 mA 40 mVpp Figure 10. Step−Down Converter 8 1 1 V 8 7 Vout Rsc Vin 7 2 2 Rsc 6 Vin 6 Figure 11. External Current Boost Connections for IC Peak Greater than 1.5 A 11a. External NPN Switch 11b. External PNP Saturated Switch http://onsemi.com 7 MC34063A, MC33063A, NCV33063A 8 1 S Q Q2 R Q1 7 2 Ipk Rsc 0.24 OSC 6 Vin 4.5 V to 6.0 V 88 mH L CT VCC 3 + 100 + − Comp. + 1.25 V Ref Reg 5 1500 pF 1N5819 4 1.0 mH R1 Vout −12 V/100 mA 953 R2 1000 mf 8.2 k + Vout CO + 100 Optional Filter Test Conditions Results Line Regulation Vin = 4.5 V to 6.0 V, IO = 100 mA 3.0 mV = ± 0.012% Load Regulation Vin = 5.0 V, IO = 10 mA to 100 mA 0.022 V = ± 0.09% Output Ripple Vin = 5.0 V, IO = 100 mA 500 mVpp Short Circuit Current Vin = 5.0 V, RL = 0.1 W 910 mA Efficiency Vin = 5.0 V, IO = 100 mA 62.2% Output Ripple With Optional Filter Vin = 5.0 V, IO = 100 mA 70 mVpp Figure 12. Voltage Inverting Converter 8 1 1 Vout 8 7 2 7 Vout Vin 3 6 Vin 2 3 + 6 + 4 4 Figure 13. External Current Boost Connections for IC Peak Greater than 1.5 A 13a. External NPN Switch 13b. External PNP Saturated Switch http://onsemi.com 8 MC34063A, MC33063A, NCV33063A 5.45′′ 2.500′′ (Top view, copper foil as seen through the board from the component side) MC34063A MC34063A MC34063A (Top View, Component Side) *Optional Filter. Figure 14. Printed Circuit Board and Component Layout (Circuits of Figures 8, 10, 12) INDUCTOR DATA Converter Inductance (mH) Turns/Wire Step−Up 170 38 Turns of #22 AWG Step−Down 220 48 Turns of #22 AWG Voltage−Inverting 88 28 Turns of #22 AWG All inductors are wound on Magnetics Inc. 55117 toroidal core. http://onsemi.com 9 MC34063A, MC33063A, NCV33063A Calculation Step−Up ton/toff V out ) V F * V in(min) V in(min) * V sat (ton + toff) Ipk(switch) 2I CO ǒ out(max) 10−5 ǒ 4.0 x Ǔ t on ) 1 t off Ǔ off t on ) 1 t off (ton + toff) − toff t 10−5 (ton + toff) − toff 4.0 x 10−5 ton ton 2I out(max) 0.3/Ipk(switch) 9 t on ) t off t on ) 1 t off ton (V in(min) * V sat) I pk(switch) 1 f t on ) t (ton + toff) − toff 4.0 x |V out| ) V F V * V sat in 1 f off t on ) 1 t off CT Voltage−Inverting V out ) V F * V sat * V out in(min) t on ) t ton L(min) V 1 f toff Rsc Step−Down on(max) ǒ 0.3/Ipk(switch) 2I Ǔ (V in(min) * V sat * V out) I pk(switch) t I pk(switch)(t on ) t off) 8V ripple(pp) I outt on V ripple(pp) on(max) ǒ out(max) ǒ Ǔ t on ) 1 t off 0.3/Ipk(switch) (V in(min) * V sat) I pk(switch) 9 Ǔ t on(max) I outt on V ripple(pp) Vsat = Saturation voltage of the output switch. VF = Forward voltage drop of the output rectifier. The following power supply characteristics must be chosen: ǒ Ǔ Vin − Nominal input voltage. Vout − Desired output voltage, |V out| + 1.25 1 ) R2 R1 Iout − Desired output current. fmin − Minimum desired output switching frequency at the selected values of Vin and IO. Vripple(pp) − Desired peak−to−peak output ripple voltage. In practice, the calculated capacitor value will need to be increased due to its equivalent series resistance and board layout. The ripple voltage should be kept to a low value since it will directly affect the line and load regulation. NOTE: For further information refer to Application Note AN920A/D and AN954/D. Figure 15. Design Formula Table http://onsemi.com 10 MC34063A, MC33063A, NCV33063A ORDERING INFORMATION Package Shipping † SOIC−8 98 Units / Rail MC33063ADG SOIC−8 (Pb−Free) 98 Units / Rail MC33063ADR2 SOIC−8 2500 Units / Tape & Reel SOIC−8 (Pb−Free) 2500 Units / Tape & Reel PDIP−8 50 Units / Rail PDIP−8 (Pb−Free) 50 Units / Rail SOIC−8 98 Units / Rail MC33063AVDG SOIC−8 (Pb−Free) 98 Units / Rail MC33063AVDR2 SOIC−8 Device MC33063AD MC33063ADR2G MC33063AP1 MC33063AP1G MC33063AVD MC33063AVDR2G SOIC−8 (Pb−Free) NCV33063AVDR2* SOIC−8 NCV33063AVDR2G* MC33063AVP 2500 Units / Tape & Reel SOIC−8 (Pb−Free) PDIP−8 50 Units / Rail PDIP−8 (Pb−Free) 50 Units / Rail SOIC−8 98 Units / Rail MC34063ADG SOIC−8 (Pb−Free) 98 Units / Rail MC34063ADR2 SOIC−8 2500 Units / Tape & Reel SOIC−8 (Pb−Free) 2500 Units / Tape & Reel PDIP−8 50 Units / Rail PDIP−8 (Pb−Free) 50 Units / Rail MC33063AVPG MC34063AD MC34063ADR2G MC34063AP1 MC34063AP1G †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D. *NCV33063A: Tlow = −40°C, Thigh = +125°C. Guaranteed by design. NCV prefix is for automotive and other applications requiring site and change control. http://onsemi.com 11 MC34063A, MC33063A, NCV33063A PACKAGE DIMENSIONS SOIC−8 NB D SUFFIX CASE 751−07 ISSUE AG NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. 751−01 THRU 751−06 ARE OBSOLETE. NEW STANDARD IS 751−07. −X− A 8 5 S B 1 0.25 (0.010) M Y M 4 K −Y− G C N X 45 _ DIM A B C D G H J K M N S SEATING PLANE −Z− 0.10 (0.004) H D 0.25 (0.010) M Z Y S X M J S SOLDERING FOOTPRINT* 1.52 0.060 7.0 0.275 4.0 0.155 0.6 0.024 1.270 0.050 SCALE 6:1 mm Ǔ ǒinches *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. http://onsemi.com 12 MILLIMETERS MIN MAX 4.80 5.00 3.80 4.00 1.35 1.75 0.33 0.51 1.27 BSC 0.10 0.25 0.19 0.25 0.40 1.27 0_ 8_ 0.25 0.50 5.80 6.20 INCHES MIN MAX 0.189 0.197 0.150 0.157 0.053 0.069 0.013 0.020 0.050 BSC 0.004 0.010 0.007 0.010 0.016 0.050 0 _ 8 _ 0.010 0.020 0.228 0.244 MC34063A, MC33063A, NCV33063A PACKAGE DIMENSIONS PDIP−8 P, P1 SUFFIX CASE 626−05 ISSUE L 8 NOTES: 1. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL. 2. PACKAGE CONTOUR OPTIONAL (ROUND OR SQUARE CORNERS). 3. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 5 −B− 1 4 F −A− NOTE 2 L C J −T− MILLIMETERS MIN MAX 9.40 10.16 6.10 6.60 3.94 4.45 0.38 0.51 1.02 1.78 2.54 BSC 0.76 1.27 0.20 0.30 2.92 3.43 7.62 BSC −−− 10_ 0.76 1.01 INCHES MIN MAX 0.370 0.400 0.240 0.260 0.155 0.175 0.015 0.020 0.040 0.070 0.100 BSC 0.030 0.050 0.008 0.012 0.115 0.135 0.300 BSC −−− 10_ 0.030 0.040 N SEATING PLANE D H DIM A B C D F G H J K L M N M K G 0.13 (0.005) M T A M B M SENSEFET is a trademark of Semiconductor Components Industries, LLC. ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada Email: [email protected] N. American Technical Support: 800−282−9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81−3−5773−3850 http://onsemi.com 13 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative MC34063A/D