NJRC NJM2275 Vhf/uhf band rf amplifier Datasheet

NJM2275
VHF/UHF BAND RF AMPLIFIER
GENERAL DESCRIPTION
PACKAGE OUTLINE
The NJM2275 is a low current, low voltage RF amplifier,
especially designed for VHF/UHF band.
The center frequency of this narrow band amplifier is
changed by external components.
NJM2275F1
FEATURES
Wide Operating Voltage
Low Operating Current
High Gain
Power Gain
Voltage Gain
Operating Frequency band
High Isolation (OUT to IN)
Bipolar Technology
Package Outline
1.8V to 6V
0.8mA type. @ V+ =1.9V, no signal input
15dB @1.9V, 400MHz input
30dB @1.9V, 400MHz input, 1kΩ load
Up to 800MHz
45dB @1.9V, 400MHz
SOT23-6 (MTP6)
PIN CONFIGULATION
Orientation Mark
1
6
2
5
3
4
Pin Function
1. RF IN
2. GND
3. BIAS CAP
4. RF OUT
5. IREF
6. V+
Top View
Simplified Block Diagram
RF IN
1
GND
2
BIAS CAP
3
Ver.2005-06-01
V+
6
I REF
5
RF OUT
4
RF IN
V+
1
6
GND
I REF
2
5
BIAS CAP
3
RF OUT
4
-1-
NJM2275
ABSOLUTE MAXIMUM RATINGS
PARAMETER
(Ta=25°C)
SYMBOL
RATINGS
UNIT
Supply Voltage
V+
10.0
V
Power Dissipation
PD
200
mW
RF Input Level
Pinmax
6
dBm
Operating Temperature
Topr
- 40 to + 85
°C
Storage Temperature
Tstg
- 40 to +125
°C
RECOMMENDED OPERATING CONDITIONS
PARAMETER
Supply Voltage
SYMBOL
TEST CONDITIONS
V+
(Ta=25°C)
MIN.
TYP.
MAX.
UNIT
1.8
1.9
6.0
V
MIN.
TYP.
MAX.
UNIT
-
0.8
1.0
mA
-
15
-
dB
-
30
-
dB
-
2.2
-
dB
-
-8
-
dB
-
- 20
-
dB
-
45
-
dB
-
- 28
-
dBm
ELECTRICAL CHARACTERISTICS
(Ta=25°C, V+=1.9V, fin=400MHz, unless otherwise noted)
PARAMETER
SYMBOL
Operating Current
Icc
Power Gain
PG
Voltage Gain
VG
Noise Figure
NF
Input Return Loss
l S 11l
Output Return Loss
l S 22l
RF OUT - RF IN Isolation
I SL
Power Input at 1dB compression Point
P–1dB
Ver.2005-06-01
TEST CONDITIONS
No signal
Pin= - 40dBm
Test circuit 1
Pin= - 40dBm
Test circuit 2
Test Circuit 3
Pin= - 40dBm
Test Circuit 4
Pin= - 40dBm
Test Circuit 4
Pin= - 40dBm
Test Circuit1
Test Circuit1
-2-
NJM2275
TEST CIRCUIT
These test circuits allow the measurement of all parameters described in “ELECTRICAL CHARACTERISTICS”.
Test Circuit 1 for Icc, PG , P–1dB and Pin vs. Pout
L in
27n
C in
1000p
SG
(50Ω)
RF IN
V+
1
6
GND
I REF
2
5
Cb BIAS CAP
1000p
3
V+
Cv
1000p
Cref
1000p
CL
2p
RF OUT
4
Lout Cout
15n
8p
RL
0Ω
Spectrum
Analyzer
(Zin=50Ω)
Test Circuit 2 for VG
L in
27n
SG
(50Ω)
C in
1000p
RF IN
V+
1
6
GND
I REF
2
5
Cb BIAS CAP
1000p
3
V+
Cref
1000p
CL RL
1000p 1kΩ
RF OUT
4
Cv
1000p
Lout
27n
Cout
4p
Spectrum
Analyzer
(Zin=50Ω)
PG and VG has the following relation.
PG = Pout – Pin
VG = (Pout + Prl ) – Pin
where
Pin = input level in dBm
Pout = output level in dBm
Prl = the loss caused by the voltage drop of RL.
RL is 1000 Ω. The input impedance of spectrum analyzer Zin is 50Ω. Prl is calculated from
Prl = 20log ( ( RL + Zin) / RL)
Prl = 20 log (1050 / 50 )
Ver.2005-06-01
-3-
NJM2275
Test Circuit 3 for NF
L in
27n
C in
1000p
RF IN
V+
1
6
GND
I REF
2
5
Cb BIAS CAP
1000p
3
V+
Cv
1000p
Cref
1000p
CL
2p
RF OUT
4
Lout Cout
15n
8p
NF
m eter
Test Circuit 4 for lS11l and lS22l
L in
27n
C in
1000p
Cb1
1000p
RF IN
V+
1
6
GND
I REF
2
5
BIAS CAP
3
V+
Cv
1000p
Cref
1000p
CL
2p
RF OUT
4
Lout Cout
15n
8p
Netw ork
Analyzer
Test Circuit 5 for S-Parameters (this item is not specified in “ELECTRICAL CHARACTERISTICS”)
Cb1
1000p
RF IN
V+
1
6
GND
I REF
2
5
BIAS CAP
3
V+
RF OUT
Cv1
1000p
Cv2
0.1u
Cref1
1000p
Cref2
0.1u
4
Cb2
0.1u
Netw ork Analyzer
Port1
Port2
HP8753D
Ver.2005-06-01
-4-
NJM2275
EVALUATION PC BOARD
The evaluation board is useful for your design and to have more understanding of the usage and performance of
this device. This circuit is the same as TEST CIRCUIT. Note that this board is not prepared to show the
recommendation of pattern and parts layout.
Circuit Diagram
V+
C in
1000p
L in
27n
RF IN
V+
1
6
GND
I REF
2
5
RF IN
Cb BIAS CAP
1000p
3
Cv
1000p
Cref
1000p
CL
2p
RF OUT
4
RL
0Ω
Lout Cout
15n
8p
RF OUT
Evaluation PC Board
V
+
Lout
1608
Cv 1608
Cout 1608
RFIN
Cin
Lin
1608
1608
Cl
Rl
1608
1608
RFOUT
Cref
1608
①
Cb
1608
Pin1
This evaluation board is designed to have the maximum value of PG at 400MHz.
By using the value of Test Circuit2, this board can have the maximum value of VG at 400MHz.
Cref is effective to obtain good NF. However, if the ground has a large noisy signal, NF may become worse.
Ver.2005-06-01
-5-
NJM2275
TERMINAL FUNCTION (Ta=25°C, V+=1.9 V)
Pin No.
SYMBOL
EQUIVARENT CIRCUIT
VOLTAGE
FUNCTION
RF Input
6
2k
1
1
RF IN
1.09V
3
500
2
2
GND
--
--
Bias Capacitance
An external decoupling capacitor
is placed between this pin and
ground.
6
2k
1
3
BIAS CAP
Ground
0.33V
3
500
2
RF Output
6
5k
4
RF OUT
4
V+
2
6
5
IREF
5
70
0.75V
2
Supply Voltage
ESD protection transistor exists
between V+ and ground.
6
6
V+
Reference of Current Source
An external decoupling capacitor
is placed between this pin and
ground. An external resistor from
this pin to ground can controls the
reference current of current
source and the related
performances, such as NF and
gain.
-2
Ver.2005-06-01
-6-
NJM2275
TYPICAL CHARACTERISTICS ( Ta=25°C, V+=1.9V, unless otherwise noted )
Operating Current Icc versus Supply Voltage V+
Power Gain PG versus Supply Voltage V+
1.4
25
No signal
25°C
1.2
20
PG(dB)
1
Icc(mA)
Test circuit 1
85°C
0.8
125°C
0.6
-40°C
0.4
-40°C
25°C
85°C
125°C
15
10
0.2
5
0
1
2
3
4
V+(V)
5
6
1
7
Pin at 1dB Compression Point P-1dB
versus Supply Voltage V+
-20
2
3
4
V+(V)
5
6
7
Voltage Gain VG versus Supply Voltage V+
40
Test circuit 1
Test circuit 2
-22
35
-28
125°C
85°C
25°C
-30
-40°C
-26
VG(dB)
P-1dB(dBm)
-24
-40°C
25°C
85°C
125°C
30
25
-32
20
-34
1
2
3
4
V+(V)
5
6
1
7
2
Noise Figure NF versus Supply Voltage V+
ISL(dB)
NF(dB)
125°C
85°C
25°C
-40°C
2.0
0.0
7
6
7
50
85°C
45
1.0
6
125°C 25°C
55
3.0
5
Test circuit 1
Test circuit 3
4.0
4
V+(
( V)
)
RF OUT-RF IN Isolation ISL
versus Supply Voltage V+
60
5.0
3
-40°C
40
1
2
Ver.2005-06-01
3
4
V+(
( V)
)
5
6
7
1
2
3
4
V+( V)
5
-7-
NJM2275
Operating Current Icc versus
Ambient Temperature Ta
1.4
Power Gain PG versus Ambient Temperature Ta
25
Test circuit 1
No signal
1.2
0.8
PG(dB)
Icc(mA)
20
6V
4V
1.9V
1
1.8V
0.6
0.4
6V
15
1.9V
1.8V
10
0.2
0
5
-50
-25
0
25
50
Ta(°C)
75
100
125
-50
Pin at 1dB Compression Point P-1dB
versus Ambient Temperature Ta
-20
0
25
50
Ta(°C)
75
100
125
Voltage Gain VG versus
Ambient Temperature Ta
40
Test circuit 1
-25
Test circuit 2
-22
35
P-1dB(dBm)
-24
1.8V,1.9V,6V
VG(dB)
-26
-28
6V
30
1.9V
1.8V
-30
25
-32
-34
20
-50
-25
0
25
50
Ta(°C)
75
100
125
-50
-25
Noise Figure NF versus Ambient Temperature Ta
5.0
60
Test circuit 3
4.0
25
50
Ta(°C)
ISL(dB)
3.0
2.0
4V, 6V
0.0
100
125
Test circuit 1
6V 4V
50
1.9V
1.8V
45
1.0
75
RF OUT-RF IN Isolation ISL versus
Ambient Tempeature Ta
55
1.8V, 1.9V
NF (dB)
0
40
-50
-25
Ver.2005-06-01
0
25
50
Ta(°C)
75
100
125
-50
-25
0
25
50
Ta( °C)
75
100
125
-8-
NJM2275
10
V+=1.9V
fin=400MHz
Pout
20
10
8
-20
6
-30
7
12
6
10
5
2
0
-60
-50
-40
-30
-20
-10
0
10
8
4
NF
6
Icc
-50
3
4
2
2
1
0
20
0
380
390
400
fin (MHz)
Pin(dBm)
Input Return Loss |S11| versus
Supply Voltage V+
0
8
PG
14
4
-40
9
16
PG (dB)
-10
10
18
Icc(mA)
Pout(dBm)
0
12
Power Gain PG/Noise Figure NF versus
Frequency fin
NF (dB)
Output Power Pout/Operating Current Icc
versus Input Power Pin
410
420
Output Return Loss |S22| versus
Supply Voltage V+
-10
Test circuit 4
Test circuit 4
|S22| (dB)
|S11| (dB)
-40°C
-5
125°C
85°C
25°C
-40°C
-10
-15
-15
125°C 25°C
-20
85°C
-25
0
1
2
3
4
5
6
7
0
1
2
3
V+ (V)
Input Return Loss |S11| versus
Ambient Temperature Ta(°C)
0
4
5
6
7
V+ (V)
Output Return Loss |S22| versus
Ambient Temperature Ta(°C)
-10
Test circuit 4
Test circuit 4
-5
|S22| (dB)
|S11| (dB)
4V, 6V
-10
1.8V, 1.9V
-15
1.8V
1.9V
-20
4V
-15
6V
-25
-50
-25
Ver.2005-06-01
0
25
50
Ta(°C)
75
100
125
-50
-25
0
25
50
Ta(°C)
75
100
125
-9-
NJM2275
S Paramater (reference)
Input Reflection Coefficient S11
versus Frequency
Test circuit 5
0
-2
-2
-4
-4
S22 (dB)
S11 (dB)
0
Output Reflection Coefficient S22
Test circuit 5
versus Frequency
-6
-6
-8
-8
-10
-10
0
200
400
600
Frequency (MHz)
800
0
1000
Forward Transmission Coefficient S12
Test circuit 5
versus Frequency
0
200
400
600
Frequency (MHz)
800
1000
Reverse Transmission Coefficient S21
Test circuit 5
versus Frequency
10
-10
8
-20
S21 (dB)
S12 (dB)
-30
-40
-50
6
4
-60
-70
2
-80
0
-90
0
200
MHz
50
100
300
322
400
430
500
700
1000
Ver.2005-06-01
400
600
Frequency (MHz)
800
1000
0
200
400
600
Frequency (MHz)
800
S11
S21
S12
S22
mag(units) ang(deg) mag(units) ang(deg) mag(units) ang(deg) mag(units) ang(deg)
0.95
-2.16
2.23
178.17
0.002
81.16
1.00
-0.42
0.91
-14.64
2.14
161.70
0.004
-162.40
0.99
-3.27
0.84
-45.83
1.99
130.37
0.003
1.93
0.99
-10.85
0.82
-46.06
2.02
125.33
0.004
109.90
0.98
-9.94
0.75
-57.89
1.92
112.13
0.003
115.87
0.98
-12.42
0.75
-61.93
1.91
107.89
0.003
143.47
0.98
-13.94
0.70
-71.95
1.82
96.80
0.005
62.77
0.98
-16.36
0.54
-100.22
1.61
67.85
0.002
160.15
0.96
-21.84
0.39
-146.15
1.35
26.94
0.008
60.40
0.92
-34.32
- 10 -
1000
NJM2275
S11
S22
Test circuit 5
+j50
+j50
+j25
0
25
Test circuit 5
+j25
+j100
50
10MHz
40MHz
100MHz
150
1000MHz
0
25
+j100
50
10MHz
40MHz
100MHz
300MHz
400MHz
500MHz
700MHz
800MHz
1000MHz
150
800MHz
700MHz
500MHz
-j25
300MHz
400MHz
-j100
-j50
-j25
-j100
-j50
[CAUTION]
The specifications on this databook are only
given for information , without any guarantee
as regards either mistakes or omissions. The
application circuits in this databook are
described only to show representative usages
of the product and not intended for the
guarantee or permission of any right including
the industrial rights.
Ver.2005-06-01
- 11 -
Similar pages