Mitsubishi CM75E3U-12H Igbt modules high power switching use insulated type Datasheet

MITSUBISHI IGBT MODULES
CM75E3U-12H
HIGH POWER SWITCHING USE
INSULATED TYPE
CM75E3U-12H
● IC ..................................................................... 75A
● VCES .......................................................... 600V
● Insulated Type
● 1-element in a pack
APPLICATION
Brake
OUTLINE DRAWING & CIRCUIT DIAGRAM
Dimensions in mm
TC measured point
94
E2
C1
13
48
CM
C2E1
4
23
4 11
23
E2 G2
17
24
2–φ6.5 MOUNTING HOLES
80 ±0.25
7
12
13.5
3-M5 NUTS
12mm deep
2.5 16
TAB #110. t = 0.5
E2 G2
25
7.5
16 2.5
E2
C1
21.2
30 +1
-0.5
C2E1
LABEL
CIRCUIT DIAGRAM
Feb. 2009
1
MITSUBISHI IGBT MODULES
CM75E3U-12H
HIGH POWER SWITCHING USE
INSULATED TYPE
MAXIMUM RATINGS
Symbol
VCES
VGES
IC
ICM
IE (Note 2)
IEM (Note 2)
PC (Note 3)
Tj
Tstg
Viso
(Tj = 25°C, unless otherwise specified)
Item
Collector current
Emitter current
Maximum collector dissipation
Junction temperature
Storage temperature
Isolation voltage
—
Mounting torque
—
Weight
ELECTRICAL CHARACTERISTICS
Symbol
ICES
VGE(th)
IGES
VCE(sat)
Cies
Coes
Cres
QG
td (on)
tr
td (off)
tf
VEC (Note 2)
trr (Note 2)
Qrr (Note 2)
Rth(j-c)Q
Rth(j-c)R
VFM
trr
Qrr
Rth(j-c)
Rth(c-f)
Note 1.
2.
3.
4.
5.
6.
Conditions
Collector-emitter voltage
Gate-emitter voltage
VGE = 0V
VCE = 0V
TC = 25°C
Pulse
TC = 25°C
Pulse
TC = 25°C
(Note 1)
(Note 1)
—
—
Charged part to base plate, f = 60Hz, AC 1 minute
Main terminals M5 screw
Mounting M6 screw
Typical value
Ratings
Unit
600
±20
75
150
75
150
310
–40 ~ +150
–40 ~ +125
2500
2.5 ~ 3.5
3.5 ~ 4.5
310
V
V
A
A
A
A
W
°C
°C
Vrms
N·m
N·m
g
(Tj = 25°C, unless otherwise specified)
VCE = VCES, VGE = 0V
Min
—
Limits
Typ
—
Max
1
IC = 7.5mA, VCE = 10V
4.5
6
7.5
V
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
2.4
2.6
—
—
—
150
—
—
—
—
—
—
0.18
—
—
—
—
0.18
—
0.5
3.0
—
6.6
3.6
1
—
100
250
200
300
2.6
160
—
0.4
0.9
2.6
160
—
0.9
µA
nF
nF
nF
nC
ns
ns
ns
ns
V
ns
µC
K/W
K/W
V
ns
µC
K/W
—
0.07
—
K/W
Item
Collector cutoff current
Gate-emitter
threshold voltage
Gate-leakage current
Collector-emitter
saturation voltage
Input capacitance
Output capacitance
Reverse transfer capacitance
Total gate charge
Turn-on delay time
Turn-on rise time
Turn-off delay time
Turn-off fall time
Emitter-collector voltage
Reverse recovery time
Reverse recovery charge
Test Conditions
±VGE = VGES, VCE = 0V
IC = 75A, VGE = 15V
(Note 4)
Tj = 25°C
Tj = 125°C
VCE = 10V
VGE = 0V
VCC = 300V, IC = 75A, VGE = 15V
VCC = 300V, IC = 75A
VGE = ±15V
RG = 8.3Ω
Resistive load
IE = 75A, VGE = 0V
IE = 75A
die / dt = –150A / µs
Junction to case, IGBT part
Thermal resistance (Note 5)
Junction to case, FWDi part
Forward voltage
IF = 75A, Clamp diode part
Reverse recovery time
IF = 75A
Reverse recovery charge
die / dt = –150A / µs, Clamp diode part
Thermal resistance (Note 5) Junction to case, Clamp diode part
Case to heat sink, conductive grease applied
Contact thermal resistance
(Per 1/2 module)
(Note 6)
Unit
mA
V
Pulse width and repetition rate should be such that the device junction temperature (Tj) does not exceed Tjmax rating.
IE, VEC, trr, Qrr & die/dt represent characteristics of the anti-parallel, emitter-collector free-wheel diode.
Junction temperature (Tj) should not increase beyond 150°C.
Pulse width and repetition rate should be such as to cause negligible temperature rise.
Case temperature (TC) measured point is shown in page OUTLINE DRAWING.
Typical value is measured by using thermally conductive grease of λ = 0.9[W/(m • K)].
Feb. 2009
2
MITSUBISHI IGBT MODULES
CM75E3U-12H
HIGH POWER SWITCHING USE
INSULATED TYPE
PERFORMANCE CURVES
TRANSFER CHARACTERISTICS
(TYPICAL)
OUTPUT CHARACTERISTICS
(TYPICAL)
150
VGE=20
(V)
125
14
13
COLLECTOR CURRENT IC (A)
COLLECTOR CURRENT IC (A)
150
Tj=25°C
12
100
15
75
11
50
10
25
9
VCE = 10V
125
100
75
50
25
Tj = 25°C
Tj = 125°C
8
2
4
6
8
0
10
0
4
8
12
16
20
COLLECTOR-EMITTER VOLTAGE VCE (V)
GATE-EMITTER VOLTAGE VGE (V)
COLLECTOR-EMITTER SATURATION
VOLTAGE CHARACTERISTICS
(TYPICAL)
COLLECTOR-EMITTER SATURATION
VOLTAGE CHARACTERISTICS
(TYPICAL)
COLLECTOR-EMITTER
SATURATION VOLTAGE VCE(sat) (V)
5
VGE = 15V
Tj = 25°C
Tj = 125°C
4
3
2
1
0
7
5
EMITTER CURRENT IE (A)
0
20
0
40
60
10
Tj = 25°C
8
6
IC = 150A
4
IC = 75A
2
IC = 30A
0
80 100 120 140 160
0
4
8
12
16
20
COLLECTOR CURRENT IC (A)
GATE-EMITTER VOLTAGE VGE (V)
FREE-WHEEL DIODE
FORWARD CHARACTERISTICS
(TYPICAL)
CAPACITANCE CHARACTERISTICS
(TYPICAL)
101
Tj = 25°C
CAPACITANCE Cies, Coes, Cres (nF)
COLLECTOR-EMITTER
SATURATION VOLTAGE VCE(sat) (V)
0
3
2
102
7
5
3
2
101
7
5
3
2
Cies
100
7
5
Coes
3
2
10–1
Cres
7
5
3
2
3.0
VGE = 0V
10–2 –1
10 2 3 5 7 100 2 3 5 7 101 2 3 5 7 102
EMITTER-COLLECTOR VOLTAGE VEC (V)
COLLECTOR-EMITTER VOLTAGE VCE (V)
7
1.0
1.4
1.8
2.2
2.6
Feb. 2009
3
MITSUBISHI IGBT MODULES
CM75E3U-12H
HIGH POWER SWITCHING USE
INSULATED TYPE
102
7
5
tr
3
td(on)
2
VCC = 300V
VGE = ±15V
RG = 8.3Ω
7
100
2
3
5 7 101
2
3
2
5
5
3
3
2
2
trr
102
7
5
Irr
3
2
2
3
5 7 101
100
2
3
5 7 102
EMITTER CURRENT IE (A)
TRANSIENT THERMAL
IMPEDANCE CHARACTERISTICS
(IGBT part)
TRANSIENT THERMAL
IMPEDANCE CHARACTERISTICS
(FWDi part)
Per unit base = Rth(j – c) = 0.4K/W
3
2
10–1
10–1
10–2
10–2
10–3
10–3
10–5 2 3 5 710–4 2 3 5 7 10–3
7
5
3
2
7
5
3
2
7
5
3
2
7
5
3
2
TIME (s)
7
5
2
COLLECTOR CURRENT IC (A)
7
5
3
2
101
3
101 0
10
5 7 102
10–3 2 3 5 710–2 2 3 5 710–1 2 3 5 7 100 2 3 5 7 101
101
7 Single Pulse
5
3 TC = 25°C
100
REVERSE RECOVERY CHARACTERISTICS
OF FREE-WHEEL DIODE
(TYPICAL)
103
102
– di /dt = 150A /µs
7
7
Tj = 25°C
REVERSE RECOVERY CURRENT Irr (A)
td(off)
2
101
NORMALIZED TRANSIENT
THERMAL IMPEDANCE Zth(j – c)
tf
3
NORMALIZED TRANSIENT
THERMAL IMPEDANCE Zth(j – c)
SWITCHING TIMES (ns)
7
5 Tj = 125°C
REVERSE RECOVERY TIME trr (ns)
HALF-BRIDGE
SWITCHING TIME CHARACTERISTICS
(TYPICAL)
10–3 2 3 5 710–2 2 3 5 710–1 2 3 5 7 100 2 3 5 7 101
101
7 Single Pulse
5
3 TC = 25°C
2
100
Per unit base = Rth(j – c) = 0.9K/W
7
5
3
2
3
2
10–1
10–1
10–2
10–2
10–3
10–3
10–5 2 3 5 710–4 2 3 5 7 10–3
7
5
3
2
7
5
3
2
7
5
3
2
7
5
3
2
TIME (s)
GATE CHARGE CHARACTERISTICS
(TYPICAL)
GATE-EMITTER VOLTAGE VGE (V)
20
IC = 75A
VCC = 200V
15
VCC = 300V
10
5
0
0
50
100
150
200
GATE CHARGE QG (nC)
Feb. 2009
4
Similar pages