LF153 LF253 - LF353 WIDE BANDWIDTH DUAL J-FET OPERATIONAL AMPLIFIERS .. .. . .. . LOW POWER CONSUMPTION WIDE COMMON-MODE (UP TO VCC+) AND DIFFERENTIAL VOLTAGE RANGE LOW INPUT BIAS AND OFFSET CURRENT OUTPUT SHORT-CIRCUIT PROTECTION HIGH INPUT IMPEDANCE J–FET INPUT STAGE INTERNAL FREQUENCY COMPENSATION LATCH UP FREE OPERATION HIGH SLEW RATE : 16V/µs (typ) N DIP8 (Plastic Package) D SO8 (Plastic Micropackage) DESCRIPTION The LF353 are high speed J–FET input dual operational amplifiers incorporating well matched, high voltageJ–FET andbipolartransistorsin a monolithicintegrated circuit. The devicesfeaturehigh slew rates, low input bias and offset currents, and low offset voltage temperature coefficient. ORDER CODES Part Number Temperature Package N D LF353 0 C, +70 C • • LF253 –40oC, +105oC • • LF153 –55 C, +125 C • • o o o o PIN CONNECTIONS (top view) 1 2 - 3 + 4 June 1998 8 7 - 6 + 5 1 2 3 4 5 6 7 8 - Output 1 - Inverting input 1 - Non-inverting input 1 - VCC- Non-inverting input 2 - Inverting input 2 -Output 2 + - VCC 1/9 LF153 - LF253 - LF353 SCHEMATIC DIAGRAM (each amplifier) VCC input Non-inverting input Inverting 100 Ω 200 Ω Output 100 Ω 30k 8.2k 1.3 k 35k 1.3k 35k 100 Ω VCC Offs e t Null1 Offse t Null2 ABSOLUTE MAXIMUM RATINGS Symbol Parameter Unit Supply Voltage - (note 1) ±18 V Vi Input Voltage - (note 3) ±15 V Vid Differential Input Voltage - (note 2) ±30 V Ptot Power Dissipation 680 mW VCC Output Short-circuit Duration - (note 4) Toper Operating Free Air Temperature Range Tstg Storage Temperature Range Notes : 2/9 Value Infinite LF353 LF253 LF153 0 to 70 –40 to 105 –55 to 125 o –65 to 150 o C C 1. All voltage values, except differential voltage, are with respect to the zero reference level (ground) of the supply voltages where the zero reference level is the midpoint between VCC+ and VCC–. 2. Differential voltages are at the non-inverting input terminal with respect to the inverting input terminal. 3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 volts, whichever is less. 4. The output may be shorted to ground or to either supply. Temperature and /or supply voltages must be limited to ensure that the dissipation rating is not exceeded. LF153 - LF253 - LF353 ELECTRICAL CHARACTERISTICS VCC = ±15V, Tamb = 25oC (unless otherwise specified) Symbol Vio DV io Iio Iib Avd SVR ICC LF153 - LF253 - LF353 Parameter Min. Max. Input Offset Voltage (R S = 10kΩ) o Tamb = 25 C Tmin. ≤ Tamb ≤ Tmax. 3 10 13 Input Offset Voltage Drift 10 Input Offset Current * Tamb = 25oC Tmin. ≤ Tamb ≤ Tmax. 5 100 4 pA nA Input Bias Current * o Tamb = 25 C Tmin. ≤ Tamb ≤ Tmax. 20 200 20 pA nA mV Large Signal Voltage Gain (RL = 2kΩ, VO = ±10V) o Tamb = 25 C Tmin. ≤ Tamb ≤ Tmax. 50 25 200 Supply Voltage Rejection Ratio (R S = 10kΩ) o Tamb = 25 C Tmin. ≤ Tamb ≤ Tmax. 80 80 86 dB Supply Current (no load) o Tamb = 25 C Tmin. ≤ Tamb ≤ Tmax. mA 1.4 Input Common Mode Voltage Range ±11 +15 -12 CMR Common Mode Rejection Ratio (RS = 10kΩ) o Tamb = 25 C Tmin. ≤ Tamb ≤ Tmax. 70 70 86 Output Short-circuit Current o Tamb = 25 C Tmin. ≤ Tamb ≤ Tmax. 10 10 40 10 12 10 12 12 13.5 12 16 ±VOPP Output Voltage Swing Tamb = 25oC Tmin. ≤ Tamb ≤ Tmax. SR tr KOV GBP Ri THD en ∅m VO1/VO2 µV/oC V/mV Vicm Ios Unit Typ. 3.2 3.2 V dB mA 60 60 V RL RL RL RL = = = = 2kΩ 10kΩ 2kΩ 10kΩ Slew Rate (Vi = 10V, R L = 2kΩ, C L = 100pF, T amb = 25oC, unity gain) V/µs Rise Time o (Vi = 20mV, RL = 2kΩ, CL = 100pF, Tamb = 25 C, unity gain) 0.1 Overshoot o (Vi = 20mV, RL = 2kΩ, CL = 100pF, Tamb = 25 C, unity gain) 10 Gain Bandwidth Product o (f = 100kHz, Tamb = 25 C, V in = 10mV, RL = 2kΩ, CL = 100pF) % MHz 2.5 4 1012 Input Resistance Total Harmonic Distortion (f = 1kHz, AV = 20dB, R L = 2kΩ, o CL = 100pF, Tamb = 25 C, VO = 2VPP) µs Ω % 0.01 Equivalent Input Noise Voltage (f = 1kHz, Rs = 100Ω) 15 nV √ Hz Phase Margin 45 Degrees 120 dB o Channel Separation (AV = 100, Tamb = 25 C) * The input bias currents are junction leakage currents which approximately double for every 10oC increase in the junction temperature. 3/9 LF153 - LF253 - LF353 MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE VERSUS FREQUENCY 30 VCC = 15V R L= 2kΩ Tamb = +25 C See Figure 2 25 20 VCC = 10V 15 10 VCC = 5V 5 0 100 1K 10K 100K 1M 10M MAXIMUMPEAK-TO-PEAK OUTPUT VOLTAGE (V) MAXIMUMPEAK-TO-PEAK OUTPUT VOLTAGE (V) MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE VERSUS FREQUENCY 30 25 V CC = 15V 20 V CC = 10V 15 10 5 0 100 1K 10K 15V 15 Ta mb = -55 C 10 5 Ta mb = +125 C 10k 40k 100k 400k 1M 4M 10M MAXIMUMPEAK-TO-PEAK OUTPUT VOLTAGE (V) MAXIMUMPEAK-TO-PEAK OUTPUT VOLTAGE (V) VCC = R L = 2kΩ Se e Figure 2 0 1M 10M MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE VERSUS FREE AIR TEMP. 30 20 100K FREQUENCY (Hz) MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE VERSUS FREQUENCY 25 5V VCC = FREQUENCY (Hz) Tamb = +25 C R L= 10kΩ T amb = +25 C S e e F igure 2 30 25 20 15 R L = 10kΩ R L = 2kΩ 10 V CC = 5 15V S e e Figu re 2 0 -75 -50 -25 0 25 50 75 -50 125 TEMPER ATURE ( C) FREQUENCY (Hz) 4/9 30 25 VCC= 15V Ta mb= +25 C S e e Figu re 2 20 15 10 5 0 0.1 0.2 0.4 0.7 1 2 4 LOAD RESISTANCE (kΩ) 7 10 MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE VERSUS SUPPLY VOLTAGE MAXIMUMPEAK-TO-PEAK OUTPUT VOLTAGE (V) MAXIMUMPEAK-TO-PEAK OUTPUT VOLTAGE (V) MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE VERSUS LOAD RESISTANCE 30 25 R L = 10 kΩ Ta mb = +25 C 20 15 10 5 0 2 4 6 8 10 12 S UPP LY VOLTAGE (V) 14 16 LF153 - LF253 - LF353 INPUT BIAS CURRENT VERSUS FREE AIR TEMPERATURE LARGE SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION VERSUS FREE AIR TEMPERATURE 1000 VCC = 1 5V DIFFERENTIAL VOLTAGE AMPLIFICATION (V/V) INPUT BIAS CURRENT (nA) 1 00 10 1 0 .1 0 .01 -50 400 200 100 40 20 10 4 2 1 -25 0 25 50 75 10 0 125 VCC = 15V VO = 10V R L = 2kΩ -75 -50 -25 TEMPERATURE ( C) DIFFERENTIAL VOLTAGE AMPLIFICATION (le ft s ca le ) P HASE S HIFT (right sca le) 180 10 1 100 90 R L = 2kΩ C L = 100pF V CC = 15V T a mb = +125 C 1K 10K 0 100K 1M 10M FREQUENCY (Hz) VCC = 15V No signa l No loa d -25 0 25 50 50 75 100 125 75 TEMPERATURE ( C) 10 0 125 250 225 V CC +/-15V 200 No s igna l No loa d 175 150 100 75 50 25 0 -75 -50 -25 0 25 50 75 100 125 TEMPERATURE ( C) SUPPLY CURRENT PER AMPLIFIER VERSUS SUPPLY VOLTAGE SUPPLY CURRENT (mA) SUPPLY CURRENT (mA) SUPPLY CURRENT PER AMPLIFIER VERSUS FREE AIR TEMPERATURE 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0 -75 -50 25 TOTAL POWER DISSIPATION VERSUS FREE AIR TEMPERATURE TOTAL POWER DISSIPATION (mV) DIFFERENTIAL VOLTAGE AMPLIFICATION(V/V) LARGE SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT VERSUS FREQUENCY 100 0 TEMPERATURE ( C ) 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0 Ta mb= +25 C No s ignal No loa d 0 2 4 6 8 10 12 14 16 S UPPLY VOLTAGE (V) 5/9 LF153 - LF253 - LF353 VOLTAGE FOLLOWER LARGE SIGNAL PULSE RESPONSE INPUT AND OUTPUT VOLTAGES (V) COMMON MODE MODE REJECTION RATIO (dB) COMMON MODE REJECTION RATIO VERSUS FREE AIR TEMPERATURE 89 88 R L = 10 kΩ VCC = 15V 87 86 85 84 83 -75 -50 -25 0 25 50 75 100 125 6 4 OUTPUT INPUT 2 0 VCC = 15V R L = 2 kΩ C L= 100pF Ta mb = +25 C -2 -4 -6 0 0.5 1 TEMPERATURE ( C) OUTPUT VOLTAGE VERSUS ELAPSED TIME OVERSHOOT 90% 16 12 4 0 -4 VCC= 15V R L= 2kΩ Ta mb = +25 C 10% tr 0 0.1 0.2 0.3 0.4 0.5 50 40 3.5 30 20 10 0 10 0.6 0.7 40 100 400 1k 4k FREQUENCY (Hz) TOTAL HARMONIC DISTORTION VERSUS FREQUENCY TOTAL HARMONIC DISTORTION (%) 3 VCC = 15V A V = 10 R S = 100 Ω Ta mb = +25 C 60 TIME (µs ) 1 0.4 0.1 0.04 VV = = 15V 15V CC CC AA V V= =1 1 VV(rms) = 6V O O (rms)= 6V = +25 C TaTmb a mb = +25 C 0.01 0.004 0.001 100 400 1k 4k 10k FREQUE NCY (Hz) 6/9 2.5 70 EQUIVALENT INPUT NOISE VOLTAGE (nV/VHz) OUTPUT VOLTAGE (mV) 24 8 2 EQUIVALENT INPUT NOISE VOLTAGE VERSUS FREQUENCY 28 20 1.5 TIME (µs ) 40k 100k 10k 40k 100k LF153 - LF253 - LF353 PARAMETER MEASUREMENT INFORMATION Figure 1 : Voltage Follower Figure 2 : Gain-of-10 Inverting Amplifier 10k Ω 1k Ω - 1/2 eo LF153 eI - eI 1/2 RL = 2kΩ CL= 100pF eo LF153 RL CL= 100pF TYPICAL APPLICATIONS QUADRUPLE OSCILLATOR 1N 4148 18kΩ -15V 18pF 18pF 1/2 88.4kΩ - LF353 1/2 88.4kΩ 6 s in ω t LF353 18kΩ 18pF 88.4kΩ 1N 4148 +15V 7/9 LF153 - LF253 - LF353 PM-DIP8.EPS PACKAGE MECHANICAL DATA 8 PINS - PLASTIC DIP A a1 B b b1 D E e e3 e4 F i L Z 8/9 Min. Millimeters Typ. 3.32 0.51 1.15 0.356 0.204 Max. 1.65 0.55 0.304 10.92 9.75 7.95 Min. 0.020 0.045 0.014 0.008 Max. 0.065 0.022 0.012 0.430 0.384 0.313 2.54 7.62 7.62 3.18 Inches Typ. 0.131 0.100 0.300 0.300 6.6 5.08 3.81 1.52 0.125 0260 0.200 0.150 0.060 DIP8.TBL Dimensions LF153 - LF253 - LF353 PM-SO8.EPS PACKAGE MECHANICAL DATA 8 PINS - PLASTIC MICROPACKAGE (SO) A a1 a2 a3 b b1 C c1 D E e e3 F L M S Min. Millimeters Typ. 0.1 0.65 0.35 0.19 0.25 Max. 1.75 0.25 1.65 0.85 0.48 0.25 0.5 Min. Inches Typ. 0.026 0.014 0.007 0.010 Max. 0.069 0.010 0.065 0.033 0.019 0.010 0.020 0.189 0.228 0.197 0.244 0.004 o 45 (typ.) 4.8 5.8 5.0 6.2 1.27 3.81 3.8 0.4 0.050 0.150 4.0 1.27 0.6 0.150 0.016 0.157 0.050 0.024 SO8.TBL Dimensions o 8 (max.) ORDER CODE : Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this pub lication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST log o is a trademark of STMicroelectronics 1998 STMicroelectronics – Printed in Italy – All Rights Reserved STMicroelectronics GROUP OF COMPANIES Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdo m - U.S.A. 9/9