ON MMBT2222LT1 General purpose transistors npn silicon Datasheet

ON Semiconductor
MMBT2222LT1
MMBT2222ALT1*
General Purpose Transistors
NPN Silicon
*ON Semiconductor Preferred Device
MAXIMUM RATINGS
Rating
Symbol
2222
2222A
Unit
Collector–Emitter Voltage
VCEO
30
40
Vdc
Collector–Base Voltage
VCBO
60
75
Vdc
Emitter–Base Voltage
VEBO
5.0
6.0
Vdc
Collector Current — Continuous
3
1
2
IC
600
mAdc
Symbol
Max
Unit
PD
225
mW
1.8
mW/°C
RJA
556
°C/W
PD
300
mW
2.4
mW/°C
RJA
417
°C/W
TJ, Tstg
–55 to +150
°C
THERMAL CHARACTERISTICS
Characteristic
Total Device Dissipation FR–5 Board(1)
TA = 25°C
Derate above 25°C
Thermal Resistance, Junction to Ambient
Total Device Dissipation
Alumina Substrate,(2) TA = 25°C
Derate above 25°C
Thermal Resistance, Junction to Ambient
Junction and Storage Temperature
CASE 318–08, STYLE 6
SOT–23 (TO–236)
COLLECTOR
3
1
BASE
DEVICE MARKING
2
EMITTER
MMBT2222LT1 = M1B; MMBT2222ALT1 = 1P
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)
Characteristic
Symbol
Min
Max
Unit
OFF CHARACTERISTICS
Collector–Emitter Breakdown Voltage (IC = 10 mAdc, IB = 0)
MMBT2222
MMBT2222A
V(BR)CEO
30
40
—
—
Vdc
Collector–Base Breakdown Voltage (IC = 10 Adc, IE = 0)
MMBT2222
MMBT2222A
V(BR)CBO
60
75
—
—
Vdc
Emitter–Base Breakdown Voltage (IE = 10 Adc, IC = 0)
MMBT2222
MMBT2222A
V(BR)EBO
5.0
6.0
—
—
Vdc
Collector Cutoff Current (VCE = 60 Vdc, VEB(off) = 3.0 Vdc)
MMBT2222A
ICEX
—
10
nAdc
Collector Cutoff Current (VCB = 50 Vdc, IE = 0)
(VCB = 60 Vdc, IE = 0)
(VCB = 50 Vdc, IE = 0, TA = 125°C)
(VCB = 60 Vdc, IE = 0, TA = 125°C)
MMBT2222
MMBT2222A
MMBT2222
MMBT2222A
ICBO
—
—
—
—
0.01
0.01
10
10
µAdc
Emitter Cutoff Current (VEB = 3.0 Vdc, IC = 0)
MMBT2222A
IEBO
—
100
nAdc
Base Cutoff Current (VCE = 60 Vdc, VEB(off) = 3.0 Vdc)
MMBT2222A
IBL
—
20
nAdc
1. FR–5 = 1.0 0.75 0.062 in.
2. Alumina = 0.4 0.3 0.024 in. 99.5% alumina.
Preferred devices are ON Semiconductor recommended choices for future use and best overall value.
 Semiconductor Components Industries, LLC, 2001
March, 2001 – Rev. 1
1
Publication Order Number:
MMBT2222LT1/D
MMBT2222LT1 MMBT2222ALT1
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted) (Continued)
Symbol
Min
Max
35
50
75
35
100
50
30
40
—
—
—
—
300
—
—
—
MMBT2222
MMBT2222A
—
—
0.4
0.3
MMBT2222
MMBT2222A
—
—
1.6
1.0
MMBT2222
MMBT2222A
—
0.6
1.3
1.2
MMBT2222
MMBT2222A
—
—
2.6
2.0
Characteristic
Unit
ON CHARACTERISTICS
DC Current Gain
(IC = 0.1 mAdc, VCE = 10 Vdc)
(IC = 1.0 mAdc, VCE = 10 Vdc)
(IC = 10 mAdc, VCE = 10 Vdc)
(IC = 10 mAdc, VCE = 10 Vdc, TA = –55°C)
only
(IC = 150 mAdc, VCE = 10 Vdc) (3)
(IC = 150 mAdc, VCE = 1.0 Vdc) (3)
(IC = 500 mAdc, VCE = 10 Vdc) (3)
hFE
MMBT2222A
MMBT2222
MMBT2222A
Collector–Emitter Saturation Voltage (3)
(IC = 150 mAdc, IB = 15 mAdc)
—
VCE(sat)
(IC = 500 mAdc, IB = 50 mAdc)
Base–Emitter Saturation Voltage (3)
(IC = 150 mAdc, IB = 15 mAdc)
Vdc
VBE(sat)
(IC = 500 mAdc, IB = 50 mAdc)
http://onsemi.com
2
Vdc
MMBT2222LT1 MMBT2222ALT1
SMALL–SIGNAL CHARACTERISTICS
Current–Gain — Bandwidth Product (4)
(IC = 20 mAdc, VCE = 20 Vdc, f = 100 MHz)
fT
MMBT2222
MMBT2222A
Output Capacitance
(VCB = 10 Vdc, IE = 0, f = 1.0 MHz)
MHz
250
300
—
—
—
8.0
—
—
30
25
2.0
0.25
8.0
1.25
—
—
8.0
4.0
50
75
300
375
5.0
25
35
200
—
150
—
4.0
Cobo
Input Capacitance
(VEB = 0.5 Vdc, IC = 0, f = 1.0 MHz)
pF
Cibo
MMBT2222
MMBT2222A
Input Impedance
(IC = 1.0 mAdc, VCE = 10 Vdc, f = 1.0 kHz)
(IC = 10 mAdc, VCE = 10 Vdc, f = 1.0 kHz)
MMBT2222A
MMBT2222A
Voltage Feedback Ratio
(IC = 1.0 mAdc, VCE = 10 Vdc, f = 1.0 kHz)
(IC = 10 mAdc, VCE = 10 Vdc, f = 1.0 kHz)
MMBT2222A
MMBT2222A
Small–Signal Current Gain
(IC = 1.0 mAdc, VCE = 10 Vdc, f = 1.0 kHz)
(IC = 10 mAdc, VCE = 10 Vdc, f = 1.0 kHz)
MMBT2222A
MMBT2222A
Output Admittance
(IC = 1.0 mAdc, VCE = 10 Vdc, f = 1.0 kHz)
(IC = 10 mAdc, VCE = 10 Vdc, f = 1.0 kHz)
MMBT2222A
MMBT2222A
Collector Base Time Constant
(IE = 20 mAdc, VCB = 20 Vdc, f = 31.8 MHz)
MMBT2222A
Noise Figure
(IC = 100 Adc, VCE = 10 Vdc, RS = 1.0 kΩ, f = 1.0 kHz)
MMBT2222A
pF
hie
kΩ
X 10–4
hre
hfe
—
mhos
hoe
rb, Cc
ps
NF
dB
SWITCHING CHARACTERISTICS (MMBT2222A only)
Delay Time
Rise Time
Storage Time
Fall Time
(VCC = 30 Vdc, VBE(off) = –0.5
0.5 Vdc,
IC = 150 mAdc, IB1 = 15 mAdc)
td
—
10
tr
—
25
(VCC = 30 Vdc, IC = 150 mAdc,
IB1 = IB2 = 15 mAdc)
ts
—
225
tf
—
60
3. Pulse Test: Pulse Width 300 s, Duty Cycle 2.0%.
4. fT is defined as the frequency at which |hfe| extrapolates to unity.
http://onsemi.com
3
ns
ns
MMBT2222LT1 MMBT2222ALT1
SWITCHING TIME EQUIVALENT TEST CIRCUITS
+30 V
+30 V
1.0 to 100 µs,
DUTY CYCLE ≈ 2.0%
+16 V
200
+16 V
0
0
-2 V
1 kΩ
< 2 ns
CS* < 10 pF
1.0 to 100 µs,
DUTY CYCLE ≈ 2.0%
-14 V
< 20 ns
200
1k
CS* < 10 pF
1N914
-4 V
Scope rise time < 4 ns
*Total shunt capacitance of test jig, connectors, and oscilloscope.
Figure 1. Turn–On Time
Figure 2. Turn–Off Time
hFE , DC CURRENT GAIN
1000
700
500
300
200
100
70
50
30
20
10
0.1
0.2
0.3
0.5 0.7
1.0
2.0
3.0
5.0 7.0 10
20 30
IC, COLLECTOR CURRENT (mA)
50
70
100
200
5.0
10
300
500 700 1.0 k
VCE , COLLECTOR-EMITTER VOLTAGE (VOLTS)
Figure 3. DC Current Gain
1.0
0.8
0.6
0.4
0.2
0
0.005
0.01
0.02 0.03
0.05
0.1
0.2
0.3
0.5
1.0
IB, BASE CURRENT (mA)
2.0
Figure 4. Collector Saturation Region
http://onsemi.com
4
3.0
20
30
50
MMBT2222LT1 MMBT2222ALT1
200
100
70
50
tr @ VCC = 30 V
td @ VEB(off) = 2.0 V
td @ VEB(off) = 0
30
20
10
7.0
5.0
200
t′s = ts - 1/8 tf
100
70
50
tf
30
20
10
7.0
5.0
3.0
2.0
5.0 7.0
10
200 300
20 30
50 70 100
IC, COLLECTOR CURRENT (mA)
500
5.0 7.0 10
20 30
50 70 100
IC, COLLECTOR CURRENT (mA)
Figure 5. Turn–On Time
6.0
500
f = 1.0 kHz
8.0
4.0
2.0
IC = 50 µA
100 µA
500 µA
1.0 mA
6.0
4.0
2.0
0
0.01 0.02 0.05 0.1 0.2
0.5 1.0 2.0
5.0 10
100 200
500 1.0 k 2.0 k
5.0 k 10 k 20 k
50 k 100 k
RS, SOURCE RESISTANCE (OHMS)
Figure 7. Frequency Effects
Figure 8. Source Resistance Effects
Ceb
10
7.0
5.0
Ccb
3.0
0.5 0.7 1.0
2.0 3.0 5.0 7.0 10
REVERSE VOLTAGE (VOLTS)
20 30
50
f T, CURRENT-GAIN BANDWIDTH PRODUCT (MHz)
f, FREQUENCY (kHz)
20
0.2 0.3
0
50
50 100
20
30
CAPACITANCE (pF)
300
10
RS = OPTIMUM
RS = SOURCE
RS = RESISTANCE
IC = 1.0 mA, RS = 150 Ω
500 µA, RS = 200 Ω
100 µA, RS = 2.0 kΩ
50 µA, RS = 4.0 kΩ
8.0
200
Figure 6. Turn–Off Time
NF, NOISE FIGURE (dB)
NF, NOISE FIGURE (dB)
10
2.0
0.1
VCC = 30 V
IC/IB = 10
IB1 = IB2
TJ = 25°C
300
t, TIME (ns)
t, TIME (ns)
500
IC/IB = 10
TJ = 25°C
Figure 9. Capacitances
500
VCE = 20 V
TJ = 25°C
300
200
100
70
50
1.0
2.0
3.0
5.0 7.0 10
20 30
IC, COLLECTOR CURRENT (mA)
50
70 100
Figure 10. Current–Gain Bandwidth Product
http://onsemi.com
5
MMBT2222LT1 MMBT2222ALT1
1.0
+0.5
TJ = 25°C
0
VBE(sat) @ IC/IB = 10
0.6
COEFFICIENT (mV/ °C)
V, VOLTAGE (VOLTS)
0.8
1.0 V
VBE(on) @ VCE = 10 V
0.4
0.2
0
RVC for VCE(sat)
-0.5
-1.0
-1.5
RVB for VBE
-2.0
VCE(sat) @ IC/IB = 10
0.1 0.2
50 100 200
0.5 1.0 2.0 5.0 10 20
IC, COLLECTOR CURRENT (mA)
-2.5
500 1.0 k
0.1 0.2
Figure 11. “On” Voltages
0.5
1.0 2.0
5.0 10 20
50 100 200
IC, COLLECTOR CURRENT (mA)
Figure 12. Temperature Coefficients
http://onsemi.com
6
500
MMBT2222LT1 MMBT2222ALT1
INFORMATION FOR USING THE SOT–23 SURFACE MOUNT PACKAGE
MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS
Surface mount board layout is a critical portion of the total
interface between the board and the package. With the
design. The footprint for the semiconductor packages must
correct pad geometry, the packages will self align when
be the correct size to insure proper solder connection
subjected to a solder reflow process.
0.037
0.95
0.037
0.95
0.079
2.0
0.035
0.9
0.031
0.8
inches
mm
SOT–23
SOT–23 POWER DISSIPATION
SOLDERING PRECAUTIONS
The power dissipation of the SOT–23 is a function of the
pad size. This can vary from the minimum pad size for
soldering to a pad size given for maximum power
dissipation. Power dissipation for a surface mount device is
determined by TJ(max), the maximum rated junction
temperature of the die, RθJA, the thermal resistance from the
device junction to ambient, and the operating temperature,
TA. Using the values provided on the data sheet for the
SOT–23 package, PD can be calculated as follows:
PD =
•
•
TJ(max) – TA
RθJA
•
The values for the equation are found in the maximum
ratings table on the data sheet. Substituting these values into
the equation for an ambient temperature TA of 25°C, one can
calculate the power dissipation of the device which in this
case is 225 milliwatts.
150°C – 25°C
PD =
556°C/W
•
= 225 milliwatts
•
The 556°C/W for the SOT–23 package assumes the use of
the recommended footprint on a glass epoxy printed circuit
board to achieve a power dissipation of 225 milliwatts.
There are other alternatives to achieving higher power
dissipation from the SOT–23 package. Another alternative
would be to use a ceramic substrate or an aluminum core
board such as Thermal Clad. Using a board material such
as Thermal Clad, an aluminum core board, the power
dissipation can be doubled using the same footprint.
•
•
The melting temperature of solder is higher than the rated
temperature of the device. When the entire device is heated
to a high temperature, failure to complete soldering within
a short time could result in device failure. Therefore, the
following items should always be observed in order to
minimize the thermal stress to which the devices are
subjected.
Always preheat the device.
The delta temperature between the preheat and soldering
should be 100°C or less.*
When preheating and soldering, the temperature of the
leads and the case must not exceed the maximum
temperature ratings as shown on the data sheet. When
using infrared heating with the reflow soldering method,
the difference shall be a maximum of 10°C.
The soldering temperature and time shall not exceed
260°C for more than 10 seconds.
When shifting from preheating to soldering, the maximum
temperature gradient shall be 5°C or less.
After soldering has been completed, the device should be
allowed to cool naturally for at least three minutes.
Gradual cooling should be used as the use of forced
cooling will increase the temperature gradient and result
in latent failure due to mechanical stress.
Mechanical stress or shock should not be applied during
cooling.
* Soldering a device without preheating can cause
excessive thermal shock and stress which can result in
damage to the device.
http://onsemi.com
7
MMBT2222LT1 MMBT2222ALT1
PACKAGE DIMENSIONS
SOT–23 (TO–236)
CASE 318–08
ISSUE AF
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD
FINISH THICKNESS. MINIMUM LEAD THICKNESS
IS THE MINIMUM THICKNESS OF BASE
MATERIAL.
A
L
3
1
V
B S
2
DIM
A
B
C
D
G
H
J
K
L
S
V
G
C
D
H
J
K
INCHES
MIN
MAX
0.1102 0.1197
0.0472 0.0551
0.0350 0.0440
0.0150 0.0200
0.0701 0.0807
0.0005 0.0040
0.0034 0.0070
0.0140 0.0285
0.0350 0.0401
0.0830 0.1039
0.0177 0.0236
MILLIMETERS
MIN
MAX
2.80
3.04
1.20
1.40
0.89
1.11
0.37
0.50
1.78
2.04
0.013
0.100
0.085
0.177
0.35
0.69
0.89
1.02
2.10
2.64
0.45
0.60
STYLE 6:
PIN 1. BASE
2. EMITTER
3. COLLECTOR
Thermal Clad is a trademark of the Bergquist Company.
ON Semiconductor and
are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes
without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular
purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be
validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.
SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or
death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold
SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable
attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.
PUBLICATION ORDERING INFORMATION
NORTH AMERICA Literature Fulfillment:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada
Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada
Email: [email protected]
Fax Response Line: 303–675–2167 or 800–344–3810 Toll Free USA/Canada
N. American Technical Support: 800–282–9855 Toll Free USA/Canada
EUROPE: LDC for ON Semiconductor – European Support
German Phone: (+1) 303–308–7140 (Mon–Fri 2:30pm to 7:00pm CET)
Email: ONlit–[email protected]
French Phone: (+1) 303–308–7141 (Mon–Fri 2:00pm to 7:00pm CET)
Email: ONlit–[email protected]
English Phone: (+1) 303–308–7142 (Mon–Fri 12:00pm to 5:00pm GMT)
Email: [email protected]
CENTRAL/SOUTH AMERICA:
Spanish Phone: 303–308–7143 (Mon–Fri 8:00am to 5:00pm MST)
Email: ONlit–[email protected]
Toll–Free from Mexico: Dial 01–800–288–2872 for Access –
then Dial 866–297–9322
ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support
Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time)
Toll Free from Hong Kong & Singapore:
001–800–4422–3781
Email: ONlit–[email protected]
JAPAN: ON Semiconductor, Japan Customer Focus Center
4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031
Phone: 81–3–5740–2700
Email: [email protected]
ON Semiconductor Website: http://onsemi.com
EUROPEAN TOLL–FREE ACCESS*: 00–800–4422–3781
*Available from Germany, France, Italy, UK, Ireland
For additional information, please contact your local
Sales Representative.
http://onsemi.com
8
MMBT2222LT1/D
Similar pages