Datasheet H-Bridge Drivers for DC Brush Motors Dual H-Bridge Driver High-Speed Switching Type BD65492MUV General Description Key Specifications The BD65492MUV provides a dual H-bridge motor driver which features wide range of motor power supply voltage from 1.8V to 16.0V and low power consumption to switch low ON-Resistance DMOS transistors at high speed. This small surface mounting package is most suitable for mobile system, home appliance and various applications. Features Low ON-Resistance Power DMOS Output Charge Pump-Less with PDMOS High-Side Driver Drive Mode Switch Function Control Input Voltage Range Fit 1.8V Controller Under Voltage Locked Out Protection & Thermal Shut Down Circuit Power Supply Voltage Range: 2.5V to 5.5V Motor Power Supply Voltage Range: 1.8V to 16.0V Circuit Current (Open Mode): 0.90mA(Typ) Stand-By Current: 1μA (Max) Control Input Voltage Range: 0V to VCCV Logic Input Frequency: 500kHz(Max) Minimum Logic Input Pulse Width: 0.5μs(Min) Turn On Time: 200ns(Typ) Turn Off Time: 80ns(Typ) H-Bridge Output Current (DC): -1.0A to +1.0A Output ON-Resistance (Total): 0.90Ω(Typ) Operating Temperature Range: -30°C to +85°C Package W(Typ) x D(Typ) x H(Max) VQFN024V4040 4.00mm x 4.00mm x 1.00mm Applications Mobile system Home appliance Amusement system, etc VQFN024V4040 Typical Application Circuit Bypass Filter Capacitor for Power Supply 1µF to 100µF Power-Saving H: Active L: Stand-by VCC Bypass Filter Capacitor for Power Supply 15 PS 11 Power Save TSD & UVLO BandGap 1µF to 100µF 21 22 Motor Control Input VM OUT1A IN1A 17 Level Shift & Pre Driver Logic IN1B 18 H-Bridge Full ON 23 24 2 3 OUT1B Selectable Drive Mode H: EN/IN L: IN/IN PWM 19 VM 9 10 OUT2A Level Shift & Pre Driver IN2A 14 Logic IN2B 12 H-Bridge Full ON 7 8 4 5 1 6 OUT2B PGND Motor Control Input 20 13 Always keep N.C. pins open. N.C. 16 N.C. GND Keep Open ○Product structure:Silicon monolithic integrated circuit www.rohm.com © 2012 ROHM Co., Ltd. All rights reserved. TSZ22111・14・001 It's better for VM pin groups of 9,10 and 21,22 to short-circuit on the PCB pattern. If cannot, check into transitional characteristics of total application circuit including two motors. Through low impedance materials, the possibility of causing some unexpected malfunctions is incontrovertible. ○This product has no designed protection against radioactive rays 1/14 TSZ02201-0H3H0B300440-1-2 09.Dec.2015 Rev.002 BD65492MUV Pin Configuration OUT1A OUT1A VM VM N.C. PWM (TOP VIEW) 24 23 22 21 20 19 OUT1B 3 16 GND OUT2B 4 15 VCC OUT2B 5 14 IN2A PGND 6 13 N.C. 7 8 9 10 11 12 IN2B 17 IN1A PS 2 VM OUT1B VM 18 IN1B OUT2A 1 OUT2A PGND The pins of the same name, such as VM, PGND, OUT1A, OUT1B, OUT2A and OUT2B, must be shorted on printed circuit boards. Pin Description Pin No. Pin Name 1 PGND 2 Function Pin No. Pin Name Function Motor ground 13 N.C. - OUT1B H-bridge output 1B 14 IN2A Control logic input 2A 3 OUT1B H-bridge output 1B 15 VCC Power supply 4 OUT2B H-bridge output 2B 16 GND Ground 5 OUT2B H-bridge output 2B 17 IN1A Control logic input 1A 6 PGND Motor ground 18 IN1B Control logic input 1B 7 OUT2A H-bridge output 2A 19 PWM Drive mode logic input 8 OUT2A H-bridge output 2A 20 N.C. - 9 VM Motor power supply 21 VM Motor power supply 10 VM Motor power supply 22 VM Motor power supply 11 PS Power-saving function 23 OUT1A H-bridge output 1A 12 IN2B Control logic input 2B 24 OUT1A H-bridge output 1A Block Diagram VCC 15 PS 11 Power Save TSD & UVLO BandGap 21 22 VM IN1A 17 Level Shift & Pre Driver Logic IN1B 18 H-Bridge Full ON 23 24 OUT1A 2 3 OUT1B PWM 19 9 10 VM Level Shift & Pre Driver IN2A 14 Logic IN2B 12 H-Bridge Full ON 13 20 16 N.C. N.C. GND www.rohm.com © 2012 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 2/14 7 8 OUT2A 4 5 OUT2B 1 6 PGND TSZ02201-0H3H0B300440-1-2 09.Dec.2015 Rev.002 BD65492MUV Description of Blocks 1. Power-Saving Function A power-saving function is included, which allows the system to save power when not driving the motor. The voltage level on this pin should be set high so as to keep the operation mode. (See the Electrical Characteristics; p.4/14) 2. Motor Control Input (a) IN1A, IN1B, IN2A and IN2B Pins Logic level controls the output logic of H-Bridge. (See the Electrical Characteristics; p.4/14, and I/O Truth Table; p.7/14) (b) PWM Pin Logic level sets the IN/IN or EN/IN drive mode. (See the Electrical Characteristics; p.4/14 and I/O Truth Table; p.7/14) 3. VM Terminal Each H-bridge can be controlled independently. Take into consideration that each VM terminal (9, 10, 21 and 22pin) is short-circuited internally. (See the Block Diagram; p.2/14) Absolute Maximum Ratings (Ta=25°C) Parameter Symbol Limit Unit Power Supply Voltage VCC -0.3 to +7.0 V Motor Power Supply Voltage VM -0.3 to +20.0 V Control Input Voltage VIN -0.3 to +VCC+0.3 V 0.70 (Note 1) Power Dissipation 2.20 (Note 2) Pd 3.56 W (Note 3) H-bridge Output Current (DC) IOUT -1.0 to +1.0 (Note 4) A Storage Temperature Range Tstg -55 to +150 °C Tjmax +150 °C Junction Temperature (Note 1) Reduced by 5.6mW/°C over 25°C, when mounted on a glass epoxy 1-layer board (74.2mm x 74.2mm x 1.6mm) In surface layer copper foil area: 10.29mm2 (Note 2) Reduced by 17.6mW/°C over 25°C, when mounted on a glass epoxy 4-layer board (74.2mm x 74.2mm x 1.6mm) In surface & back layers copper foil area: 10.29mm2, 2&3 layers copper foil area: 5505mm2 (Note 3) Reduced by 28.4mW/°C over 25°C, when mounted on a glass epoxy 4-layer board (74.2mm x 74.2mm x 1.6mm) In all 4-layers copper foil area: 5505mm2 (Note 4) Must not exceed Pd, ASO, or Tjmax of 150°C Caution: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is operated over the absolute maximum ratings. Recommended Operating Ratings Parameter Symbol Min Typ Max Unit Power Supply Voltage VCC 2.5 - 5.5 V Motor Power Supply Voltage VM 1.8 - 16.0 V Control Input Voltage VIN 0 - VCC V Logic Input Frequency FIN 0 - 500 kHz Minimum Logic Input Pulse Width TIN 0.5 - - μs Topr -30 - +85 °C Operating Temperature Range www.rohm.com © 2012 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 3/14 TSZ02201-0H3H0B300440-1-2 09.Dec.2015 Rev.002 BD65492MUV Electrical Characteristics (Unless otherwise specified VCC=3.0V, VM=5.0V, Ta=25°C) Parameter Symbol Min Typ Max Unit Conditions All Circuits Stand-by Current ICCST - 0 1 μA VPS=0V Circuit Current 1 ICC1 0.50 0.90 1.25 mA VPS=3V, Open Mode Circuit Current 2 ICC2 0.50 0.95 1.30 mA VPS=3V, CW & CCW Mode Circuit Current 3 ICC3 0.50 0.95 1.30 mA VPS=3V, Short Brake Mode High-Level Input Voltage VPSH 1.45 - VCC V Low-Level Input Voltage VPSL 0 - 0.5 V High-Level Input Current IPSH 15 30 60 μA VPS=3V Low-Level Input Current IPSL -1 0 +1 μA VPS=0V PS Input (PS) Control Input (IN=IN1A, IN1B, IN2A, IN2B, PWM) High-Level Input Voltage VINH 1.45 - VCC V Low-Level Input Voltage VINL 0 - 0.5 V High-Level Input Current IINH 15 30 60 μA VIN=3V Low-Level Input Current IINL -1 0 +1 μA VIN=0V VUVLO 2.0 - 2.4 V RON - 0.9 1.2 Ω IOUT=±500mA, High & Low-side total Turn On Time TON - 200 400 ns 20Ω Loading Turn Off Time TOFF - 80 400 ns 20Ω Loading Under Voltage Locked Out (UVLO) UVLO Voltage Full ON Type H-Bridge Driver Output ON-Resistance www.rohm.com © 2012 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 4/14 TSZ02201-0H3H0B300440-1-2 09.Dec.2015 Rev.002 BD65492MUV Typical Performance Curves (Reference data) 5.0 3.0 Top 85°C Mid 25°C Low -30°C Top 85°C Mid 25°C Low -30°C Circuit current : ICC [mA] Circuit current : ICC [µA] 4.0 3.0 Operating range (2.5V to 5.5V) 2.0 2.0 Operating range (2.5V to 5.5V) 1.0 1.0 0.0 0.0 0 2 1 3 4 6 5 7 0 Power Supply Voltage : VCC [V] 2 3 4 5 6 7 Power Supply Voltage : VCC [V] Figure 1. Circuit Current vs Power Supply Voltage (Stand-by Mode) Figure 2. Circuit Current vs Power Supply Voltage (Open Mode) 800 800 Top 85°C Mid 25°C Low -30°C Top 85°C Mid 25°C Low -30°C 600 Output VDS : VDSL [mV] Output VD S : DVSH [mV] 1 400 600 400 200 200 0 0 0 200 400 600 800 1000 200 400 600 800 1000 Output Current : IOUT [mA] Output Current : IOUT [mA] Figure 3. Output VDS vs Power Output Current (Output On-Resistance on high-side, VM=5V, VCC=3V) www.rohm.com © 2012 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 0 Figure 4. Output VDS vs Power Output Current (Output On-Resistance on low-side VM=5V, VCC=3V) 5/14 TSZ02201-0H3H0B300440-1-2 09.Dec.2015 Rev.002 BD65492MUV Typical Performance Curves (Reference Data) - continued 0.5 Output On Resistance : R ON [Ω] Output On Resistance : R ON [Ω] 1.0 0.8 0.6 0.4 Operating range (1.8V to 16.0V) 0.2 Top 85°C Mid 25°C Low -30°C 0.0 0.4 0.3 0.2 Operating range (1.8V to 16.0V) 0.1 Top 85°C Mid 25°C Low -30°C 0.0 0 5 10 15 Motor Power Supply Voltage : VM [V] 20 0 Figure 5. Output On-Resistance vs Motor Power Supply Voltage (Output On-Resistance on high-side VM Dependency, VCC=3V) www.rohm.com © 2012 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 6/14 5 10 15 Motor Power Supply Voltage : VM [V] 20 Figure 6. Output On-Resistance vs Motor Power Supply Voltage (Output On-Resistance on low-side VM Dependency, VCC=3V) TSZ02201-0H3H0B300440-1-2 09.Dec.2015 Rev.002 BD65492MUV Timing Chart Table 1. I/O Truth Table Input Mode INPUT PS(Note 5) EN/IN - OUT1B/2B Output Mode(Note 6) X L L Short Brake L H L CW H L H CCW L Z Z Open H L H L CW IN1A/2A IN1B/2B L H H H L L L OUT1A/2A PWM H IN/IN OUTPUT X L H L H CCW H H L L Short Brake X X Z Z Open L: Low, H: High, X: Don’t care, Z: Hi impedance (Note 5)PS=High: Operation Mode, PS=Low: Stand-by Mode (Note 6)CW: Current flows from OUTxA to OUTxB, CCW: Current flows from OUTxB to OUTxA (x=1, 2) TIN 1.45V 1.0V TIN Control Input 0.5V TON TON TOFF TOFF 100% 50% 50% Motor Current 0% -50% -50% -100% Figure 7. Input-Output AC characteristic www.rohm.com © 2012 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 7/14 TSZ02201-0H3H0B300440-1-2 09.Dec.2015 Rev.002 BD65492MUV Application Example Bypass Filter Capacitor for Power Supply 1µF to 100µF Power-Saving H: Active L: Stand-by VCC Bypass Filter Capacitor for Power Supply 15 PS 11 Power Save TSD & UVLO BandGap 1µF to 100µF 21 22 Motor Control Input VM OUT1A IN1A 17 Level Shift & Pre Driver Logic IN1B 18 H-Bridge Full ON 23 24 2 3 OUT1B Selectable Drive Mode H: EN/IN L: IN/IN PWM 19 VM 9 10 OUT2A Level Shift & Pre Driver IN2A 14 Logic IN2B 12 H-Bridge Full ON 7 8 4 5 1 6 OUT2B PGND Motor Control Input 20 13 N.C. Always keep N.C. pins open. 16 N.C. GND Keep Open It's better for VM pin groups of 9,10 and 21,22 to short-circuit on the PCB pattern. If cannot, check into transitional characteristics of total application circuit including two motors. Through low impedance materials, the possibility of causing some unexpected malfunctions is incontrovertible. Selection of Components Externally Connected When using the circuit with changes to the external circuit constants, make sure to leave an adequate margin for external components including static and transitional characteristics as well as dispersion of the IC. www.rohm.com © 2012 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 8/14 TSZ02201-0H3H0B300440-1-2 09.Dec.2015 Rev.002 BD65492MUV Power Dissipation 4.0 Power Dissipation : Pd [W] 3.56W 3.0 2.20W 2.0 1.86W 1.14W 1.0 0.70W 0.36W 85°C 0.0 0 25 50 75 100 125 Ambient Temperature : Ta [°C] 150 Figure 8. Power Dissipation vs Ambient Temperature I/O Equivalence Circuits PS IN1A, IN1B, IN2A, IN2B, PWM VM, PGND, OUTxA, OUTxB (X=1,2) VM 75kΩ 10kΩ 300kΩ 100kΩ OUTxA OUTxB PGND www.rohm.com © 2012 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 9/14 TSZ02201-0H3H0B300440-1-2 09.Dec.2015 Rev.002 BD65492MUV Operational Notes 1. Reverse Connection of Power Supply Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when connecting the power supply, such as mounting an external diode between the power supply and the IC’s power supply pins. 2. Power Supply Lines Design the PCB layout pattern to provide low impedance supply lines. Separate the ground and supply lines of the digital and analog blocks to prevent noise in the ground and supply lines of the digital block from affecting the analog block. Furthermore, connect a capacitor to ground at all power supply pins. Consider the effect of temperature and aging on the capacitance value when using electrolytic capacitors. 3. Ground Voltage Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition. 4. Ground Wiring Pattern When using both small-signal(GND) and large-current ground(PGND) traces, the two ground traces should be routed separately but connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal ground caused by large currents. Also ensure that the ground traces of external components do not cause variations on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance. 5. Thermal Consideration Should by any chance the power dissipation rating be exceeded the rise in temperature of the chip may result in deterioration of the properties of the chip. In case of exceeding this absolute maximum rating, increase the board size and copper area to prevent exceeding the Pd rating. 6. Recommended Operating Conditions These conditions represent a range within which the expected characteristics of the IC can be approximately obtained. The electrical characteristics are guaranteed under the conditions of each parameter. 7. Inrush Current When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may flow instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power supply. Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and routing of connections. 8. Operation Under Strong Electromagnetic Field Operating the IC in the presence of a strong electromagnetic field may cause the IC to malfunction. 9. Testing on Application Boards When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may subject the IC to stress. Always discharge capacitors completely after each process or step. The IC’s power supply should always be turned off completely before connecting or removing it from the test setup during the inspection process. To prevent damage from static discharge, ground the IC during assembly and use similar precautions during transport and storage. 10. Inter-pin Short and Mounting Errors Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin. Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment) and unintentional solder bridge deposited in between pins during assembly to name a few. 11. Unused Input Pins Input pins of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small charge acquired in this way is enough to produce a significant effect on the conduction through the transistor and cause unexpected operation of the IC. So unless otherwise specified, unused input pins should be connected to the power supply or ground line. www.rohm.com © 2012 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 10/14 TSZ02201-0H3H0B300440-1-2 09.Dec.2015 Rev.002 BD65492MUV Operational Notes – continued 12. Regarding the Input Pin of the IC This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them isolated. P-N junctions are formed at the intersection of the P layers with the N layers of other elements, creating a parasitic diode or transistor. For example (refer to figure below): When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode. When GND > Pin B, the P-N junction operates as a parasitic transistor. Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual interference among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to operate, such as applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should be avoided. Resistor Transistor (NPN) Pin A Pin B C E Pin A N P+ P N N P+ N Pin B B Parasitic Elements N P+ N P N P+ B N C E Parasitic Elements P Substrate P Substrate GND GND Parasitic Elements Parasitic Elements GND GND N Region close-by Figure 9. Example of monolithic IC structure 13. Ceramic Capacitor When using a ceramic capacitor, determine the dielectric constant considering the change of capacitance with temperature and the decrease in nominal capacitance due to DC bias and others. 14. Area of Safe Operation (ASO) Operate the IC such that the output voltage, output current, and power dissipation are all within the Area of Safe Operation (ASO). 15. Thermal Shutdown Circuit(TSD) This IC has a built-in thermal shutdown circuit that prevents heat damage to the IC. Normal operation should always be within the IC’s power dissipation rating. If however the rating is exceeded for a continued period, the junction temperature (Tj) will rise which will activate the TSD circuit that will turn OFF all output pins. When the Tj falls below the TSD threshold, the circuits are automatically restored to normal operation. Note that the TSD circuit operates in a situation that exceeds the absolute maximum ratings and therefore, under no circumstances, should the TSD circuit be used in a set design or for any purpose other than protecting the IC from heat damage. www.rohm.com © 2012 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 11/14 TSZ02201-0H3H0B300440-1-2 09.Dec.2015 Rev.002 BD65492MUV Ordering Information B D 6 5 4 9 2 M U V - Package MUV :VQFN024V4040 Part Number E2 Packaging and forming specification E2: Embossed tape and reel Marking Diagram VQFN024V4040 (TOP VIEW) 6 5 4 9 2 Part Number Marking M rkingNumber LOT 1PIN MARK Part Number Marking 65492 www.rohm.com © 2012 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 Package Orderable Part Number VQFN024V4040 BD65492MUV-E2 12/14 TSZ02201-0H3H0B300440-1-2 09.Dec.2015 Rev.002 BD65492MUV Physical Dimension, Tape and Reel Information Package Name www.rohm.com © 2012 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 VQFN024V4040 13/14 TSZ02201-0H3H0B300440-1-2 09.Dec.2015 Rev.002 BD65492MUV Revision History Date Revision 05.Oct.2012 09.Dec.2015 001 002 Changes New release Applied the ROHM Standard Style and improved understandability. www.rohm.com © 2012 ROHM Co., Ltd. All rights reserved. TSZ22111・15・001 14/14 TSZ02201-0H3H0B300440-1-2 09.Dec.2015 Rev.002 Datasheet Notice Precaution on using ROHM Products 1. Our Products are designed and manufactured for application in ordinary electronic equipments (such as AV equipment, OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you (Note 1) , transport intend to use our Products in devices requiring extremely high reliability (such as medical equipment equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or serious damage to property (“Specific Applications”), please consult with the ROHM sales representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any ROHM’s Products for Specific Applications. (Note1) Medical Equipment Classification of the Specific Applications JAPAN USA EU CHINA CLASSⅢ CLASSⅡb CLASSⅢ CLASSⅢ CLASSⅣ CLASSⅢ 2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which a failure or malfunction of our Products may cause. The following are examples of safety measures: [a] Installation of protection circuits or other protective devices to improve system safety [b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure 3. Our Products are designed and manufactured for use under standard conditions and not under any special or extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the use of any ROHM’s Products under any special or extraordinary environments or conditions. If you intend to use our Products under any special or extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of product performance, reliability, etc, prior to use, must be necessary: [a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents [b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust [c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2 [d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves [e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items [f] Sealing or coating our Products with resin or other coating materials [g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning residue after soldering [h] Use of the Products in places subject to dew condensation 4. The Products are not subject to radiation-proof design. 5. Please verify and confirm characteristics of the final or mounted products in using the Products. 6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied, confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect product performance and reliability. 7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in the range that does not exceed the maximum junction temperature. 8. Confirm that operation temperature is within the specified range described in the product specification. 9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in this document. Precaution for Mounting / Circuit board design 1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product performance and reliability. 2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products, please consult with the ROHM representative in advance. For details, please refer to ROHM Mounting specification Notice-PGA-E © 2015 ROHM Co., Ltd. All rights reserved. Rev.002 Datasheet Precautions Regarding Application Examples and External Circuits 1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the characteristics of the Products and external components, including transient characteristics, as well as static characteristics. 2. You agree that application notes, reference designs, and associated data and information contained in this document are presented only as guidance for Products use. Therefore, in case you use such information, you are solely responsible for it and you must exercise your own independent verification and judgment in the use of such information contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of such information. Precaution for Electrostatic This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron, isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control). Precaution for Storage / Transportation 1. Product performance and soldered connections may deteriorate if the Products are stored in the places where: [a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2 [b] the temperature or humidity exceeds those recommended by ROHM [c] the Products are exposed to direct sunshine or condensation [d] the Products are exposed to high Electrostatic 2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is exceeding the recommended storage time period. 3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads may occur due to excessive stress applied when dropping of a carton. 4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of which storage time is exceeding the recommended storage time period. Precaution for Product Label QR code printed on ROHM Products label is for ROHM’s internal use only. Precaution for Disposition When disposing Products please dispose them properly using an authorized industry waste company. Precaution for Foreign Exchange and Foreign Trade act Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign trade act, please consult with ROHM in case of export. Precaution Regarding Intellectual Property Rights 1. All information and data including but not limited to application example contained in this document is for reference only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any other rights of any third party regarding such information or data. 2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the Products with other articles such as components, circuits, systems or external equipment (including software). 3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to manufacture or sell products containing the Products, subject to the terms and conditions herein. Other Precaution 1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM. 2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written consent of ROHM. 3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the Products or this document for any military purposes, including but not limited to, the development of mass-destruction weapons. 4. The proper names of companies or products described in this document are trademarks or registered trademarks of ROHM, its affiliated companies or third parties. Notice-PGA-E © 2015 ROHM Co., Ltd. All rights reserved. Rev.002 Datasheet General Precaution 1. Before you use our Pro ducts, you are requested to care fully read this document and fully understand its contents. ROHM shall n ot be in an y way responsible or liabl e for fa ilure, malfunction or acci dent arising from the use of a ny ROHM’s Products against warning, caution or note contained in this document. 2. All information contained in this docume nt is current as of the issuing date and subj ect to change without any prior notice. Before purchasing or using ROHM’s Products, please confirm the la test information with a ROHM sale s representative. 3. The information contained in this doc ument is provi ded on an “as is” basis and ROHM does not warrant that all information contained in this document is accurate an d/or error-free. ROHM shall not be in an y way responsible or liable for an y damages, expenses or losses incurred b y you or third parties resulting from inaccur acy or errors of or concerning such information. Notice – WE © 2015 ROHM Co., Ltd. All rights reserved. Rev.001 Datasheet BD65492MUV - Web Page Buy Distribution Inventory Part Number Package Unit Quantity Minimum Package Quantity Packing Type Constitution Materials List RoHS BD65492MUV VQFN024V4040 2500 2500 Taping inquiry Yes