PD- 94599A IRGIB15B60KD1 INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE C Features • Low VCE (on) Non Punch Through IGBT Technology. • Low Diode VF. • 10µs Short Circuit Capability. • Square RBSOA. • Ultrasoft Diode Reverse Recovery Characteristics. • Positive VCE (on) Temperature Coefficient. • Maximum Junction Temperature Rated at 175°C Benefits VCES = 600V IC = 12A, TC=100°C G tsc > 10µs, TJ=150°C E n-channel VCE(on) typ. = 1.80V • Benchmark Efficiency for Motor Control. • Rugged Transient Performance. • Low EMI. • Excellent Current Sharing in Parallel Operation. TO-220 Full-Pak Absolute Maximum Ratings Max. Units VCES Collector-to-Emitter Voltage Parameter 600 V IC @ TC = 25°C Continuous Collector Current 19 IC @ TC = 100°C Continuous Collector Current 12 ICM 38 ILM Pulse Collector Current (Ref.Fig.C.T.5) Clamped Inductive Load current IF @ TC = 25°C Diode Continuous Forward Current 19 IF @ TC = 100°C Diode Continuous Forward Current 12 IFM Diode Maximum Forward Current VISOL RMS Isolation Voltage, Terminal to Case, t = 1 min 2500 VGE Gate-to-Emitter Voltage ±20 PD @ TC = 25°C Maximum Power Dissipation 52 PD @ TC = 100°C Maximum Power Dissipation 26 c TJ Operating Junction and TSTG Storage Temperature Range Soldering Temperature for 10 sec. A 38 38 V W -55 to +175 °C 300 (0.063 in. (1.6mm) from case) Mounting Torque, 6-32 or M3 Screw 10 lbf.in (1.1N.m) Thermal / Mechanical Characteristics Parameter Min. Typ. Max. ––– ––– 2.9 RθJC Junction-to-Case- IGBT RθJC Junction-to-Case- Diode ––– ––– 4.6 RθCS Case-to-Sink, flat, greased surface ––– 0.50 ––– RθJA Junction-to-Ambient, typical socket mount ––– ––– 62 Wt Weight ––– 2.0 ––– www.irf.com Units °C/W g 1 2/27/04 IRGIB15B60KD1 Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. Max. Units V(BR)CES Collector-to-Emitter Breakdown Voltage 600 ∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage — — VCE(on) Collector-to-Emitter Voltage — — VGE(th) Gate Threshold Voltage 3.5 ∆VGE(th)/∆TJ Threshold Voltage temp. coefficient — gfe Forward Transconductance — — ICES Zero Gate Voltage Collector Current — — VFM Diode Forward Voltage Drop — — — IGES Gate-to-Emitter Leakage Current — — 0.32 1.80 2.05 2.10 4.5 -10 10 1.0 163 829 1.69 1.31 1.25 — Conditions Ref.Fig. — V VGE = 0V, IC = 500µA — V/°C VGE = 0V, IC = 1mA (25°C-150°C) IC = 15A, VGE = 15V, TJ = 25°C 2.20 2.50 V IC = 15A, VGE = 15V, TJ = 150°C IC = 15A, VGE = 15V, TJ = 175°C 2.60 5.5 V VCE = VGE, IC = 250µA — mV/°C VCE = VGE, IC = 1mA (25°C-150°C) — S VCE = 50V, IC = 15A, PW = 80µs VGE = 0V, VCE = 600V 150 500 µA VGE = 0V, VCE = 600V, TJ = 150°C VGE = 0V, VCE = 600V, TJ = 175°C 1800 2.30 V IF = 15A, VGE = 0V IF = 15A, VGE = 0V, TJ = 150°C 1.75 IF = 15A, VGE = 0V, TJ = 175°C 1.65 ±100 nA VGE = ±20V, VCE = 0V 5,6,7 9,10,11 9,10,11 12 8 Switching Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Qg Qge Qgc Eon Eoff Etot td(on) tr td(off) tf Eon Eoff Etot td(on) tr td(off) tf LE Cies Coes Cres RBSOA SCSOA ISC (PEAK) Erec trr Irr Qrr Total Gate Charge (turn-on) Gate-to-Emitter Charge (turn-on) Gate-to-Collector Charge (turn-on) Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Reverse Bias Safe Operating Area Short Circuit Safe Operating Area Peak Short Circuit Collector Current Reverse Recovery Energy of the Diode Diode Reverse Recovery Time Peak Reverse Recovery Current Diode Reverse Recovery Charge Vcc =80% (VCES), VGE = 20V, L =100µH, RG = 22Ω. 2 Min. Typ. Max. Units — 56 84 — 7.0 10 — 26 39 — 127 140 — 334 422 — 461 556 — 30 39 — 25 35 — 173 188 — 41 53 — 258 282 — 570 646 — 829 915 — 30 39 — 25 35 — 194 207 — 56 73 — 7.5 — — 850 1275 — 100 150 — 32 48 FULL SQUARE 10 — — — — — — 140 267 67 23 984 — — 347 87 30 1279 nC µJ ns µJ ns Conditions Ref.Fig. IC = 15A VCC = 400V VGE = 15V IC = 15A, VCC = 400V VGE = 15V, RG = 22Ω, L = 1.07mH Ls= 150nH, TJ = 25°C IC = 15A, VCC = 400V VGE = 15V, RG = 22Ω, L = 1.07mH Ls= 150nH, TJ = 25°C 23 CT1 CT4 d IC = 15A, VCC = 400V VGE = 15V, RG = 22Ω, L = 1.07mH Ls= 150nH, TJ = 150°C IC = 15A, VCC = 400V VGE = 15V, RG = 22Ω, L = 1.07mH Ls= 150nH, TJ = 150°C d CT4 CT4 13,15 WF1,WF2 14,16 CT4 WF1 WF2 nH pF µs A µJ ns A nC Measured 5 mm from package VGE = 0V VCC = 30V 22 f = 1.0MHz TJ = 150°C, IC = 38A, Vp = 600V VCC=500V,VGE = +15V to 0V,RG = 22Ω TJ = 150°C, Vp = 600V, RG = 22Ω VCC=360V,VGE = +15V to 0V 4 CT2 CT3 WF4 WF4 TJ = 150°C VCC = 400V, IF = 15A, L = 1.07mH VGE = 15V, RG = 22Ω di/dt = 875A/µs 17,18,19 20,21 CT4,WF3 Energy losses include "tail" and diode reverse recovery. www.irf.com IRGIB15B60KD1 55 20 50 45 16 40 35 IC (A) Ptot (W) 12 8 30 25 20 15 4 10 5 0 0 0 20 40 60 0 80 100 120 140 160 180 20 40 60 80 100 120 140 160 180 T C (°C) T C (°C) Fig. 1 - Maximum DC Collector Current vs. Case Temperature Fig. 2 - Power Dissipation vs. Case Temperature 100 100 10 µs IC A) IC (A) 10 100 µs 10 1 1ms DC 0.1 1 10 100 1000 VCE (V) Fig. 3 - Forward SOA TC = 25°C; TJ ≤ 150°C www.irf.com 10000 1 10 100 1000 VCE (V) Fig. 4 - Reverse Bias SOA TJ = 150°C; VGE =15V 3 IRGIB15B60KD1 20 20 18 18 16 16 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 12 10 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 14 ICE (A) ICE (A) 14 8 12 10 8 6 6 4 4 2 2 0 0 0 2 4 6 0 2 VCE (V) 6 VCE (V) Fig. 5 - Typ. IGBT Output Characteristics TJ = -40°C; tp = 60µs Fig. 6 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 60µs 70 20 18 -40°C 25°C 150°C 60 16 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 12 10 50 IF (A) 14 ICE (A) 4 8 6 40 30 20 4 10 2 0 0 0 2 4 6 VCE (V) Fig. 7 - Typ. IGBT Output Characteristics TJ = 150°C; tp = 60µs 4 0.0 0.5 1.0 1.5 2.0 2.5 3.0 VF (V) Fig. 8 - Typ. Diode Forward Characteristics tp = 60µs www.irf.com 20 20 18 18 16 16 14 14 12 ICE = 7.5A 10 ICE = 15A 8 ICE = 30A VCE (V) VCE (V) IRGIB15B60KD1 12 ICE = 7.5A 10 ICE = 15A ICE = 30A 8 6 6 4 4 2 2 0 0 5 10 15 5 20 10 VGE (V) 20 Fig. 10 - Typical VCE vs. VGE TJ = 25°C Fig. 9 - Typical VCE vs. VGE TJ = -40°C 20 70 18 T J = 25°C 60 T J = 150°C 16 50 12 ICE = 7.5A 10 ICE = 15A ICE (A) 14 VCE (V) 15 VGE (V) ICE = 30A 8 6 40 30 20 T J = 150°C 4 10 2 0 T J = 25°C 0 5 10 15 VGE (V) Fig. 11 - Typical VCE vs. VGE TJ = 150°C www.irf.com 20 0 5 10 15 VGE (V) Fig. 12 - Typ. Transfer Characteristics VCE = 50V; tp = 10µs 5 IRGIB15B60KD1 1400 1000 1200 tdOFF Swiching Time (ns) Energy (µJ) 1000 EOFF 800 EON 600 400 100 tF tdON tR 10 200 0 0 5 10 15 20 25 1 30 0 5 10 IC (A) 25 30 Fig. 14 - Typ. Switching Time vs. IC TJ = 150°C; L=1.07mH; VCE= 400V RG= 22Ω; VGE= 15V 1200 10000 EOFF 1000 Swiching Time (ns) EON 800 Energy (µJ) 20 IC (A) Fig. 13 - Typ. Energy Loss vs. IC TJ = 150°C; L=1.07mH; VCE= 400V RG= 22Ω; VGE= 15V 600 400 1000 tdOFF 100 tF tdON tR 200 0 10 0 50 100 150 RG (Ω) Fig. 15 - Typ. Energy Loss vs. RG TJ = 150°C; L=1.07mH; VCE= 400V ICE= 15A; VGE= 15V 6 15 200 0 50 100 150 200 RG (Ω) Fig. 16 - Typ. Switching Time vs. RG TJ = 150°C; L=1.07mH; VCE= 400V ICE= 15A; VGE= 15V www.irf.com IRGIB15B60KD1 25 24 RG = 22 Ω 20 RG = 47 Ω 16 15 IRR (A) IRR (A) 20 RG = 100 Ω 10 RG = 200 Ω 12 8 5 4 0 0 0 5 10 15 20 25 30 0 40 IF (A) 80 120 160 200 RG (Ω) Fig. 18 - Typical Diode IRR vs. RG TJ = 150°C; IF = 15A Fig. 17 - Typical Diode IRR vs. IF TJ = 150°C 24 1500 30A 20 1000 15A Q RR (nC) IRR (A) 16 12 7.5A 500 8 200Ω 100 Ω 47Ω 22Ω 4 0 0 0 200 400 600 800 diF /dt (A/µs) Fig. 19- Typical Diode IRR vs. diF/dt VCC= 400V; VGE= 15V; ICE= 15A; TJ = 150°C www.irf.com 1000 0 200 400 600 800 1000 diF /dt (A/µs) Fig. 20 - Typical Diode QRR VCC= 400V; VGE= 15V;TJ = 150°C 7 IRGIB15B60KD1 200 Energy (µJ) 160 120 200 Ω 100 Ω 80 47 Ω 22 Ω 40 0 5 10 15 20 25 IF (A) Fig. 21 - Typical Diode ERR vs. IF TJ = 150°C 16 10000 14 300V 12 400V 1000 10 VGE (V) Capacitance (pF) Cies 8 6 Coes 100 4 2 Cres 0 10 0 20 40 60 80 VCE (V) Fig. 22- Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz 8 100 0 20 40 60 80 Q G, Total Gate Charge (nC) Fig. 23 - Typical Gate Charge vs. VGE ICE = 15A; L = 2500µH www.irf.com IRGIB15B60KD1 Thermal Response ( Z thJC ) 10 D = 0.50 1 0.20 0.10 R1 R1 0.05 0.1 τJ 0.02 0.01 τJ τ1 R2 R2 τ2 τ1 R3 R3 τ3 τ2 τC τ Ri (°C/W) τi (sec) 0.437 0.000542 τ3 Ci= τi/Ri Ci τi/Ri 0.01 1.087 0.127526 1.376 2.702 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 10 100 t1 , Rectangular Pulse Duration (sec) Fig 24. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT) Thermal Response ( Z thJC ) 10 D = 0.50 0.20 1 0.10 0.05 τJ 0.02 0.1 0.01 R1 R1 τJ τ1 R2 R2 τ2 τ1 R3 R3 τC τ τ3 τ2 τ3 τ4 τ4 Ci= τi/Ri Ci i/Ri 0.01 Ri (°C/W) R4 R4 SINGLE PULSE ( THERMAL RESPONSE ) τi (sec) 0.8631 0.000202 0.6432 0.001053 1.1937 0.055415 1.9013 2.335 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 10 100 t1 , Rectangular Pulse Duration (sec) Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE) www.irf.com 9 IRGIB15B60KD1 L L VCC DUT + - 80 V 0 DUT 480V Rg 1K Fig.C.T.2 - RBSOA Circuit Fig.C.T.1 - Gate Charge Circuit (turn-off) diode clamp / DUT Driver L - 5V 360V DC DUT / DRIVER DUT VCC Rg Fig.C.T.3 - S.C.SOA Circuit Fig.C.T.4 - Switching Loss Circuit R= DUT VCC ICM VCC Rg Fig.C.T.5 - Resistive Load Circuit 10 www.irf.com IRGIB15B60KD1 600 tf 800 25 700 40 35 TEST CURRENT 600 400 500 15 10 5% V CE 100 90% test current 15 200 0 5% V CE 0.1 0.3 0 -5 0.5 0 -100 0.7 -5 0.2 0.4 0.6 time (µs) Fig. WF1- Typ. Turn-off Loss Waveform @ TJ = 150°C using Fig. CT.4 Fig. WF2- Typ. Turn-on Loss Waveform @ TJ = 150°C using Fig. CT.4 0 20 450 400 15 400 350 10 350 300 300 250 250 200 200 150 150 100 100 50 -25 50 0 -30 0.50 0 QRR -100 5 -300 0 -400 -5 -500 Peak IRR -10 10% Peak IRR -600 -700 -800 -900 0.10 0.20 0.30 0.40 -15 -20 time (µS) Fig. WF3- Typ. Diode Recovery Waveform @ TJ = 150°C using Fig. CT.4 www.irf.com VCE (V) -200 I F (A) t RR ICE (A) time(µs) 100 V F (V) 5 Eon Loss Eoff Loss -100 10 10% test current 100 0 20 300 5 5% ICE 25 400 V CE (V) 300 I CE (A) VCE (V) 90% ICE 200 30 tr 20 ICE (A) 500 30 -50 0 10 20 30 40 50 Time (uS) Fig. WF4- Typ. S.C Waveform @ TC = 150°C using Fig. CT.3 11 IRGIB15B60KD1 TO-220 Full-Pak Package Outline Dimensions are shown in millimeters (inches) 10.60 (.417) 10.40 (.409) ø 3.40 (.133) 3.10 (.123) 4.80 (.189) 4.60 (.181) -A3.70 (.145) 3.20 (.126) 16.00 (.630) 15.80 (.622) 2.80 (.110) 2.60 (.102) LEAD ASSIGNMENTS 1 - GATE 2 - DRAIN 3 - SOURCE 7.10 (.280) 6.70 (.263) 1.15 (.045) MIN. NOTES: 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982 1 2 3 2 CONTROLLING DIMENSION: INCH. 3.30 (.130) 3.10 (.122) -B- 13.70 (.540) 13.50 (.530) C A 1.40 (.055) 3X 1.05 (.042) 0.90 (.035) 3X 0.70 (.028) 0.25 (.010) 3X M A M 0.48 (.019) 0.44 (.017) 2.85 (.112) 2.65 (.104) B 2.54 (.100) 2X D B MINIMUM CREEPAGE DISTANCE BETWEEN A-B-C-D = 4.80 (.189) TO-220 Full-Pak Part Marking Information EXAMPLE: THIS IS AN IRFI840G WITH AS SEMBLY LOT CODE 3432 AS S EMBLED ON WW 24 1999 IN THE AS S EMBLY LINE "K" INTERNATIONAL RECTIFIER LOGO PART NUMBER IRFI840G 924K 34 AS S EMBLY LOT CODE 32 DAT E CODE YEAR 9 = 1999 WEEK 24 LINE K TO-220 FullPak packages are not recommended for Surface Mount Application. Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.2/04 12 www.irf.com