LTC5564 UltraFast™ 7ns Response Time 15GHz RF Power Detector with Comparator DESCRIPTION FEATURES n n n n n n n n n Temperature Compensated Schottky RF Peak Detector Wide Input Frequency Range: 600MHz to 15GHz† Wide Input Power Range: –24dBm to 16dBm 7ns Typical Response Time 75MHz Demodulation Bandwidth Programmable Gain Settings for Improved Sensitivity Adjustable Amplifier Output Offset Voltage High Speed Comparator with Latch Enable: 9ns Typical Response Time 16-Lead 3mm × 3mm QFN Package APPLICATIONS n n n n n n n n n RF Signal Presence Detectors for: 802.11a, 802.11b, 802.11g, 802.15, Optical Data Links, Wireless Data Modems, Wireless and Cable Infrastructure 5.8GHz ISM Band Radios MMDS Microwave Links PA Power Supply Envelope Tracking Control Fast Alarm RF Power Monitor Envelope Detector Ultra-Wideband Radio Radar Detector The LTC®5564 is a precision, RF power detector for applications in the 600MHz to 15GHz frequency range. The LTC5564 operates with input power levels from –24dBm to 16dBm. A temperature compensated Schottky diode peak detector, gain-selectable operational amplifier, and fast comparator are combined in a small 16-lead 3mm × 3mm QFN package. The RF input signal is peak detected and then sensed by both a comparator and amplifier. The comparator provides a 9ns response time to input levels exceeding VREF along with a latch enable/disable function. The gain selectable operational amplifier provides a 350V/μs slew rate and 75MHz of demodulation bandwidth to the analog output. VOUTADJ and VREF pins allow for the adjustment of VOUT offset and VCOMP switch point voltages, respectively. L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks and UltraFast is a trademark of Linear Technology Corporation. All other trademarks are the property of their respective owners. †Higher frequency operation is achievable with reduced performance. Consult the factory for more information. SIMPLIFIED BLOCK DIAGRAM VCCRF VCCA VOUT vs Input Power 2.7GHz VCCP LEN VP VCOMP VBIAS + – VREF VOUTADJ + – VOUT PROGRAMMABLE FEEDBACK ARRAY 5564 BD PINS 3, 4, EXPOSED PAD PIN 17 G1 G0 VOUT OUTPUT VOLTAGE (mV) RFIN 3400 3200 VCC = 5V 3000 TA = 25°C 2800 2600 GAIN8 2400 2200 GAIN4 2000 1800 1600 1400 GAIN1 1200 1000 800 600 GAIN2 400 200 0 –24 –20 –16 –12 –8 –4 0 4 8 12 16 RFIN POWER (dBm) 5564 TA01b 5564f 1 LTC5564 ABSOLUTE MAXIMUM RATINGS PIN CONFIGURATION (Note 1) Supply Voltages VCCRF = VCCA = VCCP ............................................5.8V RFIN Voltage for VCCRF ≤ 5.5V ....................(VCCRF ± 2V) RFIN Power .........................................................16dBm ICOMP, IVOUT ......................................................... ±10mA VOUTADJ, VREF, VCOMP, VOUT, G0, G1, LEN ...–0.3V to VCC Operating Temperature Range (Note 2)....–40°C to 85°C Max Junction Temperature .................................. 125°C Storage Temperature Range .................. –65°C to 150°C VCOMP VREF VCCRF NC TOP VIEW 16 15 14 13 RFIN 1 12 VCCA NC 2 11 VCCP 17 GND GND 3 10 VOUT 9 NC 5 6 7 8 LEN VOUTADJ G0 G1 GND 4 UD PACKAGE 16-LEAD (3mm w 3mm) PLASTIC QFN TJMAX = 125°C, θJA = 68°C/W, θJC = 7.5°C/W EXPOSED PAD (PIN 17) IS GND, MUST BE SOLDERED TO PCB ORDER INFORMATION LEAD FREE FINISH TAPE AND REEL PART MARKING PACKAGE DESCRIPTION TEMPERATURE RANGE LTC5564IUD#PBF LTC5564IUD#TRPBF LFRF 16-Lead (3mm × 3mm) Plastic QFN –40°C to 85°C Consult LTC Marketing for parts specified with wider operating temperature ranges. Consult LTC Marketing for information on non-standard lead based finish parts. For more information on lead free part marking, go to: http://www.linear.com/leadfree/ For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/ ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C. Supply voltage = VCCRF = VCCA = VCCP = 5V, GAIN1, CLOAD = 10pF, no RF input signal, unless otherwise noted. PARAMETER CONDITIONS MIN l Supply Voltage TYP 3.0 Supply Current MAX 5.5 44 UNITS V mA Amplifier Characteristics VOUT Output Offset Supply Voltage = 5V, No RFIN GAIN1 GAIN2 GAIN4 GAIN8 Supply Voltage = 3.3V, No RFIN GAIN1 GAIN2 GAIN4 GAIN8 l l 195 195 290 295 315 360 395 395 mV mV mV mV l l 185 185 280 280 290 315 385 385 mV mV mV mV 5564f 2 LTC5564 ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C. Supply voltage = VCCRF = VCCA = VCCP = 5V, GAIN1, CLOAD = 10pF, no RF input signal, unless otherwise noted. PARAMETER CONDITIONS VOUT Slew Rate Rise/Fall Supply Voltage = 5V, VOUT 10% to 90%, ΔVOUT = 1.1V (Note 3) GAIN1, Pin = 10dBm to 16dBm GAIN2, Pin = 4dBm GAIN4, Pin = –2dBm GAIN8, Pin = –8dBm 350/70 185/70 120/70 50/50 V/μs V/μs V/μs V/μs Supply Voltage = 3.3V, VOUT 10% to 90%, ΔVOUT = 1.1V (Note 3) GAIN1, Pin = 10dBm to 16dBm GAIN2, Pin = 4dBm GAIN4, Pin = –2dBm GAIN8, Pin = –8dBm 325/70 185/70 120/70 50/50 V/μs V/μs V/μs V/μs 75 52 35 15 MHz MHz MHz MHz Demodulation Bandwidth MIN (Notes 4, 5) GAIN1, VOUT = 500mV GAIN2, VOUT = 500mV GAIN4, VOUT = 500mV GAIN8, VOUT = 500mV TYP MAX UNITS VOUTADJ Input Range GAIN1 ΔVOUT = ±100mV (Note 5) VOUT Load Capacitance (Note 5) VOUT Output Current Sourcing, RL = 2k VOUT Response Time Supply Voltage = 5V, RFIN Step to 50% VOUT (Note 3) GAIN1, Pin = 10dBm to 16dBm GAIN2, Pin = 4dBm GAIN4, Pin = –2dBm GAIN8, Pin = –8dBm 7.0 9.0 11.0 14.0 ns ns ns ns Supply Voltage = 3.3V, RFIN Step to 50% VOUT (Note 3) GAIN1, Pin = 10dBm to 16dBm GAIN2, Pin = 4dBm GAIN4, Pin = –2dBm GAIN8, Pin = –8dBm 7.1 9.0 11.0 14.0 ns ns ns ns VOUT Output Voltage Swing 0/225 mV 10 1.7 Supply Voltage = 3V pF mA 1.4 V Comparator Characteristics Comparator Response Time 10dBm to 16dBm RFIN Step to VCOMP 50% (Note 3) Comparator Hysteresis IVREF Input Current 9 ns 10 mV –2.3 μA 0.6 to 15 GHz RF Characteristics RFIN Frequency Range (Note 6) RFIN AC Input Resistance Frequency = 1000MHz, Power Level = 0dBm RFIN Input Shunt Capacitance Frequency = 1000MHz, Power Level = 0dBm RFIN Input Power Range (Note 6) 135 Ω 0.77 pF –24 to 16 dBm Digital I/O LEN VIL/VIH 0.8 VCCA – 0.8 V G0 VIL/VIH 0.8 VCCA – 0.8 V G1 VIL/VIH 0.8 VCCA – 0.8 V Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime. Note 2: The LTC5564 is guaranteed functional within the operating temperature range from –40°C to 85°C. Note 3: RFIN step from no power to stated level. Note 4: See typical curve for bandwidth vs output voltage. Note 5: See Applications Information section. Note 6: Specification is guaranteed by design and not 100% tested in production. 5564f 3 LTC5564 TYPICAL PERFORMANCE CHARACTERISTICS Demodulation Bandwidth 30 VOUT = 500mV VOUT –3dB CROSSOVER (MHz) 20 GAIN (dB) 10 0 –10 –20 –30 –40 –50 0.01 GAIN8 GAIN4 GAIN2 GAIN1 0.1 VOUT Pulse Response, PIN = 8dBm Demodulation Bandwidth vs VOUT 80 GAIN1 70 GAIN2 60 50 GAIN4 40 VOUT 500mV/DIV ASK MODULATED RF INPUT SIGNAL START 30 20 GAIN8 VCC = 5V ASK MODULATION FREQUENCY 2.7GHz GAIN1 10 1 10 FREQUENCY (MHz) 100 0 200 1000 85°C 250 300 350 25°C 400 –40°C 450 5564 G03 10ns/DIV 500 VOUT (mV) 5564 G01 5564 G02 VOUT Offset vs Temperature GAIN1 VOUT Offset vs Supply Voltage VOUT Pulse Response = –10dBm 400 350 GAIN8 GAIN4 GAIN2 GAIN1 310 VOUT (mV) VOUT (mV) ASK MODULATED RF INPUT SIGNAL START 300 AVERAGE 290 270 VCC = 5V ASK MODULATION FREQUENCY 2.7GHz GAIN1 –3 STDEV 250 250 5564 G04 10ns/DIV 3 STDEV 330 350 VOUT 50mV/DIV VCC = 5V 3.5 3 4 4.5 VCC (V) 5 230 –40 5.5 –20 20 40 0 TEMPERATURE (°C) 60 5565 G06 5564 G05 VOUT Offset vs Temperature GAIN4 VOUT Offset vs Temperature GAIN2 410 VCC = 5V 310 VOUT (mV) VOUT (mV) 330 AVERAGE 290 590 VCC = 5V 390 3 STDEV VOUT Offset vs Temperature GAIN8 3 STDEV 370 490 350 440 330 AVERAGE 310 290 250 –40 –3 STDEV –20 20 40 0 TEMPERATURE (°C) 60 80 5565 G07 390 AVERAGE 340 240 –3 STDEV 250 230 –40 3 STDEV 290 270 270 VCC = 5V 540 VOUT (mV) 350 80 –3 STDEV 190 –20 20 40 0 TEMPERATURE (°C) 60 80 5565 G08 140 –40 –20 20 40 0 TEMPERATURE (°C) 60 80 5565 G09 5564f 4 LTC5564 TYPICAL PERFORMANCE CHARACTERISTICS VOUT OUTPUT VOLTAGE (mV) 42 40 38 36 34 3 3.5 4 5 4.5 VCC (V) 5.5 VOUT vs Input Power 5.8GHz 1600 VOUT OUTPUT VOLTAGE (mV) VOUT OUTPUT VOLTAGE (mV) 2800 –40°C 1000 25°C 1200 85°C 400 –40°C 25°C 800 600 85°C 400 200 800 5564 G12 3200 Comparator Rising Edge Threshold vs Frequency 2800 2400 2000 1600 1200 400 0 –10 800 14 18 GAIN2 VOUT/RFIN Histogram 25 20 PERCENT OF UNITS (%) 1000 –2 2 6 10 RFIN POWER (dBm) 30 PERCENT OF UNITS (%) 1200 –6 5564 G15 35 VCC = 5V TA = 25°C RFIN = 10dBm 1400 VREF RISING 800 GAIN1 VOUT/RFIN Histogram 1600 VCC = 5V TA = 25°C FREQUENCY = 2.7GHz 5564 G14 5564 G13 1800 85°C 1200 0 –10 –8 –6 –4 –2 0 2 4 6 8 10 12 14 16 RFIN POWER (dBm) 0 –10 –8 –6 –4 –2 0 2 4 6 8 10 12 14 16 RFIN POWER (dBm) 0 –10 –8 –6 –4 –2 0 2 4 6 8 10 12 14 16 RFIN POWER (dBm) 2000 1600 3600 1200 2000 800 25°C 2000 Comparator Threshold Voltage vs RF Input Power VCC = 5V GAIN1 1400 2400 1600 2400 400 1800 VCC = 5V GAIN1 –40°C 2800 VOUT vs Input Power 12GHz 3200 RISING EDGE VREF (mV) VCC = 5V 3200 GAIN1 5564 G11 5564 G10 25 20 15 10 15 10 5 5 600 400 3600 RISING THRESHOLD VOLTAGE (mV) ICC (mA) 44 3400 3200 VCC = 5V 3000 TA = 25°C 2800 2600 GAIN8 2400 2200 GAIN4 2000 1800 1600 1400 GAIN1 1200 1000 800 600 GAIN2 400 200 0 –24 –20 –16 –12 –8 –4 0 4 8 12 16 RFIN POWER (dBm) VOUT OUTPUT VOLTAGE (mV) GAIN1, GAIN2 GAIN4, GAIN8 46 VOUT vs Input Power 2.7GHz VOUT vs Input Power 2.7GHz Supply Current vs Supply Voltage 48 0 0 8000 12000 4000 FREQUENCY (MHz) 16000 5564 G16 1.32 1.33 1.34 1.35 1.36 1.37 1.38 1.39 1.40 1.41 GAIN (V/V) 5564 G17 0 2.710 2.750 2.790 2.830 GAIN (V/V) 2.870 2.910 5564 G18 5564f 5 LTC5564 TYPICAL PERFORMANCE CHARACTERISTICS GAIN4 VOUT/RFIN Histogram GAIN8 VOUT/RFIN Histogram 20 GAIN2/GAIN1 Histogram 45 12 40 10 5 PERCENT OF UNITS (%) 15 PERCENT OF UNITS (%) PERCENT OF UNITS (%) 10 8 6 4 5.52 5.6 5.68 5.76 GAIN (V/V) 5.84 25 20 15 5 0 11.425 11.625 11.825 12.025 12.225 12.425 GAIN (V/V) 5.92 30 10 2 0 35 5564 G19 0 1.925 1.945 1.965 1.985 GAIN2/GAIN1 2.005 2.025 5564 G21 5564 G20 GAIN8/GAIN4 Histogram GAIN4/GAIN2 Histogram 40 15 30 PERCENT OF UNITS (%) PERCENT OF UNITS (%) 35 25 20 15 10 10 5 5 0 1.980 2.005 2.030 2.055 GAIN4/GAIN2 2.080 2.105 5564 G22 0 2.045 2.065 2.085 2.105 GAIN8/GAIN4 2.125 2.145 5564 G23 5564f 6 LTC5564 PIN FUNCTIONS RFIN (Pin 1): RF Input Voltage. A coupling capacitor must be used to connect to the RF signal source. This pin has an internal 250Ω termination, an internal Schottky diode detector and an internal 8pF reservoir capacitor. G0, G1 (Pins 7, 8): Amplifier Gain Selection. Logic low or high levels on the G0 and G1 pins will change the internal amplifier gain, bandwidth and slew rate characteristics. See the Applications Information section for gain setting codes. NC (Pins 2, 9, 16): No Connect. These pins should be left unconnected by the user for best RF performance. VOUT (Pin 10): Detector Amplifier Output. VCCP (Pin 11): High Current Power Supply Pin. GND (Pins 3, 4, Exposed Pad Pin 17): These pins should be tied to system ground. See Applications Information for best practices. VCCA (Pin 12): Analog Power Supply Pin. LEN (Pin 5): Comparator Latch Enable Input. VCOMP will be latched when LEN is high and transparent when LEN is low. VREF (Pin 14): Comparator Negative Input. Apply an external reference voltage to this pin. VOUTADJ (Pin 6): Amplifier Output Offset Adjust. When left floating, the VOUT pin of the amplifier will be at its nominal quiescent output offset value. See the Applications Information section for adjustment range. VCCRF (Pin 15): RF Power Supply Pin. VCOMP (Pin 13): Comparator Output. SIMPLIFIED BLOCK DIAGRAM VCCRF RFIN VCCA VCCP 250Ω 8pF 80μA 1.2k LEN VP VBIAS + – VCOMP + – VREF VOUTADJ 1.7k + – 1.6k 200Ω 200Ω VOUT PROGRAMMABLE FEEDBACK ARRAY 5564 F01 PINS 3, 4, EXPOSED PAD PIN 17 G1 G0 Figure 1. Simplified Block Diagram 5564f 7 LTC5564 APPLICATIONS INFORMATION Operation The LTC5564 is a fast RF detector with a high speed amplifier and comparator. This product integrates these functions to provide RF detection over frequencies ranging from 600MHz to 15GHz. These functions include an RF Schottky peak detector, internally compensated operational amplifier, and a comparator as shown in Figure 1. The LTC5564 has selectable amplifier gains, amplifier output offset adjustment and comparator latch enable capabilities. Amplifier The high speed amplifier offers four gain settings and is capable of driving a 1.7mA load with an output swing range of approximately 295mV to VCC – 1.6V. See Table 1 for gain setting operation. The VOUTADJ pin provides output DC offset adjustment to satisfy various interface requirements. Setting VOUT to 500mV also provides the maximum demodulation bandwidth in each gain mode. See Electrical and Typical Performance Characteristics curve. See Table 1 for the typical VOUTADJ voltage for the desired VOUT DC output offset in each gain setting. RF Detector The internal temperature compensated Schottky diode peak detector converts the RF input signal to a low frequency signal. The detector demonstrates excellent efficiency and linearity over a wide range of input power levels. The Schottky diode is nominally biased at 180μA and drives a parallel reservoir capacitor-resistor network of 8pF and 1.2k. Comparator The high speed comparator compares the external reference voltage on the VREF pin to the internal signal voltage VP from the peak detector and produces the output logic signal VCOMP . VP is the internal comparator positive input as shown in Figure 1. LEN provides latch enable/disable functionality as shown in Figure 2. Table 1. Gain Mode and Typical VOUTADJ Operation PIN G1 G0 GAIN MODE GND GND GAIN1 DESCRIPTION REQUIRED VOUTADJ FOR A GIVEN DC OUTPUT OFFSET Minimum Gain Setting (VOUT/RFIN ≈ 1.5dB) VOUTADJ = 0.95 • VOUT – 0.174 GND VCCA GAIN2 VOUT/RFIN Increased 6dB VOUTADJ = (VOUT – 0.07)/2.10 VCCA GND GAIN4 VOUT/RFIN Increased 12dB VOUTADJ = (VOUT + 0.05)/3.16 VCCA VCCA GAIN8 VOUT/RFIN Increased 18dB VOUTADJ = (VOUT + 0.25)/5.26 Note: Valid range for VOUT ≈ 0.195V ≤ VOUT ≤ VCC – 1.6 LEN VREF VP VCOMP 5564 F02 VOUT TRANSPARENT VOUT LATCHED VOUT TRANSPARENT Figure 2. LTC5564 Comparator Latch Enable Function 5564f 8 LTC5564 APPLICATIONS INFORMATION Propagation Delay, Slew Rate and Response Time Loading, Bypass Capacitors and Board Layout The LTC5564 has been designed for high slew rate operation. For RF input power levels of 10dBm to 16dBm and a GAIN1 setting, the internal amplifier will slew at 350V/μs. In a given gain setting slew rate will be maximized for larger input power levels. Slew rate will degrade with smaller RFIN amplitude signals or when the amplifier gain is increased. See Electrical Characteristics. The LTC5564 has been designed to directly drive a capacitive load of 10pF at VOUT. When driving a capacitive load greater than 10pF a series resistance should be added between VOUT and the load to maintain good stability. This resistance should be placed as close to VOUT as possible. See Table 2 for typical series resistor values for various capacitive loads. The LTC5564 has been designed to function as a positive peak detector. Consequently, the device responds to a rising signal at the RF detector input much more rapidly than a falling signal. Correspondingly, the rising edge of VOUT transitions much more rapidly than the falling edge transitions as shown in Figure 3. Table 2. Typical Series Resistor Values for VOUT Capacitive Loading When operating in unity gain with a 10dBm to 16dBm RF input signal, the propagation delay to fifty percent ΔVOUT is approximately 7.0ns. The operational amplifier has been internally compensated to provide 75MHz bandwidth with VOUT = 500mV and a GAIN1 mode setting. With no RF input the output offset will be approximately 290mV. Lowering the output offset will degrade bandwidth performance. See the Typical Performance Characteristics. R SERIES 0Ω 11pF to 20pF 40Ω 21pF to 100pF 68Ω Greater Than 100pF 100Ω Good layout practice and proper use of bypass capacitors will improve circuit performance and reduce the possibility of measurement error. Bypass capacitors should be used for pins VCCRF, VCCA, VCCP, VOUTADJ and VREF. Bypass capacitors should be connected as close to the LTC5564 as possible. All ground return path lengths and ohmic losses should be minimized. See Figure 5 in the Applications Information section for the demo board schematic showing these bypass capacitances. The LTC5564 return path for all supply currents is through the Pin 17 exposed pad. A high resistance path from the Pin 17 exposed pad to power supply ground will cause a VOUT output offset error. Board layout and connections that minimize ohmic losses from the Pin 17 exposed pad to power supply ground will reduce this error. Measurements being made relative to LTC5564 ground should be made as close to the Pin 17 exposed pad to reduce errors. VOUT 500mV/DIV ASK MODULATED RF INPUT SIGNAL START VCC = 5V ASK MODULATION FREQUENCY 2.7GHz GAIN1 10ns/DIV CLOAD Up to 10pF 5564 F03 Figure 3. VOUT Pulse Response, PIN = 8dBm 5564f 9 LTC5564 APPLICATIONS INFORMATION Applications In addition to power detection, the LTC5564 may be used as a demodulator for AM and ASK modulated signals. Depending on the application the RSSI may be split into two branches to provide AC-coupled data (e.g., audio) and a DC-coupled RSSI output for signal strength measurement and AGC. The LTC5564 can be used as a self-standing signal strength measurement receiver for a wide range of input signals from –24dBm to 16dBm and frequencies from 600MHz to 15GHz. 47pF 1 FROM RF MATCHING NETWORK/ANTENNA 11 15 VCC 1000pF 10pF 12 3, 4, 17 RFIN VCCP 10 VOUT VCCRF DETECT VOLTAGE LTC5564 VCCA GND 8 G1 VCOMP LEN VREF 13 + 5 G0 14 7 μC DETECT OVERVOLTAGE EVENT 5564 F04 Figure 4. 600MHz to 15GHz Power Detector VCC VREF 1000pF 15GHz RFIN 10pF 17 16 15 14 13 NC VCCRF VREF VCOMP 2.2pF 1 0.5pF 100pF 2 3 4 RFIN VCCA NC VCCP LTC5564 VOUT GND NC GND LEN VOUTADJ G0 5 LEN 6 VCOMP VCC 12 10pF 11 10 68Ω 1000pF VOUT 9 100pF G1 7 8 G1 G0 VOUTADJ 100pF 10k 10k 10k 5564 F05 Figure 5. Demo Board Schematic Optimized for 15GHz 5564f 10 LTC5564 PACKAGE DESCRIPTION UD Package 16-Lead Plastic QFN (3mm × 3mm) (Reference LTC DWG # 05-08-1691) 0.70 p0.05 3.50 p 0.05 1.45 p 0.05 2.10 p 0.05 (4 SIDES) PACKAGE OUTLINE 0.25 p0.05 0.50 BSC RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS 3.00 p 0.10 (4 SIDES) BOTTOM VIEW—EXPOSED PAD PIN 1 NOTCH R = 0.20 TYP OR 0.25 s 45o CHAMFER R = 0.115 TYP 0.75 p 0.05 15 16 PIN 1 TOP MARK (NOTE 6) 0.40 p 0.10 1 1.45 p 0.10 (4-SIDES) 2 (UD16) QFN 0904 0.200 REF 0.00 – 0.05 NOTE: 1. DRAWING CONFORMS TO JEDEC PACKAGE OUTLINE MO-220 VARIATION (WEED-2) 2. DRAWING NOT TO SCALE 3. ALL DIMENSIONS ARE IN MILLIMETERS 4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE 5. EXPOSED PAD SHALL BE SOLDER PLATED 6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE 0.25 p 0.05 0.50 BSC 5564f Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights. 11 LTC5564 TYPICAL APPLICATION 600MHz to 15GHz RF Power Detector 33pF RF INPUT RFIN VOUTADJ VCCA VOUT VCCRF VCC 1000pF 10pF LTC5564 VCCP GND G1 VCOMP LEN VREF G0 + μC 5564 TA02 RELATED PARTS PART NUMBER DESCRIPTION Schottky Peak Detectors LTC5505 RF Power Detectors with >40dB Dynamic Range LTC5507 100kHz to 1000MHz RF Power Detector LTC5508 300MHz to 7GHz RF Power Detector LTC5509 300MHz to 3GHz RF Power Detector LTC5530 300MHz to 7GHz Precision RF Power Detector LTC5531 300MHz to 7GHz Precision RF Power Detector LTC5532 300MHz to 7GHz Precision RF Power Detector LTC5536 Precision 600MHz to 7GHz RF Power Detector with Fast Comparator Output RF Log Detectors LT5534 50MHz to 3GHz Log RF Power Detector with 60dB Dynamic Range LT®5537 Wide Dynamic Range Log RF/IF Detector LT5538 75dB Dynamic Range 3.8GHz Log RF Power Detector RMS Detectors LT5570 60dB Dynamic Range RMS Detector LTC5581 6GHz RMS Power Detector, 40dB Dynamic Range LTC5587 10MHz to 6GHz RMS Detector with Digitized Output LTC5582 10GHz, 57dB Dynamic Range RMS Detector LTC5583 6GHz, Matched Dual RMS Detector Measures VSWR COMMENTS 300MHz to 3GHz, Temperature Compensated, 2.7V to 6V Supply 100kHz to 1GHz, Temperature Compensated, 2.7V to 6V Supply 44dB Dynamic Range, Temperature Compensated, SC70 Package 36dB Dynamic Range, Low Power Consumption, SC70 Package Precision VOUT Offset Control, Shutdown, Adjustable Gain Precision VOUT Offset Control, Shutdown, Adjustable Offset Precision VOUT Offset Control, Adjustable Gain and Offset 25ns Response Time, Comparator Reference Input, Latch Enable Input, –26dBm to +12dBm Input Range ±1dB Output Variation Over Temperature, 38ns Response Time, Log Linear Response Low Frequency to 1GHz, 83dB Log Linear Dynamic Range ±0.8dB Accuracy Over Temperature 40MHz to 2.7GHz, ±0.5dB Accuracy Over Temperature ±1dB Accuracy Over Temperature, Log Linear Response, 1.4mA at 3.3V 40dB Dynamic Detection Range, Integrated 12-Bit Serial Output ADC, ±1dB Accuracy Over Temperature 40MHz to 10GHz Operation, ±0.5dB Linearity Single-Ended RF Output— Requires No External Balun Transformer Up to 60dB Dynamic Range, ±0.5dB Accuracy Over Temperature, 40dB Channel-to-Channel Isolation with Single-Ended RF Inputs 5564f 12 Linear Technology Corporation LT 1210 • PRINTED IN USA 1630 McCarthy Blvd., Milpitas, CA 95035-7417 (408) 432-1900 ● FAX: (408) 434-0507 ● www.linear.com © LINEAR TECHNOLOGY CORPORATION 2010