Vishay CNY75A Optocoupler with phototransistor output Datasheet

CNY75(G) Series
Vishay Semiconductors
Optocoupler with Phototransistor Output
Description
The CNY75(G) series consists of a phototransistor
optically coupled to a gallium arsenide infraredemitting diode in a 6-lead plastic dual inline package.
The elements are mounted on one leadframe using
a coplanar technique, providing a fixed distance
between input and output for highest safety
requirements.
Applications
Circuits for safe protective separation against
electrical shock according to safety class II
(reinforced isolation):
14827
D For appl. class I – IV at mains voltage ≤ 300 V
D For appl. class I – III at mains voltage ≤ 600 V
according to VDE 0884, table 2, suitable for:
Switch-mode power supplies, line receiver, computer peripheral interface, microprocessor
system interface.
B
6
C
5
E
4
These couplers perform safety functions according
to the following equipment standards:
D VDE 0884
95 10805
VDE Standards
1
2
A (+) C (–)
3
n.c.
Optocoupler for electrical safety requirements
D IEC 950/EN 60950
Office machines (applied for reinforced isolation
for mains voltage ≤ 400 VRMS)
D VDE 0804
Telecommunication
processing
apparatus
and
data
D IEC 65
Safety for mains-operated electronic and related
household apparatus
Order Instruction
Ordering Code
CTR Ranking
CNY75A/ CNY75GA1)
63 to 125%
CNY75B/ CNY75GB1)
100 to 200%
CNY75C/ CNY75GC1)
160 to 320%
1) G = Leadform 10.16 mm; G is not marked on the body
Rev. A4, 11–Jan–99
Remarks
1 (12)
CNY75(G) Series
Vishay Semiconductors
Features
D Rated recurring peak voltage (repetitive)
Approvals:
D BSI: BS EN 41003, BS EN 60095 (BS 415),
BS EN 60950 (BS 7002),
Certificate number 7081 and 7402
VIORM = 600 VRMS
D Creepage current resistance according to
VDE 0303/IEC 112
Comparative Tracking Index: CTI = 275
D Thickness through insulation ≥ 0.75 mm
D FIMKO (SETI): EN 60950,
Certificate number 12399
D Underwriters Laboratory (UL) 1577 recognized,
file number E-76222
General features:
D Isolation materials according to UL94-VO
D Pollution degree 2
D VDE 0884, Certificate number 94778
(DIN/VDE 0110 part 1 resp. IEC 664)
VDE 0884 related features:
D Rated impulse voltage (transient overvoltage)
VIOTM = 6 kV peak
D Isolation test voltage
(partial discharge test voltage) Vpd = 1.6 kV
D Rated isolation voltage (RMS includes DC)
VIOWM = 600 VRMS (848 V peak)
D Climatic classification 55/100/21 (IEC 68 part 1)
D Special construction:
Therefore, extra low coupling capacity of
typical 0.3 pF, high Common Mode Rejection
D Low temperature coefficient of CTR
D CTR offered in 3 groups
D Coupling System A
Absolute Maximum Ratings
Input (Emitter)
Parameter
Reverse voltage
Forward current
Forward surge current
Power dissipation
Junction temperature
Test Conditions
tp ≤ 10 ms
Tamb ≤ 25°C
Symbol
VR
IF
IFSM
PV
Tj
Value
5
60
3
100
125
Unit
V
mA
A
mW
°C
Symbol
VCBO
VCEO
VECO
IC
ICM
PV
Tj
Value
90
90
7
50
100
150
125
Unit
V
V
V
mA
mA
mW
°C
Symbol
VIO
Ptot
Tamb
Tstg
Tsd
Value
3.75
250
–55 to +100
–55 to +125
260
Unit
kV
mW
°C
°C
°C
Output (Detector)
Parameter
Collector base voltage
Collector emitter voltage
Emitter collector voltage
Collector current
Collector peak current
Power dissipation
Junction temperature
Test Conditions
tp/T = 0.5, tp ≤ 10 ms
Tamb ≤ 25°C
Coupler
Parameter
AC isolation test voltage (RMS)
Total power dissipation
Ambient temperature range
Storage temperature range
Soldering temperature
2 (12)
Test Conditions
t = 1 min
Tamb ≤ 25°C
2 mm from case, t ≤ 10 s
Rev. A4, 11–Jan–99
CNY75(G) Series
Vishay Semiconductors
Electrical Characteristics (Tamb = 25°C)
Input (Emitter)
Parameter
Forward voltage
Reverse current
Junction capacitance
Test Conditions
IF = 50 mA
VR = 6 V
VR = 0, f = 1 MHz
Symbol
VF
IR
Cj
Min.
Typ.
1.25
Max.
1.6
10
Unit
V
mA
pF
Test Conditions
IC = 100 mA
IC = 1 mA
IE = 100 mA
VCE = 20 V, IF = 0
Symbol
VCBO
VCEO
VECO
ICEO
Min.
90
90
7
Max.
150
Unit
V
V
V
nA
Test Conditions
IF = 10 mA, IC = 1 mA
Symbol
VCEsat
Min.
Max.
0.3
Unit
V
VCE = 5 V, IF = 10 mA,
RL = 100
f = 1 MHz
fc
110
kHz
Ck
0.3
pF
50
Output (Detector)
Parameter
Collector base voltage
Collector emitter voltage
Emitter collector voltage
Collector emitter cut-off
current
Typ.
Coupler
Parameter
Collector emitter
saturation voltage
Cut-off frequency
Coupling capacitance
W
Typ.
Current Transfer Ratio (CTR)
Parameter
IC/IF
Test Conditions
VCE = 5 V, IF = 1 mA
VCE = 5 V, IF = 10 mA
Rev. A4, 11–Jan–99
Type
CNY75(G)A
CNY75(G)B
CNY75(G)C
CNY75(G)A
CNY75(G)B
CNY75(G)C
Symbol
CTR
CTR
CTR
CTR
CTR
CTR
Min.
0.15
0.3
0.6
0.63
1
1.6
Typ.
Max.
Unit
1.25
2
3.2
3 (12)
CNY75(G) Series
Vishay Semiconductors
Maximum Safety Ratings (according to VDE 0884) see figure 1
This device is used for protective separation against electrical shock only within the maximum safety ratings.
This must be ensured by using protective circuits in the applications.
Input (Emitter)
Parameters
Forward current
Test Conditions
Symbol
Isi
Value
130
Unit
mA
Test Conditions
Tamb ≤ 25°C
Symbol
Psi
Value
265
Unit
mW
Test Conditions
Symbol
VIOTM
Tsi
Value
6
150
Unit
kV
°C
Output (Detector)
Parameters
Power dissipation
Coupler
Parameters
Rated impulse voltage
Safety temperature
Insulation Rated Parameters (according to VDE 0884)
Parameter
Test Conditions
Partial discharge test voltage – 100%, ttest = 1 s
Routine test
Partial discharge
g test voltage
g – tTr = 60 s, ttest = 10 s,
Lot test (sample test)
(see figure 2)
Insulation resistance
VIO = 500 V
VIO = 500 V,
Tamb ≤ 100°C
VIO = 500 V,
Tamb ≤ 150°C
Symbol
Vpd
Min.
1.6
VIOTM
Vpd
RIO
RIO
6
1.3
1012
1011
RIO
109
Typ.
Max.
Unit
kV
kV
kV
W
W
W
(construction test only)
VIOTM
Ptot – Total Power Dissipation ( mW )
275
V
250
t1, t2 = 1 to 10 s
t3, t4 = 1 s
ttest = 10 s
tstres = 12 s
Psi (mW)
225
200
175
VPd
150
VIOWM
VIORM
125
100
75
Isi (mA)
50
25
0
0
0
95 10923
25
50
75
100
125
Tamb – Ambient Temperature ( °C )
Figure 1. Derating diagram
4 (12)
150
175
t3 ttest t4
t1
13930
tTr = 60 s
t2
tstres
t
Figure 2. Test pulse diagram for sample test according to
DIN VDE 0884
Rev. A4, 11–Jan–99
CNY75(G) Series
Vishay Semiconductors
Switching Characteristics of CNY75(G(A
Parameter
Delay time
Rise time
Fall time
Storage time
Turn-on time
Turn-off time
Turn-on time
Turn-off time
Test Conditions
VS = 5 V, IC = 10 mA, RL = 100 ((see figure
g
3))
W
VS = 5 V, IF = 10 mA, RL = 1 k
W ((see figure
g
4))
Symbol
td
tr
tf
ts
ton
toff
ton
toff
Typ.
2.0
2.5
2.7
0.3
4.5
3.0
10.0
25.0
Unit
s
s
s
s
s
s
s
s
Symbol
td
tr
tf
ts
ton
toff
ton
toff
Typ.
2.5
3.0
3.7
0.3
5.5
4.0
16.5
20
Unit
s
s
s
s
s
s
s
s
Symbol
td
tr
tf
ts
ton
toff
ton
toff
Typ.
2.8
4.2
4.7
0.3
7.0
5.0
11
37.5
Unit
s
s
s
s
s
s
s
s
m
m
m
m
m
m
m
m
Switching Characteristics of CNY75(G)B
Parameter
Delay time
Rise time
Fall time
Storage time
Turn-on time
Turn-off time
Turn-on time
Turn-off time
Test Conditions
VS = 5 V, IC = 10 mA, RL = 100 ((see figure
g
3))
W
VS = 5 V, IF = 10 mA, RL = 1 k
W ((see figure
4))
g
m
m
m
m
m
m
m
m
Switching Characteristics of CNY75(G)C
Parameter
Delay time
Rise time
Fall time
Storage time
Turn-on time
Turn-off time
Turn-on time
Turn-off time
Test Conditions
VS = 5 V, IC = 10 mA, RL = 100 ((see figure
g
3))
W
VS = 5 V, IF = 10 mA, RL = 1 k
Rev. A4, 11–Jan–99
W ((see figure
g
4))
m
m
m
m
m
m
m
m
5 (12)
CNY75(G) Series
Vishay Semiconductors
IF
0
+5V
IF
IC = 10 mA ; Adjusted through
input amplitude
W
RG = 50
tp
= 0.01
T
tp = 50 s
96 11698
IF
m
Channel I
50
W
100
Channel II
W
Oscilloscope
RL
CL
w 1 MW
v 20 pF
95 10891
0
t
tp
IC
100%
90%
Figure 3. Test circuit, non-saturated operation
I
0
I
F
+5V
F
I
10%
0
C
W
t
tr
R = 50
G
t
p = 0.01
T
td
m
ts
ton
t = 50 s
p
Channel I
Channel II
50
W
1k
Oscilloscope
R
1M
L
C
20 pF
L
w
v
W
14944
tp
td
tr
ton (= td + tr)
tf
toff
pulse duration
delay time
rise time
turn-on time
ts
tf
toff (= ts + tf)
storage time
fall time
turn-off time
W
Figure 4. Test circuit, saturated operation
Figure 5. Switching times
Typical Characteristics (Tamb = 25_C, unless otherwise specified)
1000.0
Coupled device
250
I F – Forward Current ( mA )
P tot – Total Power Dissipation ( mW )
300
200
Phototransistor
150
IR-diode
100
50
0
40
80
Tamb – Ambient Temperature ( °C )
Figure 6. Total Power Dissipation vs.
Ambient Temperature
6 (12)
10.0
1.0
0.1
0
96 11700
100.0
120
0
96 11862
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
VF – Forward Voltage ( V )
Figure 7. Forward Current vs. Forward Voltage
Rev. A4, 11–Jan–99
CNY75(G) Series
Vishay Semiconductors
100
VCE=5V
IF=10mA
1.4
1.3
IC – Collector Current ( mA )
CTR rel – Relative Current Transfer Ratio
1.5
1.2
1.1
1.0
0.9
0.8
0.7
VCE=5V
10
1
0.1
0.6
0.5
–30 –20 –10 0 10 20 30 40 50 60 70 80
Tamb – Ambient Temperature ( °C )
96 11918
0.01
0.1
Figure 8. Relative Current Transfer Ratio vs.
Ambient Temperature
100
10
Figure 11. Collector Current vs. Forward Current
10000
100
IF=50mA
VCE=30V
IF=0
IC – Collector Current ( mA )
ICEO– Collector Dark Current,
with open Base ( nA )
1
IF – Forward Current ( mA )
95 11040
1000
100
10
20mA
10
10mA
5mA
1
2mA
1mA
CNY75A
1
0.1
0
25
50
75
100
Tamb – Ambient Temperature ( °C )
95 11038
0.1
Figure 12. Collector Current vs. Collector Emitter Voltage
1
100
IF=50mA
VCB=5V
0.1
0.01
0.001
10mA
10
5mA
2mA
1
1mA
CNY75B
0.1
1
95 11039
20mA
IC – Collector Current ( mA )
I CB – Collector Base Current ( mA )
100
10
VCE – Collector Emitter Voltage ( V )
95 11041
Figure 9. Collector Dark Current vs.
Ambient Temperature
1
10
100
IF – Forward Current ( mA )
Figure 10. Collector Base Current vs. Forward Current
Rev. A4, 11–Jan–99
0.1
95 11042
1
10
100
VCE – Collector Emitter Voltage ( V )
Figure 13. Collector Current vs. Collector Emitter Voltage
7 (12)
CNY75(G) Series
100.0
IC – Collector Current ( mA )
IF=50mA
20mA
10mA
10.0
5mA
2mA
1.0
1mA
CNY75C
0.1
0.1
1.0
10.0
100.0
VCE – Collector Emitter Voltage ( V )
96 11919
0.8
CNY75C
0.6
0.4
0.2
20%
10%
0
1
100
10
IC – Collector Current ( mA )
1000
VCE=5V
CTR=50%
0.8
hFE – DC Current Gain
VCEsat – Collector Emitter Saturation Voltage ( V )
CTR=50%
Figure 17. Coll. Emitter Sat. Voltage vs. Coll. Current
1.0
CNY75A
0.6
0.4
20%
0.2
800
600
400
200
10%
0
1
IC – Collector Current ( mA )
95 11034
0
0.01
100
10
1
10
100
Figure 18. DC Current Gain vs. Collector Current
1.0
1000
CTR – Current Transfer Ratio ( % )
CTR=50%
0.8
CNY75B
0.6
20%
0.4
0.2
95 11043
0.1
IC – Collector Current ( mA )
95 11035
Figure 15. Coll. Emitter Sat. Voltage vs. Coll. Current
VCEsat – Collector Emitter Saturation Voltage ( V )
1.0
95 11044
Figure 14. Collector Current vs. Collector Emitter Voltage
10%
CNY75A(G)
VCE=5V
100
0
10
1
1
10
100
IC – Collector Current ( mA )
Figure 16. Coll. Emitter Sat. Voltage vs. Coll. Current
8 (12)
VCEsat – Collector Emitter Saturation Voltage ( V )
Vishay Semiconductors
0.1
95 11036
1
10
100
IF – Forward Current ( mA )
Figure 19. Current Transfer Ratio vs. Forward Current
Rev. A4, 11–Jan–99
CNY75(G) Series
Vishay Semiconductors
CNY75B(G)
VCE=5V
100
10
1
1
toff
20
10
ton
0
5
50
CNY75C(G)
Saturated Operation
VS=5V
RL=1k
m
CNY75C(G)
VCE=5V
100
10
20
15
Figure 23. Turn on / off Time vs. Forward Current
t on / t off – Turn on / Turn off Time ( s )
1000
10
IF – Forward Current ( mA )
95 11048
Figure 20. Current Transfer Ratio vs. Forward Current
CTR – Current Transfer Ratio ( % )
W
30
100
10
IF – Forward Current ( mA )
95 11045
1
40
toff
W
30
20
10
ton
0
0.1
1
100
10
IF – Forward Current ( mA )
95 11046
0
5
20
m
CNY75A(G)
Saturated Operation
VS=5V
RL=1k
40
W
30
toff
20
10
ton
20
15
Figure 24. Turn on / off Time vs. Forward Current
t on / t off – Turn on / Turn off Time ( s )
50
10
IF – Forward Current ( mA )
95 11050
Figure 21. Current Transfer Ratio vs. Forward Current
t on / t off – Turn on / Turn off Time ( m s )
CNY75B(G)
Saturated Operation
VS=5V
RL=1k
40
0
0.1
0
CNY75A(G)
Non Saturated
Operation
VS=5V
RL=100
15
W
ton
10
toff
5
0
0
95 11033
50
m
t on / t off – Turn on / Turn off Time ( s )
CTR – Current Transfer Ratio ( % )
1000
5
10
15
20
IF – Forward Current ( mA )
Figure 22. Turn on / off Time vs. Forward Current
Rev. A4, 11–Jan–99
0
95 11032
2
4
6
8
10
IC – Collector Current ( mA )
Figure 25. Turn on / off Time vs. Collector Current
9 (12)
CNY75(G) Series
20
t on / t off – Turn on / Turn off Time ( s )
CNY75B(G)
Non Saturated
Operation
VS=5V
RL=100
15
W
10
ton
5
toff
0
CNY75C(G)
Non Saturated
Operation
VS=5V
RL=100
15
W
ton
10
toff
5
0
0
95 11047
20
m
t on / t off – Turn on / Turn off Time ( m s )
Vishay Semiconductors
2
4
8
6
10
IC – Collector Current ( mA )
0
95 11049
Figure 26. Turn on / off Time vs. Collector Current
2
4
6
8
10
IC – Collector Current ( mA )
Figure 27. Turn on / off Time vs. Collector Current
Type
Date
Code
(YM)
XXXXXX
918 A TK 63
0884
V
D E
Production
Location
Safety
Logo
15090
Coupling
System
Indicator
Company
Logo
Figure 28. Marking example
10 (12)
Rev. A4, 11–Jan–99
CNY75(G) Series
Vishay Semiconductors
Dimensions of CNY75G in mm
weight:
creepage distance:
air path:
y
y
ca. 0.50 g
8 mm
8 mm
after mounting on PC board
14771
Dimensions of CNY75 in mm
weight:
creepage distance:
air path:
y
y
0.50 g
6 mm
6 mm
after mounting on PC board
14770
Rev. A4, 11–Jan–99
11 (12)
CNY75(G) Series
Vishay Semiconductors
Ozone Depleting Substances Policy Statement
It is the policy of Vishay Semiconductor GmbH to
1. Meet all present and future national and international statutory requirements.
2. Regularly and continuously improve the performance of our products, processes, distribution and operating
systems with respect to their impact on the health and safety of our employees and the public, as well as
their impact on the environment.
It is particular concern to control or eliminate releases of those substances into the atmosphere which are known
as ozone depleting substances ( ODSs ).
The Montreal Protocol ( 1987 ) and its London Amendments ( 1990 ) intend to severely restrict the use of ODSs and
forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban
on these substances.
Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use
of ODSs listed in the following documents.
1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
2 . Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental
Protection Agency ( EPA ) in the USA
3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C ( transitional substances ) respectively.
Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting
substances and do not contain such substances.
We reserve the right to make changes to improve technical design and may do so without further notice.
Parameters can vary in different applications. All operating parameters must be validated for each customer
application by the customer. Should the buyer use Vishay Semiconductors products for any unintended or unauthorized
application, the buyer shall indemnify Vishay Semiconductors against all claims, costs, damages, and expenses, arising out
of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or
unauthorized use.
Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany
Telephone: 49 ( 0 ) 7131 67 2831, Fax number: 49 ( 0 ) 7131 67 2423
12 (12)
Rev. A4, 11–Jan–99
Similar pages