Renesas M30625MWP-XXXGP Single-chip 16-bit cmos microcomputer Datasheet

M16C/62 Group (M16C/62P, M16C/62PT)
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
REJ03B0001-0210Z
Rev.2.10
Nov. 07, 2003
1. Overview
The M16C/62 group (M16C/62P, M16C/62PT) of single-chip microcomputers are built using the high-performance silicon gate CMOS process using a M16C/60 Series CPU core and are packaged in a 80-pin,
100-pin and 128-pin plastic molded QFP. These single-chip microcomputers operate using sophisticated
instructions featuring a high level of instruction efficiency. With 1M bytes of address space, they are capable of executing instructions at high speed. In addition, this microcomputer contains a multiplier and
DMAC which combined with fast instruction processing capability, makes it suitable for control of various
OA, communication, and industrial equipment which requires high-speed arithmetic/logic operations.
1.1 Applications
Audio, cameras, office/communications/portable/industrial equipment, automobile, etc
Specifications written in this manual are believed to be accurate, but are
not guaranteed to be entirely free of error. Specifications in this manual
may be changed for functional or performance improvements. Please make
sure your manual is the latest edition.
Rev.2.10 Nov. 07, 2003 page 1
of 84
1. Overview
M16C/62 Group (M16C/62P, M16C/62PT)
1.2 Performance Outline
Table 1.1 to table 1.3 list performance outline of M16C/62 group (M16C/62P, M16C/62PT).
Table 1.1 Performance outline of M16C/62 group (M16C/62P) (128-pin version)
Item
CPU
Performance
M16C/62P
Number of basic instructions
Shortest instruction execution time
Operation mode
Memory space
Peripheral
function
Memory capacity
Port
Multifunction timer
Serial I/O
A-D converter
D-A converter
DMAC
CRC calculation circuit
Watchdog timer
Interrupt
Clock generating circuit
Oscillation stop detection function
Electric
characteristics
Flash memory
Version
Voltage detection circuit
Supply voltage
Power consumption
Program/erase supply voltage
Program and erase endurance
Operating ambient temperature
Package
91 instructions
41.7ns(f(BCLK)=24MHz, VCC1=3.0 to 5.5V)
100ns(f(BCLK)=10MHz, VCC1=2.7 to 5.5V)
Single-chip, memory expansion and microprocessor mode
1 Mbyte (Available to 4M bytes by memory space
expansion function)
See table 1.4 and 1.5 Product List
Input/Output : 113 pins, Input : 1 pin
Timer A : 16 bits x 5 channels, Timer B : 16 bits x 6 channels
Three phase motor control circuit
3 channels
Clock synchronous, UART,
I2C bus (1), IEBus (2)
2 channels
Clock synchronous
10-bit A-D converter: 1 circuit, 26 channels
8 bits x 2 channels
2 channels
CCITT-CRC
15 bits x 1 channel (with prescaler)
Internal: 29 sources, External: 8 sources, Software: 4 sources,
Priority level: 7 levels
4 circuits
Main clock generation circuit (*),
Subclock generation circuit (*),
Ring oscillator, PLL synthesizer
(*)Equipped with a built-in feedback resistor.
Stop detection of main clock oscillation, re-oscillation detection
function
Available (option (4))
VCC1=3.0 to 5.5V, VCC2=2.7V to VCC1 (f(BCLK)=24MHz)
VCC1=2.7 to 5.5V, VCC2=2.7V to VCC1 (f(BCLK)=10MHz)
14 mA (VCC1=VCC2=5V, f(BCLK)=24MHz)
8 mA (VCC1=VCC2=3V, f(BCLK)=10MHz)
1.8 µA (VCC1=VCC2=3V, f(XCIN)=32kHz, wait mode)
0.7 µ A (VCC1=VCC2=3V, stop mode)
3.3 ± 0.3 V or 5.0 ± 0.5 V
100 times (all area)
or 1,000 times (user ROM area without block 1)
/ 10,000 times (block A, block 1) (3)
–20 to 85oC
–40 to 85oC (3)
128-pin plastic mold QFP
NOTES:
1. I2C bus is a registered trademark of Koninklijke Philips Electronics N. V.
2. IEBus is a registered trademark of NEC Electronics Corporation.
3. See table 1.8 Product Code for the program and erase endurance, and operating ambient temperature.
In addition 1,000 times/10,000 times are under development as of Oct., 2003. Please inquire about a release schedule.
4. All options are on request basis.
Rev.2.10 Nov. 07, 2003 page 2
of 84
1. Overview
M16C/62 Group (M16C/62P, M16C/62PT)
Table 1.2 Performance outline of M16C/62 group (M16C/62P, M16C/62PT) (100-pin version)
Item
Performance
M16C/62P
M16C/62PT(Note 4)
Number of basic instructions 91 instructions
Shortest instruction execution time 41.7ns(f(BCLK)=24MHz, VCC1=3.0 to 5.5V) 41.7ns(f(BCLK)=24MHz, VCC1=4.0 to 5.5V)
100ns(f(BCLK)=10MHz, VCC1=2.7 to 5.5V)
Operation mode
Single-chip, memory expansion and Single-chip mode
microprocessor mode
Memory space
1 Mbyte (Available to 4 Mbytes by 1M byte
memory space expansion function)
Memory capacity
See table 1.4 to 1.7 Product List
Port
Input/Output : 87 pins, Input : 1pin
Peripheral
Multifunction timer
Timer A : 16 bits x 5 channels, Timer B : 16 bits x 6 channels
function
Three phase motor control circuit
Serial I/O
3 channels
Clock synchronous, UART,
I2C bus (1), IEBus (2)
2 channels
Clock synchronous
A-D converter
10-bit A-D converter: 1 circuit, 26 channels
D-A converter
8 bits x 2 channels
DMAC
2 channels
CRC calculation circuit
CCITT-CRC
Watchdog timer
15 bits x 1 channel (with prescaler)
Interrupt
Internal: 29 sources, External: 8 sources, Software: 4 sources,
Priority level: 7 levels
Clock generating circuit
4 circuits
Main clock generation circuit (*),
Subclock generation circuit (*),
Ring oscillator, PLL synthesizer
(*)Equipped with a built-in feedback resistor.
Oscillation stop detection function Stop detection of main clock oscillation, re-oscillation detection function
Voltage detection circuit
Available (option (5))
Absent
VCC1=3.0 to 5.5V, VCC2=2.7V to VCC1 VCC1=VCC2=4.0V to 5.5 V
Supply voltage
Electric
(f(BCLK)=24MHz)
(f(BCLK)=24MHz)
characterisVCC1=2.7 to 5.5V, VCC2=2.7V to VCC1
tics
(f(BCLK)=10MHz)
Power consumption
14 mA (VCC1=VCC2=5V, f(BCLK)=24MHz) 14 mA (VCC1=VCC2=5V, f(BCLK)=24MHz)
8 mA (VCC1=VCC2=3V, f(BCLK)=10MHz) 2.0 µA (VCC1=VCC2=5V,
1.8 µA (VCC1=VCC2=3V,
f(XCIN)=32kHz, wait mode)
f(XCIN)=32kHz, wait mode)
0.8 µ A (VCC1=VCC2=5V, stop mode)
0.7 µ A (VCC1=VCC2=3V, stop mode)
3.3 ± 0.3 V or 5.0 ± 0.5 V
5.0 ± 0.5 V
Flash memory Program/erase supply voltage
Program and erase endurance
100 times (all area)
Version
or 1,000 times (user ROM area without block 1)
/ 10,000 times (block A, block 1) (3)
Operating ambient temperature
–20 to 85oC
T version : –40 to 85oC
o
(3)
–40 to 85 C
V version : –40 to 125oC
Package
100-pin plastic mold QFP, LQFP
CPU
NOTES:
1. I2C bus is a registered trademark of Koninklijke Philips Electronics N. V.
2. IEBus is a registered trademark of NEC Electronics Corporation.
3. See table 1.8 Product Code for the program and erase endurance, and operating ambient temperature.
In addition 1,000 times/10,000 times are under development as of Oct., 2003. Please inquire about a release schedule.
4. Use the high reliability version on VCC1 = VCC2.
5. All options are on request basis.
Rev.2.10 Nov. 07, 2003 page 3
of 84
1. Overview
M16C/62 Group (M16C/62P, M16C/62PT)
Table 1.3 Performance outline of M16C/62 group (M16C/62P, M16C/62PT) (80-pin version)
Item
Performance
M16C/62P
M16C/62PT
CPU
Number of basic instructions 91 instructions
Shortest instruction execution time 41.7ns(f(BCLK)=24MHz, VCC1=3.0 to 5.5V) 41.7ns(f(BCLK)=24MHz, VCC1=4.0 to 5.5V)
100ns(f(BCLK)=10MHz, VCC1=2.7 to 5.5V)
Operation mode
Single-chip mode
Memory space
1M byte
Memory capacity
See table 1.4 to 1.7 Product List
Peripheral
Port
Input/Output : 70 pins, Input : 1pin
function
Multifunction timer
Timer A : 16 bits x 5 channels (Timer A1 and A2 are internal timer)
Timer B : 16 bits x 6 channels (Timer B1 is internal timer)
Serial I/O
2 channels
Clock synchronous, UART,
I2C bus(1), IEBus(2)
1 channel
Clock synchronous,
I2C bus(1), IEBus(2)
2 channels
Clock synchronous (1 channel is only for transmission)
A-D converter
10-bit A-D converter: 1 circuit, 26 channels
D-A converter
8 bits x 2 channels
DMAC
2 channels
CRC calculation circuit
CCITT-CRC
Watchdog timer
15 bits x 1 channel (with prescaler)
Interrupt
Internal: 29 sources, External: 5 sources, Software: 4 sources,
Priority level: 7 levels
Clock generating circuit
4 circuits
Main clock generation circuit (*),
Subclock generation circuit (*),
Ring oscillator, PLL synthesizer
(*)Equipped with a built-in feedback resistor.
Oscillation stop detection function Stop detection of main clock oscillation, re-oscillation detection function
Voltage detection circuit
Available (option (4))
Absent
Electric
VCC1=3.0 to 5.5V, (f(BCLK)=24MHz) VCC1=4.0 to 5.5V, (f(BCLK)=24MHz)
Supply voltage
characterisVCC1=2.7 to 5.5V, (f(BCLK)=10MHz)
tics
Power consumption
14 mA (VCC1=5V, f(BCLK)=24MHz) 14 mA (VCC1=5V, f(BCLK)=24MHz)
8 mA (VCC1=3V, f(BCLK)=10MHz) 2.0 µA (VCC1=5V,
1.8 µA (VCC1=3V,
f(XCIN)=32kHz, wait mode)
f(XCIN)=32kHz, wait mode)
0.8 µ A (VCC1=5V, stop mode)
0.7 µ A (VCC1=3V, stop mode)
Flash
Program/erase supply voltage 3.3 ± 0.3 V or 5.0 ± 0.5 V
5.0 ± 0.5 V
memory
Program and erase endurance
100 times (all area)
Version
or 1,000 times (user ROM area without block 1)
/ 10,000 times (block A, block 1) (3)
Operating ambient temperature
–20 to 85oC
T version : –40 to 85oC
o
–40 to 85 C(option)
V version : –40 to 125oC
Package
80-pin plastic mold QFP
NOTES :
1. I2C bus is a registered trademark of Koninklijke Philips Electronics N. V.
2. IEBus is a registered trademark of NEC Electronics Corporation.
3. See table 1.8 Product Code for the program and erase endurance, and operating ambient temperature.
In addition 1,000 times/10,000 times are under development as of Oct., 2003. Please inquire about a release schedule.
4. All options are on request basis.
Rev.2.10 Nov. 07, 2003 page 4
of 84
1. Overview
M16C/62 Group (M16C/62P, M16C/62PT)
1.3 Block Diagram
Figure 1.1 is a block diagram of the M16C/62 group (M16C/62P, M16C/62PT) 128-pin and 100-pin version,
figure 1.2 is a block diagram of the M16C/62 group (M16C/62P, M16C/62PT) 80-pin version.
8
8
Port P0
8
Port P1
8
Port P3
Port P2
8
Port P4
Port P5
Timer (16-bit)
Expandable up to 26 channels)
Output (timer A): 5
Input (timer B): 6
UART or
clock synchronous serial I/O
(8 bits X 3 channels)
Clock synchronous serial I/O
(8 bits X 2 channels)
M16C/60 series16-bit CPU core
R2
R3
DMAC
ISP
INTB
D-A converter
PC
FLG
8
<VCC2 ports>(4)
Port P14
Port P12
(3)
Port P13
(3)
(3)
2
8
8
<VCC1 ports>(4)
(3)
AAAAA
AAAAA
AAAAA
Multiplier
(8 bits X 2 channels)
Port P11
RAM (2)
Port P10
A0
A1
FB
(2 channels)
ROM (1)
USP
8
(15 bits)
SB
R0L
R1L
Port P9
R0H
R1H
Watchdog timer
Memory
Port P8_5
CRC arithmetic circuit (CCITT )
(Polynomial : X16+X12+X5+1)
<VCC1 ports>(4)
XIN-XOUT
XCIN-XCOUT
PLL frequency synthesizer
Ring oscillator
7
System clock
generation circuit
A-D converter
(10 bits X 8 channels
8
<VCC1 ports>(4)
Internal peripheral functions
Three-phase motor
control circuit
Port P6
Port P8
ports>(4)
8
Port P7
<VCC2
8
8
NOTES :
1. ROM size depends on microcomputer type.
2. RAM size depends on microcomputer type.
3. Ports P11 to P14 exist only in 128-pin version.
4. Use M16C/62PT on VCC1= VCC2.
Figure 1.1 M16C/62 Group (M16C/62P, M16C/62PT) 128-pin and 100-pin version Block Diagram
Rev.2.10 Nov. 07, 2003 page 5
of 84
1. Overview
M16C/62 Group (M16C/62P, M16C/62PT)
8
8
Port P0
Port P2
8
Port P3
4
8
Port P4
Port P5
8
Port P6
XIN-XOUT
XCIN-XCOUT
PLL frequency synthesizer
Ring oscillator
UART or
clock synchronous serial I/O (2 channels)
UART
(1 channel)
(3)
Clock synchronous serial I/O
Watchdog timer
M16C/60 series16-bit CPU core
R0H
R1H
R0L
R1L
DMAC
(2 channels)
(8 bits X 2 channels)
ISP
INTB
ROM (1)
RAM (2)
PC
FLG
Multiplier
8
Port P10
A0
A1
FB
D-A converter
SB
USP
7
R2
R3
Memory
Port P9
(15 bits)
(4)
(8 bits X 2 channels)
CRC arithmetic circuit (CCITT )
(Polynomial : X16+X12+X5+1)
Port P8_5
Three-phase motor
control circuit
Expandable up to 26 channels)
7
Output (timer A): 5
Input (timer B): 6
System clock
generation circuit
A-D converter
(10 bits X 8 channels
Port P8
Timer (16-bit)
4
Internal peripheral functions
Port P7
(4)
NOTES :
1. ROM size depends on microcomputer type.
2. RAM size depends on microcomputer type.
3. To use a UART2, set the CRD bit in the U2C0 register to “1” (CTS/RTS function disabled).
4. There is no external connections for port P1, P4_4 to P4_7, P7_2 to P7_5 and P9_1 in 80-pin version.
Set the direction bits in these ports to “1” (output mode), and set the output data to “0” (“L”) using the program.
Figure 1.2 M16C/62 Group (M16C/62P, M16C/62PT) 80-pin version Block Diagram
Rev.2.10 Nov. 07, 2003 page 6
of 84
1. Overview
M16C/62 Group (M16C/62P, M16C/62PT)
1.4 Product List
Tables 1.4 to 1.7 list the product list, figure 1.3 shows the type numbers, memory sizes and packages,
table 1.8 lists the product code of flash memory version and external ROM version for M16C/62P. Figure 1.4 shows the marking diagram of flash memory version and external ROM version for M16C/62P.
Please specify the mark of the mask ROM version at the time of ROM order.
Please ask separately marking of the flash memory version of M16C/62PT.
Table 1.4 Product List (1) (M16C/62P)
Type No.
ROM capacity
As of Nov. 2003
RAM capacity
Package type
M30622M6P-XXXFP
(D)
M30622M6P-XXXGP
M30623M6P-XXXGP
(D) 48K bytes
(D)
M30622M8P-XXXFP
(D)
100P6S-A
M30622M8P-XXXGP
(D) 64K bytes
(D)
100P6Q-A
M30623M8P-XXXGP
100P6S-A
4K bytes
100P6Q-A
80P6S-A
4K bytes
80P6S-A
100P6S-A
M30622MAP-XXXFP
96K bytes
M30622MAP-XXXGP
M30623MAP-XXXGP
Remarks
5K bytes
100P6Q-A
80P6S-A
(D)
100P6S-A
M30620MCP-XXXFP
M30620MCP-XXXGP
128K bytes
10K bytes
100P6Q-A
M30621MCP-XXXGP
(D)
80P6S-A
M30622MEP-XXXFP
(D)
100P6S-A
M30622MEP-XXXGP
M30623MEP-XXXGP
(D) 192K bytes
(D)
M30622MGP-XXXFP
(D)
M30622MGP-XXXGP
(D)
M30623MGP-XXXGP
(D)
12K bytes
100P6Q-A
128P6Q-A
100P6S-A
12K bytes
100P6Q-A
128P6Q-A
256K bytes
M30624MGP-XXXFP
100P6S-A
M30624MGP-XXXGP
100P6Q-A
20K bytes
M30625MGP-XXXGP
128P6Q-A
M30622MWP-XXXFP
(D)
M30622MWP-XXXGP
(D)
M30623MWP-XXXGP
(D)
100P6S-A
16K bytes
128P6Q-A
M30624MWP-XXXFP
M30624MWP-XXXGP
100P6Q-A
100P6S-A
320K bytes
24K bytes
100P6Q-A
M30625MWP-XXXGP
128P6Q-A
M30626MWP-XXXFP
100P6S-A
M30626MWP-XXXGP
31K bytes
M30627MWP-XXXGP
128P6Q-A
M30622MHP-XXXFP
100P6S-A
M30622MHP-XXXGP
16K bytes
M30623MHP-XXXGP
100P6S-A
384K bytes
24K bytes
M30625MHP-XXXGP
100P6Q-A
128P6Q-A
100P6S-A
M30626MHP-XXXFP
31K bytes
M30626MHP-XXXGP
100P6Q-A
128P6Q-A
M30627MHP-XXXGP
(D): Under development
(P): Under planning
Rev.2.10 Nov. 07, 2003 page 7
100P6Q-A
128P6Q-A
M30624MHP-XXXFP
M30624MHP-XXXGP
100P6Q-A
of 84
MASK ROM version
1. Overview
M16C/62 Group (M16C/62P, M16C/62PT)
Table 1.5 Product List (2) (M16C/62P)
Type No.
ROM capacity
M30626MJP-XXXFP
(P)
M30626MJP-XXXGP
(P) 512K bytes
M30627MJP-XXXGP
(P)
As of Nov. 2003
ROM capacity
100P6S-A
31K bytes
MASK ROM version
100P6S-A
64K+4K bytes
4K bytes
(D)
100P6Q-A
80P6S-A
M30620FCPFP
100P6S-A
128K+4K bytes
M30620FCPGP
M30621FCPGP
100P6Q-A
128P6Q-A
M30622F8PFP
M30622F8PGP
M30623F8PGP
Package type
Remarks
10K bytes
100P6Q-A
80P6S-A
(D)
100P6S-A
M30624FGPFP
256K+4K bytes
M30624FGPGP
20K bytes
100P6Q-A
Flash memory version
128P6Q-A
M30625FGPGP
100P6S-A
M30626FHPFP
384K+4K bytes
M30626FHPGP
31K bytes
100P6Q-A
128P6Q-A
M30627FHPGP
M30626FJPFP
(P)
M30626FJPGP
(P) 512K+4K bytes
M30627FJPGP
(P)
M30622SPFP
(D)
M30622SPGP
(D)
M30620SPFP
(D)
M30620SPGP
(D): Under development
(P): Under planning
(D)
Rev.2.10 Nov. 07, 2003 page 8
100P6S-A
31K bytes
100P6Q-A
128P6Q-A
100P6S-A
4K bytes
10K bytes
100P6Q-A
100P6S-A
100P6Q-A
of 84
External ROM version
1. Overview
M16C/62 Group (M16C/62P, M16C/62PT)
Table 1.6 Product List (3) (T version (M16C/62PT))
Type No.
ROM capacity
RAM capacity
As of Nov. 2003
Package type
M3062CM6T-XXXFP
(D)
M3062CM6T-XXXGP
(D) 48K bytes
M3062EM6T-XXXGP
(P)
80P6S-A
M3062CM8T-XXXFP
(D)
100P6S-A
M3062CM8T-XXXGP
(D) 64K bytes
M3062EM8T-XXXGP
(P)
80P6S-A
M3062CMAT-XXXFP
(D)
100P6S-A
M3062CMAT-XXXGP
(D) 96K bytes
M3062EMAT-XXXGP
(P)
80P6S-A
M3062AMCT-XXXFP
(D)
100P6S-A
M3062AMCT-XXXGP
(D) 128K bytes
M3062BMCT-XXXGP
(P)
M3062CF8TGP
(D) 64K bytes
M3062AFCTFP
(D)
100P6S-A
M3062AFCTGP
(D) 128K+4K bytes 10K bytes
100P6Q-A
M3062BFCTGP
(P)
M3062JFHTFP
(D)
80P6S-A
100P6S-A
M3062JFHTGP
(D)
Remarks
100P6S-A
4K bytes
4K bytes
5K bytes
10K bytes
100P6Q-A
100P6Q-A
MASK ROM
version
100P6Q-A
T Version
(High reliability
85 °C Version)
100P6Q-A
80P6S-A
4K bytes
384K+4K bytes 31K bytes
100P6Q-A
Flash memory
version
100P6Q-A
(D): Under development
(P): Under planning
Table 1.7 Product List (4) (V version (M16C/62PT))
Type No.
ROM capacity
RAM capacity
As of Nov. 2003
Package type
M3062CM6V-XXXFP
(P)
M3062CM6V-XXXGP
(P) 48K bytes
M3062EM6V-XXXGP
(P)
80P6S-A
M3062CM8V-XXXFP
(P)
100P6S-A
M3062CM8V-XXXGP
(P) 64K bytes
M3062EM8V-XXXGP
(P)
80P6S-A
M3062CMAV-XXXFP
(P)
100P6S-A
M3062CMAV-XXXGP
(P) 96K bytes
M3062EMAV-XXXGP
(P)
80P6S-A
M3062AMCV-XXXFP
(D)
100P6S-A
M3062AMCV-XXXGP
(D) 128K bytes
M3062BMCV-XXXGP
(P)
80P6S-A
M3062AFCVFP
(D)
100P6S-A
M3062AFCVGP
(D) 128K+4K bytes
M3062BFCVGP
(P)
M3062JFHVFP
(P)
M3062JFHVGP
(P)
100P6S-A
4K bytes
4K bytes
5K bytes
10K bytes
10K bytes
100P6Q-A
100P6Q-A
100P6Q-A
384K+4K bytes
of 84
31K bytes
MASK ROM
version
100P6Q-A
100P6Q-A
80P6S-A
(D): Under development
(P): Under planning
Rev.2.10 Nov. 07, 2003 page 9
Remarks
100P6S-A
100P6Q-A
Flash memory
version
V Version
(High reliability
125 °C Version)
1. Overview
M16C/62 Group (M16C/62P, M16C/62PT)
Type No.
M3062 6 MH P– XXX FP
Package type:
FP : Package
GP : Package
100P6S-A
80P6Q-A, 100P6Q-A, 128P6Q-A
ROM No.
Omitted for flash memory version and
external ROM version
Classification
P : M16C/62P
T : T version (M16C/62PT)
V : V version (M16C/62PT)
ROM capacity:
6: 48K bytes
8: 64K bytes
A: 96K bytes
C: 128K bytes
E: 192K bytes
G: 256K bytes
W: 320K bytes
H: 384K bytes
J: 512K bytes
Memory type:
M: Mask ROM version
F: Flash memory version
S: External ROM version
Shows RAM capacity, pin count, etc
Numeric : M16C/62P
Alphabet : M16C/62PT
M16C/62 Group
M16C Family
Figure 1.3 Type No., Memory Size, and Package
Rev.2.10 Nov. 07, 2003 page 10
of 84
1. Overview
M16C/62 Group (M16C/62P, M16C/62PT)
Table 1.8 Product Code of Flash Memory version and External ROM version for M16C/62P
Internal ROM
(user ROM area without block 1)
product
code
Package
Program and
erase endurance
Internal ROM
(block A, block 1)
Temperature
Program and
range
erase endurance
D7
Flash
memory
version
100
1,000
10,000
0°C to 60°C
U3
U7
D3
D5
100
100
1,000
10,000
Lead-free
U9
External
ROM
version
100
Lead-included
D9
U5
Operating ambient
temperature
-40°C to 85°C
D3
D5
Temperature
range
0°C to 60°C
-40°C to 85°C
-40°C to 85°C
-20°C to 85°C
-20°C to 85°C
0°C to 60°C
-40°C to 85°C
-20°C to 85°C
-40°C to 85°C
-40°C to 85°C
-20°C to 85°C
-20°C to 85°C
-40°C to 85°C
Lead-included
-20°C to 85°C
-40°C to 85°C
U3
U5
-20°C to 85°C
Lead-free
-20°C to 85°C
M1 6 C
M3 0 6 2 6 FHPF P
B D5
XXXXXXX
Type No. (See Figure 1.3 Type No., Memory Size, and Package)
Chip version and product code.
B : Shows chip version.
Henceforth, whenever it changes a version, it continues with B, C, and D.
D5 : Shows Product code. (See table 1.8 Product Code.)
Data code seven digits
The product without marking of chip version of the flash memory version and the ROM external version
corresponds to the chip version “A”.
Figure 1.4 Marking Diagram of Flash Memory version and External ROM version for M16C/62P (Top View)
Rev.2.10 Nov. 07, 2003 page 11
of 84
1. Overview
M16C/62 Group (M16C/62P, M16C/62PT)
1.5 Pin Configuration
Figures 1.5 to 1.8 show the pin configurations (top view).
P1_1/D9
P1_2/D10
P1_3/D11
P1_4/D12
P1_5/D13/INT3
P1_6/D14/INT4
P1_7/D15/INT5
P2_0/AN2_0/A0(/D0/-)
P2_1/AN2_1/A1(/D1/D0)
P2_2/AN2_2/A2(/D2/D1)
P2_3/AN2_3/A3(/D3/D2)
P2_4/AN2_4/A4(/D4/D3)
P2_5/AN2_5/A5(/D5/D4)
P2_6/AN2_6/A6(/D6/D5)
P2_7/AN2_7/A7(/D7/D6)
VSS
P3_0/A8(/-/D7)
VCC2
P12_0
P12_1
P12_2
P12_3
P12_4
P3_1/A9
P3_2/A10
P3_3/A11
P3_4/A12
P3_5/A13
P3_6/A14
P3_7/A15
P4_0/A16
P4_1/A17
P4_2/A18
P4_3/A19
P4_4/CS0
P4_5/CS1
P4_6/CS2
P4_7/CS3
PIN CONFIGURATION (top view)
102 101 100
P1_0/D8
P0_7/AN0_7/D7
P0_6/AN0_6/D6
P0_5/AN0_5/D5
P0_4/AN0_4/D4
P0_3/AN0_3/D3
P0_2/AN0_2/D2
P0_1/AN0_1/D1
P0_0/AN0_0/D0
P11_7
P11_6
P11_5
P11_4
P11_3
P11_2
P11_1
P11_0
P10_7/AN7/KI3
P10_6/AN6/KI2
P10_5/AN5/KI1
P10_4/AN4/KI0
P10_3/AN3
P10_2/AN2
P10_1/AN1
AVSS
P10_0/AN0
64
63
62
61
60
59
58
57
56
55
54
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
M16C/62 Group (M16C/62P)
128
2 3
4 5
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
P12_5
P12_6
P12_7
P5_0/WRL/WR
P5_1/WRH/BHE
P5_2/RD
P5_3/BCLK
P13_0
P13_1
P13_2
P13_3
P5_4/HLDA
P5_5/HOLD
P5_6/ALE
P5_7/RDY/CLKOUT
P13_4
P13_5
P13_6
P13_7
P6_0/CTS0/RTS0
P6_1/CLK0
P6_2/RXD0/SCL0
P6_3/TXD0/SDA0
P6_4/CTS1/RTS1/CTS0/CLKS1
P6_5/CLK1
VSS
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
VREF
AVCC
P9_7/ADTRG/SIN4
P9_6/ANEX1/SOUT4
P9_5/ANEX0/CLK4
P9_4/DA1/TB4IN
P9_3/DA0/TB3IN
P9_2/TB2IN/SOUT3
P9_1/TB1IN/SIN3
P9_0/TB0IN/CLK3
P14_1
P14_0
BYTE
CNVSS
P8_7/XCIN
P8_6/XCOUT
RESET
XOUT
VSS
XIN
VCC1
P8_5/NMI
P8_4/INT2/ZP
P8_3/INT1
P8_2/INT0
P8_1/TA4IN/U
P8_0/TA4OUT/U
P7_7/TA3IN
P7_6/TA3OUT
P7_5/TA2IN/W
P7_4/TA2OUT/W
P7_3/CTS2/RTS2/TA1IN/V
P7_2/CLK2/TA1OUT/V
P7_1/RXD2/SCL2/TA0IN/TB5IN (1)
P7_0/TXD2/SDA2/TA0OUT(1)
P6_7/TXD1/SDA1
VCC1
P6_6/RXD1/SCL1
1
NOTES:
99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65
103
104
105
106
107
108
109
110
111
112
1. P7_0 and P7_1 are N channel open-drain output pins.
Package: 128P6Q-A
Figure 1.5 Pin Configuration (Top View)
Rev.2.10 Nov. 07, 2003 page 12
of 84
1. Overview
M16C/62 Group (M16C/62P, M16C/62PT)
P1_0/D8
P1_1/D9
P1_2/D10
P1_3/D11
P1_4/D12
P1_5/D13/INT3
P1_6/D14/INT4
P1_7/D15/INT5
P2_0/AN2_0/A0(/D0/-)
P2_1/AN2_1/A1(/D1/D0)
P2_2/AN2_2/A2(/D2/D1)
P2_3/AN2_3/A3(/D3/D2)
P2_4/AN2_4/A4(/D4/D3)
P2_5/AN2_5/A5(/D5/D4)
P2_6/AN2_6/A6(/D6/D5)
P2_7/AN2_7/A7(/D7/D6)
VSS
P3_0/A8(/-/D7)
VCC2
P3_1/A9
P3_2/A10
P3_3/A11
P3_4/A12
P3_5/A13
P3_6/A14
P3_7/A15
P4_0/A16
P4_1/A17
P4_2/A18
P4_3/A19
PIN CONFIGURATION (top view)
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
M16C/62 Group
(M16C/62P, M16C/62PT)
100
P9_6/ANEX1/SOUT4
1
2 3
4 5
6
7
8
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
P4_4/CS0
P4_5/CS1
P4_6/CS2
P4_7/CS3
P5_0/WRL/WR
P5_1/WRH/BHE
P5_2/RD
P5_3/BCLK
P5_4/HLDA
P5_5/HOLD
P5_6/ALE
P5_7/RDY/CLKOUT
P6_0/CTS0/RTS0
P6_1/CLK0
P6_2/RXD0/SCL0
P6_3/TXD0/SDA0
P6_4/CTS1/RTS1/CTS0/CLKS1
P6_5/CLK1
P6_6/RXD1/SCL1
P6_7/TXD1/SDA1
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
P9_5/ANEX0/CLK4
P9_4/DA1/TB4IN
P9_3/DA0/TB3IN
P9_2/TB2IN/SOUT3
P9_1/TB1IN/SIN3
P9_0/TB0IN/CLK3
BYTE
CNVSS
P8_7/XCIN
P8_6/XCOUT
RESET
XOUT
VSS
XIN
VCC1
P8_5/NMI
P8_4/INT2/ZP
P8_3/INT1
P8_2/INT0
P8_1/TA4IN/U
P8_0/TA4OUT/U
P7_7/TA3IN
P7_6/TA3OUT
P7_5/TA2IN/W
P7_4/TA2OUT/W
P7_3/CTS2/RTS2/TA1IN/V
P7_2/CLK2/TA1OUT/V
P7_1/RXD2/SCL2/TA0IN/TB5IN(1)
P7_0/TXD2/SDA2/TA0OUT(1)
P0_7/AN0_7/D7
P0_6/AN0_6/D6
P0_5/AN0_5/D5
P0_4/AN0_4/D4
P0_3/AN0_3/D3
P0_2/AN0_2/D2
P0_1/AN0_1/D1
P0_0/AN0_0/D0
P10_7/AN7/KI3
P10_6/AN6/KI2
P10_5/AN5/KI1
P10_4/AN4/KI0
P10_3/AN3
P10_2/AN2
P10_1/AN1
AVSS
P10_0/AN0
VREF
AVCC
P9_7/ADTRG/SIN4
Package: 100P6S-A
NOTES:
1. P7_0 and P7_1 are N channel open-drain output pins.
Figure 1.6 Pin Configuration (Top View)
Rev.2.10 Nov. 07, 2003 page 13
of 84
1. Overview
M16C/62 Group (M16C/62P, M16C/62PT)
P1_3/D11
P1_4/D12
P1_5/D13/INT3
P1_6/D14/INT4
P1_7/D15/INT5
P2_0/AN2_0/A0(/D0/-)
P2_1/AN2_1/A1(/D1/D0)
P2_2/AN2_2/A2(/D2/D1)
P2_3/AN2_3/A3(/D3/D2)
P2_4/AN2_4/A4(/D4/D3)
P2_5/AN2_5/A5(/D5/D4)
P2_6/AN2_6/A6(/D6/D5)
P2_7/AN2_7/A7(/D7/D6)
VSS
P3_0/A8(/-/D7)
VCC2
P3_1/A9
P3_2/A10
P3_3/A11
P3_4/A12
P3_5/A13
P3_6/A14
P3_7/A15
P4_0/A16
P4_1/A17
PIN CONFIGURATION (top view)
75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
M16C/62 Group
(M16C/62P, M16C/62PT)
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
100
26
2 3
4 5
NOTES:
1. P7_0 and P7_1 are N channel open-drain output pins.
Figure 1.7 Pin Configuration (Top View)
Rev.2.10 Nov. 07, 2003 page 14
of 84
P4_2/A18
P4_3/A19
P4_4/CS0
P4_5/CS1
P4_6/CS2
P4_7/CS3
P5_0/WRL/WR
P5_1/WRH/BHE
P5_2/RD
P5_3/BCLK
P5_4/HLDA
P5_5/HOLD
P5_6/ALE
P5_7/RDY/CLKOUT
P6_0/CTS0/RTS0
P6_1/CLK0
P6_2/RXD0/SCL0
P6_3/TXD0/SDA0
P6_4/CTS1/RTS1/CTS0/CLKS1
P6_5/CLK1
P6_6/RXD1/SCL1
P6_7/TXD1/SDA1
P7_0/TXD2/SDA2/TA0OUT (1)
P7_1/RXD2/SCL2/TA0IN/TB5IN (1)
P7_2/CLK2/TA1OUT/V
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
P9_4/DA1/TB4IN
P9_3/DA0/TB3IN
P9_2/TB2IN/SOUT3
P9_1/TB1IN/SIN3
P9_0/TB0IN/CLK3
BYTE
CNVSS
P8_7/XCIN
P8_6/XCOUT
1
RESET
XOUT
VSS
XIN
VCC1
P8_5/NMI
P8_4/INT2/ZP
P8_3/INT1
P8_2/INT0
P8_1/TA4IN/U
P8_0/TA4OUT/U
P7_7/TA3IN
P7_6/TA3OUT
P7_5/TA2IN/W
P7_4/TA2OUT/W
P7_3/CTS2/RTS2/TA1IN/V
P1_2/D10
P1_1/D9
P1_0/D8
P0_7/AN0_7/D7
P0_6/AN0_6/D6
P0_5/AN0_5/D5
P0_4/AN0_4/D4
P0_3/AN0_3/D3
P0_2/AN0_2/D2
P0_1/AN0_1/D1
P0_0/AN0_0/D0
P10_7/AN7/KI3
P10_6/AN6/KI2
P10_5/AN5/KI1
P10_4/AN4/KI0
P10_3/AN3
P10_2/AN2
P10_1/AN1
AVSS
P10_0/AN0
VREF
AVCC
P9_7/ADTRG/SIN4
P9_6/ANEX1/SOUT4
P9_5/ANEX0/CLK4
Package: 100P6Q-A
1. Overview
M16C/62 Group (M16C/62P, M16C/62PT)
P4_2
P3_7
P4_0
P4_1
P3_5
P3_6
P3_4
P3_0
P3_1
P3_2
P3_3
P2_4/AN2_4
P2_5/AN2_5
P2_6/AN2_6
P2_7/AN2_7
P2_2/AN2_2
P2_3/AN2_3
P0_7/AN0_7
P2_0/AN2_0
P2_1/AN2_1
PIN CONFIGURATION (top view)
60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41
P0_6/AN0_6
P0_5/AN0_5
P0_4/AN0_4
P0_3/AN0_3
P0_2/AN0_2
61
40
P4_3
62
39
63
38
64
37
65
36
P0_1/AN0_1
P0_0/AN0_0
P10_7/AN7/KI3
P10_6/AN6/KI2
P10_5/AN5/KI1
P10_4/AN4/KI0
P10_3/AN3
P10_2/AN2
P10_1/AN1
AVSS
P10_0/AN0
VREF
AVCC
66
35
67
34
68
33
P5_0
P5_1
P5_2
P5_3
P5_4
P5_5
P5_6
P5_7/CLKOUT
P6_0/CTS0/RTS0
P6_1/CLK0
P6_2/RXD0/SCL0
P6_3/TXD0/SDA0
P6_4/CTS1/RTS1/CTS0/CLKS1
P6_5/CLK1
P6_6/RXD1/SCL1
P6_7/TXD1/SDA1
P7_0/TXD2/SDA2/TA0OUT (1)
P7_1/RXD2/SCL2/TA0IN/TB5IN (1)
P7_6/TA3OUT
32
69
M16C/62 Group
(M16C/62P, M16C/62PT)
70
71
72
31
30
29
73
28
74
27
75
26
76
25
77
24
78
23
P9_7/ADTRG/SIN4
79
22
P9_6/ANEX1/SOUT4
80
NOTES:
1. P7_0 and P7_1 are N channel open-drain output pins.
Figure 1.8 Pin Configuration (Top View)
Rev.2.10 Nov. 07, 2003 page 15
of 84
P7_7/TA3IN
9 10 11 12 13 14 15 16 17 18 19 20
P8_0/TA4OUT
8
P8_4/INT2/ZP
P8_3/INT1
P8_2/INT0
P8_1/TA4IN
7
XIN
VCC1
P8_5/NMI
6
VSS
5
RESET
XOUT
4
P9_0/TB0IN/CLK3
CNVSS(BYTE)
P8_7/XCIN
3
P9_5/ANEX0/CLK4
P9_4/DA1/TB4IN
P9_3/DA0/TB3IN
P9_2/TB2IN/SOUT3
2
P8_6/XCOUT
21
1
Package: 80P6S-A
1. Overview
M16C/62 Group (M16C/62P, M16C/62PT)
1.6 Pin Description
Table 1.9 Pin Description (100-pin and 128-pin Version) (1)
Signal name
Pin name I/O type
Power
supply
Description
Power supply input VCC1, VCC2
VSS
I
-
Analog power
supply input
AVCC
AVSS
I
VCC1
Applies the power supply for the A-D converter. Connect the AVCC pin to
VCC1. Connect the AVSS pin to VSS.
Reset input
CNVSS
RESET
CNVSS
I
I
VCC1
VCC1
The microcomputer is in a reset state when applying "L" to the this pin.
Switches processor mode. Connect this pin to VSS to when after a reset to start
Apply 2.7 to 5.5 V to the VCC1 and VCC2 pins and 0 V to the VSS pin. The VCC
apply condition is that VCC1 ≥ VCC2.(2)
____________
up in single-chip mode. Connect this pin to VCC1 to start up in microprocessor
mode.
External data bus
width select input
Bus control
pins(4)
BYTE
I
VCC1
Switches the data bus in external memory space. The data bus is 16 bits long
when the this pin is held "L" and 8 bits long when the this pin is held "H". Set it
to either one. Connect this pin to VSS when an single-chip mode.
Inputs and outputs data (D0 to D7) when these pins are set as the separate bus.
D0 to D7
I/O
VCC2
D8 to D15
I/O
VCC2
Inputs and outputs data (D8 to D15) when external 16-bit data bus is set as the
separate bus.
A0 to A19
A0/D0 to
O
I/O
VCC2
VCC2
Output address bits (A0 to A19).
Input and output data (D0 to D7) and output address bits (A0 to A7) by time-
A7/D7
A1/D0 to
I/O
VCC2
sharing when external 8-bit data bus are set as the multiplexed bus.
Input and output data (D0 to D7) and output address bits (A8 to A15) by time-
VCC2
sharing when external 16-bit data bus are set as the multiplexed bus.
________
________
________
________
Output CS0 to CS3 signals. CS0 to CS3 are chip-select signals to specify an
A8/D7
______
______
CS0 to CS3
O
external space.
________ ______
WRL/WR
WRH/BHE
O
VCC2
_________ ________
_____
________ _________
________ _________
RD
______ ________
_____
________
_________
_______
______
Output WRL, WRH, (WR, BHE), RD signals. WRL and WRH or BHE and WR
can be switched by program.
_____
• WRL, WRH and RD are selected
________
The WRL signal becomes "L" by writing data to an even address in an external
memory space.
_________
The WRH signal becomes "L" by writing data to an odd address in an external
memory space.
_____
The RD pin signal becomes "L" by reading data in an external memory space.
______ ________
_____
• WR, BHE and RD are selected
______
The WR signal becomes "L" by writing data in an external memory space.
_____
The RD signal becomes "L" by reading data in an external memory space.
________
The BHE signal becomes "L" by accessing an odd address.
______ ________
ALE
O
VCC2
I
O
VCC2
VCC2
While the HOLD pin is held "L", the microcomputer is placed in a hold state.
_________
In a hold state, HLDA outputs a "L" signal.
I
VCC2
While applying a "L" signal to the RDY pin, the microcomputer is placed in a wait
state.
__________
HOLD
HLDA
__________
__________
________
RDY
I : Input
O : Output
_____
Select WR, BHE and RD for an external 8-bit data bus.
ALE is a signal to latch the address.
________
I/O : Input and output
Power supply : Power supplies which relate to the external bus pins are separated as VCC2, thus they can be interfaced using the different voltage as VCC1.
NOTES:
1. In this manual, hereafter, VCC refers to VCC1 unless otherwise noted.
2. In M16C/62PT, apply 2.7 to 5.5 V to the VCC1 and VCC2 pins. Also the apply condition is that VCC1 ≥ VCC2.
3. When use VCC1 ≥ VCC2, contacts due to some points or restrictions to be checked.
4. This pin function is not in M16C/62PT.
Rev.2.10 Nov. 07, 2003 page 16 of 84
1. Overview
M16C/62 Group (M16C/62P, M16C/62PT)
Table 1.10 Pin Description (100-pin and 128-pin Version) (2)
Signal name
I
O
Power
supply
VCC1
VCC1
XCIN
I
VCC1
XCOUT
O
VCC1
Pin name I/O type
Main clock input
Main clock output
XIN
XOUT
Sub clock input
Sub clock output
BCLK output (2)
Clock output
BCLK
CLKOUT
______
________
I
VCC1
Input pins for the key input interrupt
I/O
VCC1
TA4OUT
TA0IN to
These are timer A0 to timer A4 I/O pins. (except the output of TAOUT for the Nchannel open drain output.)
I
VCC1
These are timer A0 to timer A4 input pins.
TA4IN
ZP
I
VCC1
I
VCC1
Input pin for the Z-phase.
These are timer B0 to timer B5 input pins.
O
VCC1
These are Three-phase motor control output pins.
CTS0 to CTS2
________
________
RTS0 to RTS2
I
O
VCC1
VCC1
These are send control input pins.
CLK0 to CLK4
RXD0 to RXD2
I/O
I
VCC1
VCC1
SIN3, SIN4
TXD0 to
I
O
VCC1
VCC1
TXD2
SOUT3, SOUT4
O
VCC1
CLKS1
SDA0 to SDA2
O
I/O
VCC1
VCC1
SCL0 to SCL2
I/O
VCC1
TB0IN to
TB5IN
__________
O : Output
The clock of the same cycle as fC, f8, or f32 is outputted.
______
Input pins for the INT interrupt
_______
Input pin for the NMI interrupt. Pin states can be read by the P8_5 bit in the P8
register.
______
TA0OUT to
__
I : Input
leave XCOUT open.
Outputs the BCLK signal.
VCC1
VCC1
________
__
Three-phase motor U, U, V, V,
__
control output
W, W
I2C mode
I/O pins for a sub clock oscillation circuit. Connect a crystal oscillator between
XCIN and XCOUT (3). To use the external clock, input the clock from XCIN and
I
I
_____
Serial I/O
crystal oscillator between XIN and XOUT (3). To use the external clock, input the
clock from XIN and leave XOUT open.
VCC2
VCC2
Key input interrupt KI0 to KI3
Timer B
I/O pins for the main clock generation circuit. Connect a ceramic resonator or
O
O
INT interrupt input INT0 to INT5
_______
_______
NMI interrupt input NMI
input
Timer A
Description
________
These are receive control output pins.
These are transfer clock I/O pins.
These are serial data input pins.
These are serial data input pins.
These are serial data output pins. (except TXD2 for the N-channel open drain
output.)
These are serial data output pins.
This is output pin for transfer clock output from multiple pins function.
These are serial data I/O pins. (except SDA2 for the N-channel open drain
output.)
These are transfer clock I/O pins. (except SCL2 for the N-channel open drain
output.)
I/O : Input and output
NOTES:
1. When use VCC1 ≥ VCC2, contacts due to some points or restrictions to be checked.
2. This pin function is not in M16C/62PT.
3. Ask the oscillator maker the oscillation characteristic.
Rev.2.10 Nov. 07, 2003 page 17
of 84
1. Overview
M16C/62 Group (M16C/62P, M16C/62PT)
Table 1.11 Pin Description (100-pin and 128-pin Version) (3)
Signal name
Pin name
Reference voltage VREF
input
A-D converter
AN0 to AN7,
AN0_0 to AN0_7,
I/O port
Description
Applies the reference voltage for the A-D converter and D-A converter.
I
VCC1
Analog input pins for the A-D converter
I
VCC1
This is an A-D trigger input pin.
ANEX0
I/O
VCC1
This is the extended analog input pin for the A-D converter, and is the output
in external op-amp connection mode.
ANEX1
DA0, DA1
I
O
VCC1
VCC1
This is the extended analog input pin for the A-D converter.
This is the Input pin for the D-A converter.
P0_0 to P0_7,
P1_0 to P1_7,
I/O
VCC2
8-bit I/O ports in CMOS, having a direction register to select an input or output.
Each pin is set as an input port or output port. An input port can be set for a
AN2_0 to AN2_7
___________
ADTRG
D-A converter
I/O type Power
supply
VCC1
I
P2_0 to P2_7,
P3_0 to P3_7,
pull-up or for no pull-up in 4-bit unit by program.
P4_0 to P4_7,
P5_0 to P5_7,
P12_0 to
P12_7 (2),
P13_0 to
P13_7 (2)
P6_0 to P6_7,
P7_0 to P7_7,
I/O
VCC1
8-bit I/O ports having equivalent functions to P0.
(except P7_0 and P7_1 for the N-channel open drain output.)
I/O
VCC1
I/O ports having equivalent functions to P0.
I
VCC1
Input pin for the NMI interrupt.
P9_0 to P9_7,
P10_0 to P10_7,
P11_0 to
P11_7 (2)
P8_0 to P8_4,
P8_6, P8_7,
P14_0, P14_1(2)
_______
Input port
P8_5
Pin states can be read by the P8_5 bit in the P8 register.
I : Input
O : Output
I/O : Input and output
NOTES:
1. When use VCC1 ≥ VCC2, contacts due to some points or restrictions to be checked.
2. Ports P11 to P14 are provided in the 128-pin version only.
Rev.2.10 Nov. 07, 2003 page 18 of 84
1. Overview
M16C/62 Group (M16C/62P, M16C/62PT)
Table 1.12 Pin Description (80-pin Version) (1)
Signal name
Pin name
I/O type
Power
supply
Description
Apply 2.7 to 5.5 V to the VCC1 pin and 0 V to the VSS pin. (2)
Power supply input VCC1,
I
-
Analog power
VSS
AVCC,
I
VCC1
Applies the power supply for the A-D converter. Connect the AVCC pin to
supply input
Reset input
AVSS
____________
RESET
I
VCC1
VCC1. Connect the AVSS pin to VSS.
The microcomputer is in a reset state when applying "L" to the this pin.
CNVSS
CNVSS
(BYTE)
I
VCC1
Switches processor mode. Connect this pin to VSS to when after a reset to
start up in single-chip mode. Connect this pin to VCC1 to start up in microprocessor mode. As for the BYTE pin of the 80-pin versions, pull-up processing
is performed within the microcomputer.
Main clock input
Main clock output
XIN
XOUT
I
O
VCC1
VCC1
I/O pins for the main clock generation circuit. Connect a ceramic resonator or
crystal oscillator between XIN and XOUT (3). To use the external clock, input
Sub clock input
XCIN
I
VCC1
the clock from XIN and leave XOUT open.
I/O pins for a sub clock oscillation circuit. Connect a crystal oscillator between
Sub clock output
XCOUT
O
VCC1
XCIN and XCOUT (3). To use the external clock, input the clock from XCIN
and leave XCOUT open.
______
Clock output
INT interrupt input
________
CLKOUT
________
INT0 to INT2
O
I
VCC2
VCC1
The clock of the same cycle as fC, f8, or f32 is outputted.
______
Input pins for the INT interrupt
_______
_______
I
I
VCC1
VCC1
Input pin for the NMI interrupt.
Input pins for the key input interrupt
I/O
VCC1
These are timer A0, timer A3 and Timer A4 I/O pins. (except the output of
_______
NMI interrupt input NMI
______
______
Key input interrupt KI0 to KI3
input
Timer A
TA0OUT,
TA3OUT,
TA4OUT
TA0IN,
TAOUT for the N-channel open drain output.)
I
VCC1
These are timer A0, timer A3 and Timer A4 input pins.
Timer B
ZP
TB0IN,
I
I
VCC1
VCC1
Input pin for the Z-phase.
These are timer B0, timer B2 to timer B5 input pins.
Serial I/O
TB2IN to TB5IN
_________ _________
CTS0, CTS2
I
VCC1
These are send control input pins.
O
I/O
VCC1
VCC1
These are receive control output pins.
These are transfer clock I/O pins.
CLK3, CLK4
RXD0 to RXD2
I
VCC1
These are serial data input pins.
SIN4
TXD0 to TXD4
I
O
VCC1
VCC1
These are serial data input pins.
These are serial data output pins. (except TXD2 for the N-channel open drain
SOUT3, SOUT4
O
VCC1
output.)
These are serial data output pins.
CLKS1
SDA0 to SDA2
O
I/O
VCC1
VCC1
This is output pin for transfer clock output from multiple pins function.
These are serial data I/O pins. (except SDA2 for the N-channel open drain
VCC1
output.)
These are transfer clock I/O pins. (except SCL2 for the N-channel open drain
TA3IN,
TA4IN
_________ _________
RTS0, RTS2
CLK0, CLK1,
I2C mode
SCL0 to SCL2
I/O
output.)
I : Input
O : Output
I/O : Input and output
NOTES:
1. In this manual, hereafter, VCC refers to VCC1 unless otherwise noted.
2. In M16C/62PT, apply 4.0 to 5.5 V to the VCC1 pin.
3. Ask the oscillator maker the oscillation characteristic.
Rev.2.10 Nov. 07, 2003 page 19
of 84
1. Overview
M16C/62 Group (M16C/62P, M16C/62PT)
Table 1.13 Pin Description (80-pin Version) (2)
Reference voltage VREF
I
Power
supply
VCC1
input
A-D converter
I
VCC1
Analog input pins for the A-D converter
I
I/O
VCC1
VCC1
This is an A-D trigger input pin.
I
VCC1
O
I/O
VCC1
VCC1
This is the extended analog input pin for the A-D converter.
This is the Input pin for the D-A converter
Signal name
Pin name
AN0 to AN7,
I/O type
Description
Applies the reference voltage for the A-D converter and D-A converter.
AN0_0 to AN0_7,
AN2_0 to AN2_7
___________
ADTRG
ANEX0
ANEX1
D-A converter
I/O port
DA0, DA1
P0_0 to P0_7,
P2_0 to P2_7,
P3_0 to P3_7,
8-bit I/O ports in CMOS, having a direction register to select an input or
output.
Each pin is set as an input port or output port. An input port can be set for a
pull-up or for no pull-up in 4-bit unit by program.
P5_0 to P5_7,
P6_0 to P6_7,
P10_0 to P10_7
P8_0 to P8_4,
This is the extended analog input pin for the A-D converter, and is the output
in external op-amp connection mode.
I/O
VCC1
I/O ports having equivalent functions to P0.
I/O
VCC1
I/O ports having equivalent functions to P0.
(except P7_0 and P7_1 for the N-channel open drain output.)
I
VCC1
Input pin for the NMI interrupt.
P8_6, P8_7,
P9_0,
P9_2 to P9_7
P4_0 to P4_3,
P7_0, P7_1,
P7_6, P7_7
_______
Input port
P8_5
Pin states can be read by the P8_5 bit in the P8 register.
I : Input
O : Output
I/O : Input and output
NOTES:
1. There is no external connections for port P1, P4_4 to P4_7, P7_2 to P7_5 and P9_1 in 80-pin version.
Set the direction bits in these ports to “1” (input mode), and set the output data to “0” (“L”) using the program.
Rev.2.10 Nov. 07, 2003 page 20 of 84
2. Central Processing Unit (CPU)
M16C/62 Group (M16C/62P, M16C/62PT)
2. Central Processing Unit (CPU)
Figure 2.1 shows the CPU registers. The CPU has 13 registers. Of these, R0, R1, R2, R3, A0, A1 and FB
comprise a register bank. There are two register banks.
b31
b15
b8 b7
b0
R2
R0H(R0's high bits) R0L(R0's low bits)
R3
R1H(R1's high bits)R1L(R1's low bits)
R2
Data registers (1)
R3
A0
Address registers (1)
A1
FB
b19
b15
Frame base registers (1)
b0
INTBH
INTBL
Interrupt table register
The upper 4 bits of INTB are INTBH and
the lower 16 bits of INTB are INTBL.
b19
b0
PC
Program counter
b15
b0
USP
User stack pointer
ISP
Interrupt stack pointer
SB
Static base register
b15
b0
FLG
AA
AAAAAAA
AA
A
AA
AA
A
AA
AA
AA
AA
AAAAAAAAAAAAAAAA
AAAAA
b15
b8
IPL
b7
U I
Flag register
b0
O B S Z D C
Carry flag
Debug flag
Zero flag
Sign flag
Register bank select flag
Overflow flag
Interrupt enable flag
Stack pointer select flag
Reserved area
Processor interrupt priority level
Reserved area
NOTES:
1. These registers comprise a register bank. There are two register banks.
Figure 2.1 Central Processing Unit Register
2.1 Data Registers (R0, R1, R2 and R3)
The R0 register consists of 16 bits, and is used mainly for transfers and arithmetic/logic operations. R1 to
R3 are the same as R0.
The R0 register can be separated between high (R0H) and low (R0L) for use as two 8-bit data registers.
R1H and R1L are the same as R0H and R0L. Conversely, R2 and R0 can be combined for use as a 32bit data register (R2R0). R3R1 is the same as R2R0.
2.2 Address Registers (A0 and A1)
The register A0 consists of 16 bits, and is used for address register indirect addressing and address
register relative addressing. They also are used for transfers and logic/logic operations. A1 is the same as
A0.
In some instructions, registers A1 and A0 can be combined for use as a 32-bit address register (A1A0).
Rev.2.10 Nov. 07, 2003 page 21
of 84
M16C/62 Group (M16C/62P, M16C/62PT)
2. Central Processing Unit (CPU)
2.3 Frame Base Register (FB)
FB is configured with 16 bits, and is used for FB relative addressing.
2.4 Interrupt Table Register (INTB)
INTB is configured with 20 bits, indicating the start address of an interrupt vector table.
2.5 Program Counter (PC)
PC is configured with 20 bits, indicating the address of an instruction to be executed.
2.6 User Stack Pointer (USP) and Interrupt Stack Pointer (ISP)
Stack pointer (SP) comes in two types: USP and ISP, each configured with 16 bits.
Your desired type of stack pointer (USP or ISP) can be selected by the U flag of FLG.
2.7 Static Base Register (SB)
SB is configured with 16 bits, and is used for SB relative addressing.
2.8 Flag Register (FLG)
FLG consists of 11 bits, indicating the CPU status.
2.8.1 Carry Flag (C Flag)
This flag retains a carry, borrow, or shift-out bit that has occurred in the arithmetic/logic unit.
2.8.2 Debug Flag (D Flag)
The D flag is used exclusively for debugging purpose. During normal use, it must be set to “0”.
2.8.3 Zero Flag (Z Flag)
This flag is set to “1” when an arithmetic operation resulted in 0; otherwise, it is “0”.
2.8.4 Sign Flag (S Flag)
This flag is set to “1” when an arithmetic operation resulted in a negative value; otherwise, it is “0”.
2.8.5 Register Bank Select Flag (B Flag)
Register bank 0 is selected when this flag is “0” ; register bank 1 is selected when this flag is “1”.
2.8.6 Overflow Flag (O Flag)
This flag is set to “1” when the operation resulted in an overflow; otherwise, it is “0”.
2.8.7 Interrupt Enable Flag (I Flag)
This flag enables a maskable interrupt.
Maskable interrupts are disabled when the I flag is “0”, and are enabled when the I flag is “1”. The I
flag is cleared to “0” when the interrupt request is accepted.
2.8.8 Stack Pointer Select Flag (U Flag)
ISP is selected when the U flag is “0”; USP is selected when the U flag is “1”.
The U flag is cleared to “0” when a hardware interrupt request is accepted or an INT instruction for
software interrupt Nos. 0 to 31 is executed.
2.8.9 Processor Interrupt Priority Level (IPL)
IPL is configured with three bits, for specification of up to eight processor interrupt priority levels from
level 0 to level 7.
If a requested interrupt has priority greater than IPL, the interrupt is enabled.
2.8.10 Reserved Area
When write to this bit, write "0". When read, its content is indeterminate.
Rev.2.10 Nov. 07, 2003 page 22 of 84
3. Memory
M16C/62 Group (M16C/62P, M16C/62PT)
3. Memory
Figure 3.1 is a memory map of the M16C/62P group. The address space extends the 1M bytes from
address 00000h to FFFFFh.
The internal ROM is allocated in a lower address direction beginning with address FFFFFh. For example, a
64-Kbyte internal ROM is allocated to the addresses from F0000h to FFFFFh.
As for the flash memory version, 4-Kbyte space (block A) exists in 0F000h to 0FFFFh. 4-Kbyte space is
mainly for storing data. In addition to storing data, 4-Kbyte space also can store programs.
The fixed interrupt vector table is allocated to the addresses from FFFDCh to FFFFFh. Therefore, store the
start address of each interrupt routine here.
The internal RAM is allocated in an upper address direction beginning with address 00400h. For example,
a 10-Kbyte internal RAM is allocated to the addresses from 00400h to 02BFFh. In addition to storing data,
the internal RAM also stores the stack used when calling subroutines and when interrupts are generated.
The SRF is allocated to the addresses from 00000h to 003FFh. Peripheral function control registers are
located here. Of the SFR, any area which has no functions allocated is reserved for future use and cannot
be used by users.
The special page vector table is allocated to the addresses from FFE00h to FFFDBh. This vector is used by
the JMPS or JSRS instruction. For details, refer to the M16C/60 and M16C/20 Series Software Manual.
In memory expansion and microprocessor modes, some areas are reserved for future use and cannot be
used by users. Use M16C/62P (80-pin version) and M16C/62PT in single-chip mode. The memory expansion and microprocessor modes cannot be used.
00000h
SFR
00400h
Internal RAM
XXXXXh
Reserved area (1)
FFE00h
0F000h
AAAAAA
AAAAAA
AAAAAA
AAAAAA
AAAAAA
AAAAAA
Internal ROM
(data area) (3)
0FFFFh
Special page
vector table
10000h
Internal RAM
Size
Address XXXXXh
Internal ROM
Size
(3)
Address YYYYYh
4K bytes
013FFh
48K bytes
F4000h
5K bytes
017FFh
64K bytes
F0000h
10K bytes
02BFFh
96K bytes
E8000h
12K bytes
033FFh
128K bytes
E0000h
16K bytes
043FFh
192K bytes
D0000h
20K bytes
053FFh
256K bytes
C0000h
24K bytes
063FFh
320K bytes
B0000h
31K bytes
07FFFh
384K bytes
A0000h
512K bytes
80000h
External area
27000h
Reserved area
Reserved area (2)
YYYYYh
Internal ROM
(program area)
FFFFFh
Rev.2.10 Nov. 07, 2003 page 23
of 84
Undefined instruction
Overflow
External area
80000h
NOTES:
1. During memory expansion and microprocessor modes, can not be used.
2. In memory expansion mode, can not be used.
3. As for the flash memory version, 4-Kbyte space (block A) exists.
4. Shown here is a memory map for the case where the PM10 bit in the PM1 register is “1”
and the PM13 bit in the PM1 register is “1”.
Figure 3.1 Memory Map
FFFDCh
28000h
FFFFFh
BRK instruction
Address match
Single step
Watchdog timer
DBC
NMI
Reset
4. SFR
M16C/62 Group (M16C/62P, M16C/62PT)
4. SFR
Register
Address
Symbol
After reset
0000h
0001h
0002h
0003h
0004h
Processor mode register 0 (2)
PM0
0005h
Processor mode register 1
System clock control register 0
System clock control register 1
Chip select control register (6)
Address match interrupt enable register
Protect register
Data bank register (6)
Oscillation stop detection register (3)
PM1
CM0
CM1
CSR
AIER
PRCR
DBR
CM2
00001000b
01001000b
00100000b
00000001b
XXXXXX00b
XX000000b
00h
0000X000b
Watchdog timer start register
Watchdog timer control register
Address match interrupt register 0
WDTS
WDC
RMAD0
XXh
00XXXXXXb (4)
00h
00h
X0h
Address match interrupt register 1
RMAD1
00h
00h
X0h
Voltage detection register 1 (5, 6)
Voltage detection register 2 (5, 6)
Chip select expansion control register (6)
PLL control register 0
VCR1
VCR2
CSE
PLC0
00001000b
00h
00h
0001X010b
Processor mode register 2
Voltage down detection interrupt register (6)
DMA0 source pointer
PM2
D4INT
SAR0
XXX00000b
00h
XXh
XXh
XXh
DMA0 destination pointer
DAR0
XXh
XXh
XXh
DMA0 transfer counter
TCR0
XXh
XXh
DMA0 control register
DM0CON
00000X00b
DMA1 source pointer
SAR1
XXh
XXh
XXh
DMA1 destination pointer
DAR1
XXh
XXh
XXh
DMA1 transfer counter
TCR1
XXh
XXh
DMA1 control register
DM1CON
00000X00b
00000000b(CNVSS pin is “L”)
00000011b(CNVSS pin is “H”)
0006h
0007h
0008h
0009h
000Ah
000Bh
000Ch
000Dh
000Eh
000Fh
0010h
0011h
0012h
0013h
0014h
0015h
0016h
0017h
0018h
0019h
001Ah
001Bh
001Ch
001Dh
001Eh
001Fh
0020h
0021h
0022h
0023h
0024h
0025h
0026h
0027h
0028h
0029h
002Ah
002Bh
002Ch
002Dh
002Eh
002Fh
0030h
0031h
0032h
0033h
0034h
0035h
0036h
0037h
0038h
0039h
003Ah
003Bh
003Ch
003Dh
003Eh
003Fh
NOTES :
1. The blank areas are reserved and cannot be accessed by users.
2. The PM00 and PM01 bits do not change at software reset, watchdog timer reset and oscillation stop detection reset.
3. The CM20, CM21, and CM27 bits do not change at oscillation stop detection reset.
4. The WDC5 bit is “0” (cold start) immediately after power-on. It can only be set to “1” in a program. It is set to “0” when the input voltage
at the VCC1 pin drops to Vdet2 or less while the VC25 bit in the VCR2 register is set to “1” (RAM retention limit detection circuit enable
5. This register does not change at software reset, watchdog timer reset and oscillation stop detection reset.
6. This register cannot be used by M16C/62PT.
X : Nothing is mapped to this bit
Rev.2.10 Nov. 07, 2003 page 24 of 84
4. SFR
M16C/62 Group (M16C/62P, M16C/62PT)
Register
Address
Symbol
After reset
INT3IC
TB5IC
XX00X000b
XXXXX000b
XXXXX000b
XXXXX000b
XX00X000b
XX00X000b
XXXXX000b
XXXXX000b
XXXXX000b
XXXXX000b
XXXXX000b
XXXXX000b
XXXXX000b
XXXXX000b
XXXXX000b
XXXXX000b
XXXXX000b
XXXXX000b
XXXXX000b
XXXXX000b
XXXXX000b
XXXXX000b
XXXXX000b
XXXXX000b
XXXXX000b
XX00X000b
XX00X000b
XX00X000b
0040h
0041h
0042h
0043h
0045h
INT3 interrupt control register
Timer B5 interrupt control register
0046h
Timer B4 interrupt control register, UART1 BUS collision detection interrupt control register
0047h
Timer B3 interrupt control register, UART0 BUS collision detection interrupt control register
TB3IC, U0BCNIC
0048h
SI/O4 interrupt control register (S4IC), INT5 interrupt control register
SI/O3 interrupt control register, INT4 interrupt control register
UART2 Bus collision detection interrupt control register
DMA0 interrupt control register
DMA1 interrupt control register
Key input interrupt control register
A-D conversion interrupt control register
S4IC, INT5IC
S3IC, INT4IC
BCNIC
DM0IC
DM1IC
KUPIC
ADIC
S2TIC
S2RIC
S0TIC
S0RIC
S1TIC
S1RIC
TA0IC
TA1IC
TA2IC
TA3IC
TA4IC
TB0IC
TB1IC
TB2IC
INT0IC
INT1IC
INT2IC
0044h
0049h
004Ah
004Bh
004Ch
004Dh
004Eh
004Fh
0050h
0051h
0052h
0053h
0054h
0055h
0056h
0057h
0058h
0059h
005Ah
005Bh
005Ch
005Dh
005Eh
005Fh
UART2 transmit interrupt control register
UART2 receive interrupt control register
UART0 transmit interrupt control register
UART0 receive interrupt control register
UART1 transmit interrupt control register
UART1 receive interrupt control register
Timer A0 interrupt control register
Timer A1 interrupt control register
Timer A2 interrupt control register
Timer A3 interrupt control register
Timer A4 interrupt control register
Timer B0 interrupt control register
Timer B1 interrupt control register
Timer B2 interrupt control register
INT0 interrupt control register
INT1 interrupt control register
INT2 interrupt control register
0060h
0061h
0062h
0063h
0064h
0065h
0066h
0067h
0068h
0069h
006Ah
006Bh
006Ch
006Dh
006Eh
006Fh
0070h
0071h
0072h
0073h
0074h
0075h
0076h
0077h
0078h
0079h
007Ah
007Bh
007Ch
007Dh
007Eh
007Fh
NOTES :
1. The blank areas are reserved and cannot be accessed by users.
X : Nothing is mapped to this bit
Rev.2.10 Nov. 07, 2003 page 25
of 84
TB4IC, U1BCNIC
4. SFR
M16C/62 Group (M16C/62P, M16C/62PT)
Register
Address
Symbol
After reset
0080h
0081h
0082h
0083h
0084h
0085h
0086h
0087h
to
01AFh
01B0h
01B1h
01B2h
01B3h
Flash identification register (2)
Flash memory control register 1 (2)
FIDR
FMR1
XXXXXX00b
0X00XX0Xb
Flash memory control register 0 (2)
Address match interrupt register 2
FMR0
RMAD2
01BBh
Address match interrupt enable register 2
01BCh
Address match interrupt register 3
AIER2
RMAD3
XX000001b
00h
00h
X0h
XXXXXX00b
00h
00h
X0h
Peripheral clock select register
PCLKR
01B4h
01B5h
01B6h
01B7h
01B8h
01B9h
01BAh
01BDh
01BEh
01BFh
00C0h
to
02AFh
0250h
0251h
0252h
0253h
0254h
0255h
0256h
0257h
0258h
0259h
025Ah
025Bh
025Ch
025Dh
025Eh
025Fh
0260h
to
032Fh
0330h
0331h
0332h
0333h
0334h
0335h
0336h
0337h
0338h
0339h
033Ah
033Bh
033Ch
033Dh
033Eh
033Fh
NOTES :
1. The blank areas are reserved and cannot be accessed by users.
2. This register is included in the flash memory version.
X : Nothing is mapped to this bit
Rev.2.10 Nov. 07, 2003 page 26 of 84
00000011b
4. SFR
M16C/62 Group (M16C/62P, M16C/62PT)
Address
0340h
Register
Symbol
After reset
Timer B3, 4, 5 count start flag
TBSR
000XXXXXb
Timer A1-1 register
TA11
Timer A2-1 register
TA21
Timer A4-1 register
TA41
Three-phase PWM control register 0
Three-phase PWM control register 1
Three-phase output buffer register 0
Three-phase output buffer register 1
Dead time timer
Timer B2 interrupt occurrence frequency set counter
INVC0
INVC1
IDB0
IDB1
DTT
ICTB2
XXh
XXh
XXh
XXh
XXh
XXh
00h
00h
00h
00h
XXh
XXh
Timer B3 register
TB3
Timer B4 register
TB4
Timer B5 register
TB5
Timer B3 mode register
Timer B4 mode register
Timer B5 mode register
Interrupt cause select register 2
Interrupt cause select register
SI/O3 transmit/receive register
TB3MR
TB4MR
TB5MR
IFSR2A
IFSR
S3TRR
00XX0000b
00XX0000b
00XX0000b
00XXXXXXb
00h
XXh
SI/O3 control register
SI/O3 bit rate generator
SI/O4 transmit/receive register
S3C
S3BRG
S4TRR
01000000b
XXh
XXh
SI/O4 control register
SI/O4 bit rate generator
S4C
S4BRG
01000000b
XXh
UART0 special mode register 4
UART0 special mode register 3
UART0 special mode register 2
UART0 special mode register
UART1 special mode register 4
UART1 special mode register 3
UART1 special mode register 2
UART1 special mode register
UART2 special mode register 4
UART2 special mode register 3
UART2 special mode register 2
UART2 special mode register
UART2 transmit/receive mode register
UART2 bit rate generator
UART2 transmit buffer register
U0SMR4
U0SMR3
U0SMR2
U0SMR
U1SMR4
U1SMR3
U1SMR2
U1SMR
U2SMR4
U2SMR3
U2SMR2
U2SMR
U2MR
U2BRG
U2TB
UART2 transmit/receive control register 0
UART2 transmit/receive control register 1
UART2 receive buffer register
U2C0
U2C1
U2RB
00h
000X0X0Xb
X0000000b
X0000000b
00h
000X0X0Xb
X0000000b
X0000000b
00h
000X0X0Xb
X0000000b
X0000000b
00h
XXh
XXh
XXh
00001000b
00000010b
XXh
XXh
0341h
0342h
0343h
0344h
0345h
0346h
0347h
0348h
0349h
034Ah
034Bh
034Ch
034Dh
034Eh
034Fh
0350h
0351h
0352h
0353h
0354h
0355h
XXh
XXh
XXh
XXh
XXh
XXh
0356h
0357h
0358h
0359h
035Ah
035Bh
035Ch
035Dh
035Eh
035Fh
0360h
0361h
0362h
0363h
0364h
0365h
0366h
0367h
0368h
0369h
036Ah
036Bh
036Ch
036Dh
036Eh
036Fh
0370h
0371h
0372h
0373h
0374h
0375h
0376h
0377h
0378h
0379h
037Ah
037Bh
037Ch
037Dh
037Eh
037Fh
NOTES :
1. The blank areas are reserved and cannot be accessed by users.
X : Nothing is mapped to this bit
Rev.2.10 Nov. 07, 2003 page 27
of 84
4. SFR
M16C/62 Group (M16C/62P, M16C/62PT)
Count start flag
Clock prescaler reset flag
One-shot start flag
Trigger select register
Up-down flag
Register
Symbol
TABSR
CPSRF
ONSF
TRGSR
UDF
After reset
00h
0XXXXXXXb
00h
00h
00h (2)
Timer A0 register
TA0
Timer A1 register
TA1
Timer A2 register
TA2
Timer A3 register
TA3
Timer A4 register
TA4
Timer B0 register
TB0
Timer B1 register
TB1
Timer B2 register
TB2
Timer A0 mode register
Timer A1 mode register
Timer A2 mode register
Timer A3 mode register
Timer A4 mode register
Timer B0 mode register
Timer B1 mode register
Timer B2 mode register
Timer B2 special mode register
TA0MR
TA1MR
TA2MR
TA3MR
TA4MR
TB0MR
TB1MR
TB2MR
TB2SC
XXh
XXh
XXh
XXh
XXh
XXh
XXh
XXh
XXh
XXh
XXh
XXh
XXh
XXh
XXh
XXh
00h
00h
00h
00h
00h
00XX0000b
00XX0000b
00XX0000b
XXXXXX00b
03A0h
UART0 transmit/receive mode register
03A1h
UART0 bit rate generator
UART0 transmit buffer register
U0MR
U0BRG
U0TB
Address
0380h
0381h
0382h
0383h
0384h
0385h
0386h
0387h
0388h
0389h
038Ah
038Bh
038Ch
038Dh
038Eh
038Fh
0390h
0391h
0392h
0393h
0394h
0395h
0396h
0397h
0398h
0399h
039Ah
039Bh
039Ch
039Dh
039Eh
039Fh
03ADh
UART1 transmit/receive control register 0
UART1 transmit/receive control register 1
03AEh
UART1 receive buffer register
U1C0
U1C1
U1RB
UART transmit/receive control register 2
UCON
00h
XXh
XXh
XXh
00001000b
00000010b
XXh
XXh
00h
XXh
XXh
XXh
00001000b
00000010b
XXh
XXh
X0000000b
DMA0 request cause select register
DM0SL
00h
DMA1 request cause select register
DM1SL
00h
CRC data register
CRCD
CRC input register
CRCIN
XXh
XXh
XXh
03A2h
03A3h
03A4h
03A5h
UART0 transmit/receive control register 0
UART0 transmit/receive control register 1
03A6h
UART0 receive buffer register
U0C0
U0C1
U0RB
03A7h
03A8h
UART1 transmit/receive mode register
03A9h
UART1 bit rate generator
UART1 transmit buffer register
03AAh
U1MR
U1BRG
U1TB
03ABh
03ACh
03AFh
03B0h
03B1h
03B2h
03B3h
03B4h
03B5h
03B6h
03B7h
03B8h
03B9h
03BAh
03BBh
03BCh
03BDh
03BEh
03BFh
NOTES :
1.The blank areas are reserved and cannot be accessed by users.
2. Bits 7 to 5 in the Up-down flag are “0” by reset. However, The values in these bits when read are indeterminate.
X : Nothing is mapped to this bit
Rev.2.10 Nov. 07, 2003 page 28 of 84
4. SFR
M16C/62 Group (M16C/62P, M16C/62PT)
Address
03C0h
Register
A-D register 0
Symbol
AD0
A-D register 1
AD1
A-D register 2
AD2
A-D register 3
AD3
A-D register 4
AD4
A-D register 5
AD5
A-D register 6
AD6
A-D register 7
AD7
A-D control register 2
ADCON2
00h
A-D control register 0
A-D control register 1
D-A register 0
ADCON0
ADCON1
DA0
00000XXXb
00h
00h
D-A register 1
DA1
00h
D-A control register
DACON
00h
Port P14 control register
Pull-up control register 3
Port P0 register
Port P1 register
Port P0 direction register
Port P1 direction register
Port P2 register
Port P3 register
Port P2 direction register
Port P3 direction register
Port P4 register
Port P5 register
Port P4 direction register
Port P5 direction register
Port P6 register
Port P7 register
Port P6 direction register
Port P7 direction register
Port P8 register
Port P9 register
Port P8 direction register
Port P9 direction register
Port P10 register
Port P11 register
Port P10 direction register
Port P11 direction register
Port P12 register
Port P13 register
Port P12 direction register
Port P13 direction register
Pull-up control register 0
Pull-up control register 1
PC14
PUR3
P0
P1
PD0
PD1
P2
P3
PD2
PD3
P4
P5
PD4
PD5
P6
P7
PD6
PD7
P8
P9
PD8
PD9
P10
P11
PD10
PD11
P12
P13
PD12
PD13
PUR0
PUR1
XX00XXXXb
00h
XXh
XXh
00h
00h
XXh
XXh
00h
00h
XXh
XXh
00h
00h
XXh
XXh
00h
00h
XXh
XXh
00X00000b
00h
XXh
XXh
00h
00h
XXh
XXh
00h
00h
00h
03C1h
03C2h
03C3h
03C4h
03C5h
03C6h
03C7h
03C8h
03C9h
03CAh
03CBh
03CCh
03CDh
03CEh
03CFh
After reset
XXh
XXh
XXh
XXh
XXh
XXh
XXh
XXh
XXh
XXh
XXh
XXh
XXh
XXh
XXh
XXh
03D0h
03D1h
03D2h
03D3h
03D4h
03D5h
03D6h
03D7h
03D8h
03D9h
03DAh
03DBh
03DCh
03DDh
03DEh
03DFh
03E0h
03E1h
03E2h
03E3h
03E4h
03E5h
03E6h
03E7h
03E8h
03E9h
03EAh
03EBh
03ECh
03EDh
03EEh
03EFh
03F0h
03F1h
03F2h
03F3h
03F4h
03F5h
03F6h
03F7h
03F8h
03F9h
03FAh
03FBh
03FCh
03FDh
00000000b
00000010b
03FEh
03FFh
Pull-up control register 2
Port control register
PUR2
PCR
00h
00h
NOTES :
1. The blank areas are reserved and cannot be accessed by users.
2. At hardware reset 1 or hardware reset 2, the register is as follows:
• “00000000b” where “L” is inputted to the CNVSS pin
• “00000010b” where “H” is inputted to the CNVSS pin
At software reset, watchdog timer reset and oscillation stop detection reset, the register is as follows:
• “00000000b” where the PM01 to PM00 bits in the PM0 register are “00b” (single-chip mode)
• “00000010b” where the PM01 to PM00 bits in the PM0 register are “01b” (memory expansion mode) or
“11b” (microprocessor mode)
X : Nothing is mapped to this bit
Rev.2.10 Nov. 07, 2003 page 29
of 84
(2)
M16C/62 Group (M16C/62P, M16C/62PT)
5. Electrical Characteristics (M16C/62P)
5. Electrical Characteristics
5.1 Electrical Characteristics (M16C/62P)
Table 5.1 Absolute Maximum Ratings
Symbol
Parameter
Condition
Rated value
Unit
VCC1, VCC2
Supply voltage
VCC1=AVCC
-0.3 to 6.5
V
VCC2
Supply voltage
VCC2
-0.3 to VCC1+0.1
V
AVCC
Analog supply voltage
VCC1=AVCC
-0.3 to 6.5
V
RESET, CNVSS, BYTE,
P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_7,
P9_0 to P9_7, P10_0 to P10_7,
P11_0 to P11_7, P14_0, P14_1,
VREF, XIN
-0.3 to VCC1+0.3 (1)
V
P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7,
P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7,
P12_0 to P12_7, P13_0 to P13_7
-0.3 to VCC2+0.3 (1)
V
-0.3 to 6.5
V
P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_4,
P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7,
P11_0 to P11_7, P14_0, P14_1,
XOUT
-0.3 to VCC1+0.3 (1)
V
P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7,
P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7,
P12_0 to P12_7, P13_0 to P13_7
-0.3 to VCC2+0.3 (1)
V
Input
voltage
VI
P7_0, P7_1
Output
voltage
VO
P7_0, P7_1
Pd
Power dissipation
Topr
Operating ambient
temperature
-40 °C < Topr ≤ 85 °C
When the microcomputer is
operating
Flash program erase
Tstg
Storage temperature
-0.3 to 6.5
V
300
mW
-20 to 85 / -40 to 85
°C
0 to 6 0
-65 to 150
NOTES:
1. There is no external connections for port P1_0 to P1_7, P4_4 to P4_7, P7_2 to P7_5 and P9_1 in 80-pin version.
Rev.2.10 Nov. 07, 2003 page 30 of 84
°C
5. Electrical Characteristics (M16C/62P)
M16C/62 Group (M16C/62P, M16C/62PT)
Table 5.2 Recommended Operating Conditions (1) (1)
Parameter
Symbol
VCC1, VCC2
Supply voltage(VCC1≥VCC2)
AVcc
Analog supply voltage
f(ripple)(2)
VP-P(ripple)(2)
Power supply ripple allowable frequency
Min.
2.7
Standard
Typ.
Max.
5.0
5.5
V
10
MHz
(VCC1=5V)
(VCC1=3V)
0.5
0.3
V
V
(VCC1=5V)
(VCC1=3V)
0.3
0.3
V/ms
V/ms
VCC1
Power supply ripple allowable amplitude voltage
VCC(|∆V / ∆T|) Power supply ripple rising / falling gradient
(2)
Unit
V
V/ms
SVCC(2)
Power supply rising gradient
Vss
Supply voltage
0
V
AVss
Analog supply voltage
HIGH input P3_1 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P12_0 to P12_7, P13_0 to P13_7
voltage
P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 (during single-chip mode)
0
0.05
P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0
(data input during memory expansion and microprocessor modes)
VIH
P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7,
P11_0 to P11_7, P14_0, P14_1,
XIN, RESET, CNVSS, BYTE
P7_0 , P7_1
LOW input
voltage
VIL
IOH (peak)
IOH (avg)
IOL (peak)
IOL (avg)
0.8VCC2
VCC2
V
V
0.8VCC2
VCC2
V
0.5VCC2
VCC2
V
0.8VCC1
VCC1
V
0.8VCC1
6.5
V
P3_1 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P12_0 to P12_7, P13_0 to P13_7
0
0.2VCC2
V
P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 (during single-chip mode)
0
0.2VCC2
V
P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0
(data input during memory expansion and microprocessor modes)
0
0.16VCC2
V
0
0.2VCC1
V
-10.0
mA
-5.0
mA
10.0
mA
5.0
mA
P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7,
P11_0 to P11_7, P14_0, P14_1,
XIN, RESET, CNVSS, BYTE
HIGH peak output P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7,
P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_2 to P7_7,
current
P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7,
P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1
P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7,
HIGH average
P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_2 to P7_7,
output current
P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7,
P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1
P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7,
LOW peak output
P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7,
current
P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7,
P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1
P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7,
LOW average
P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7,
output current
P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7,
P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1
NOTES:
1. Referenced to VCC1 = VCC2 = 2.7 to 5.5V at Topr = -20 to 85 °C / -40 to 85 °C unless otherwise specified.
2. SVCC indicates the minimum time gradient until VCC1 reaches 2.7V.
f(ripple)
V
SVCC
Vp-p(ripple)
VCC1
0V
t
3. The mean output current is the mean value within 100ms.
4. The total IOL (peak) for ports P0, P1, P2, P8_6, P8_7, P9, P10, P11, P14_0 and P14_1 must be 80mA max. The total IOL (peak) for
ports P3, P4, P5, P6, P7, P8_0 to P8_4, P12, and P13 must be 80mA max. The total IOH (peak) for ports P0, P1, and P2 must be
-40mA max. The total IOH (peak) for ports P3, P4, P5, P12, and P13 must be -40mA max. The total IOH (peak) for ports P6, P7, and
P8_0 to P8_4 must be -40mA max. The total IOH (peak) for ports P8_6, P8_7, P9, P10, P11, P14_0, and P14_1 must be -40mA max.
5. There is no external connections for port P1_0 to P1_7, P4_4 to P4_7, P7_2 to P7_5 and P9_1 in 80-pin version.
Rev.2.10 Nov. 07, 2003 page 31
of 84
5. Electrical Characteristics (M16C/62P)
M16C/62 Group (M16C/62P, M16C/62PT)
Table 5.3 Recommended Operating Conditions (2) (1)
Symbol
Parameter
f (XIN)
Main clock input oscillation frequency
f (XCIN)
f (Ring)
Ring oscillation frequency
(2)
Min.
VCC1=3.0 to 5.5V
VCC1=2.7 to 3.0V
Standard
Typ.
Max.
0
0
Sub-clock oscillation frequency
32.768
0.5
f (PLL)
PLL clock oscillation frequency (2)
f (BCLK)
CPU operation clock
tSU(PLL)
PLL frequency synthesizer stabilization wait time
1
10.0
0.0
AAAAAA
AAAAAA
AAAAAA
AAAAAA
AAAAAA
AAAAAA
2.7
3.0
VCC1[V] (main clock: no division)
Rev.2.10 Nov. 07, 2003 page 32 of 84
5.5
MHz
MHz
24
VCC1=2.7 to 3.0V
10
46.67 X VCC1116
24
MHz
20
ms
ms
VCC1=5.0V
VCC1=3.0V
f(PLL) operating maximum frequency [MHz]
f(XIN) operating maximum frequency [MHz]
16.0
MHz
MHz
kHz
10
50
NOTES:
1. Referenced to VCC1 = VCC2 = 2.7 to 5.5V at Topr = -20 to 85 °C / -40 to 85 °C unless otherwise specified.
2. Relationship between main clock oscillation frequency, PLL clock oscillation frequency and supply voltage.
20 x VCC1-44MHz
Unit
VCC1=3.0 to 5.5V
0
Main clock input oscillation frequency
16
20 X VCC1-44
50
2
AAAAAA
AAAAAA
AAAAAA
AAAAAA
AAAAAA
PLL clock oscillation frequency
46.67 x VCC1-116MHz
24.0
10.0
0.0
2.7
3.0
VCC1[V] (PLL clock oscillation)
5.5
MHz
5. Electrical Characteristics (M16C/62P)
M16C/62 Group (M16C/62P, M16C/62PT)
Table 5.4 A-D Conversion Characteristics (1)
Symbol
–
Parameter
Resolution
Integral
nonlinearity
error
INL
Measuring condition
Bits
±3
LSB
External operation amp
connection mode
AN0 to AN7 input
AN0_0 to AN0_7 input
AN2_0 to AN2_7 input
ANEX0, ANEX1 input
±7
LSB
±5
LSB
External operation amp
connection mode
VREF =VCC1=3.3V
±7
LSB
10 bit
VREF=
VCC1=
5V
10 bit
VREF=
VCC1=
3.3V
AN0 to AN7 input
AN0_0 to AN0_7 input
AN2_0 to AN2_7 input
ANEX0, ANEX1 input
±2
LSB
AN0 to AN7 input
AN0_0 to AN0_7 input
AN2_0 to AN2_7 input
ANEX0, ANEX1 input
±3
LSB
External operation amp
connection mode
±7
LSB
AN0 to AN7 input
AN0_0 to AN0_7 input
AN2_0 to AN2_7 input
ANEX0, ANEX1 input
±5
LSB
External operation amp
connection mode
±7
LSB
±2
LSB
±1
±3
±3
40
kΩ
LSB
LSB
LSB
kΩ
VREF =VCC1=3.3V
8 bit
–
DNL
–
–
RLADDER
tCONV
Tolerance level impedance
Differential non-linearity error
Offset error
Gain error
Ladder resistance
Conversion time(10bit), Sample & hold
function available
tCONV
Conversion time(8bit), Sample & hold
function available
tSAMP
VREF
Sampling time
Reference voltage
VI A
Analog input voltage
Unit
10
VREF=
VCC1=
5V
8 bit
Absolute
accuracy
Standard
Typ. Max.
VREF =VCC1
VREF=
VCC1=
3.3V
–
Min.
3
VREF =VCC1
VREF =VCC1=5V, øAD=12MHz
10
2.75
VREF =VCC1=5V, øAD=12MHz
2.33
µs
µs
0.25
2.0
VCC1
µs
V
0
VREF
V
NOTES:
1. Referenced to VCC1=AVCC=VREF=3.3 to 5.5V, VSS=AVSS=0V at Topr = -20 to 85 °C / -40 to 85 °C unless otherwise
specified.
2. If VCC1 > VCC2, do not use AN0_0 to AN0_7 and AN2_0 to AN2_7 as analog input pins.
3. AD operation clock frequency (øAD frequency) must be 12 MHz or less. And divide the fAD if VCC1 is less than 4.0V,
and øAD frequency into 10 MHz or less.
4. A case without sample & hold function turn øAD frequency into 250 kHz or more in addition to a limit of Note 3.
A case with sample & hold function turn øAD frequency into 1MHz or more in addition to a limit of Note 3.
Table 5.5 D-A Conversion Characteristics (1)
Symbol
–
–
tsu
RO
IVREF
Parameter
Resolution
Absolute accuracy
Setup time
Output resistance
Reference power supply input current
Measuring condition
Standard
Min. Typ. Max.
4
(Note 2)
10
Unit
8
1.0
3
20
Bits
%
µs
kΩ
1.5
mA
NOTES:
1. Referenced to VCC1=VREF=3.3 to 5.5V, VSS=AVSS=0V at Topr = -20 to 85 °C / -40 to 85 °C unless otherwise specified.
2. This applies when using one D-A converter, with the D-A register for the unused D-A converter set to “00h”. The A-D
converter’s ladder resistance is not included. Also, when D-A register contents are not “00h”, the current IVREF always
flows even though Vref may have been set to be unconnected by the A-D control register.
Rev.2.10 Nov. 07, 2003 page 33
of 84
5. Electrical Characteristics (M16C/62P)
M16C/62 Group (M16C/62P, M16C/62PT)
Table 5.6 Flash Memory Version Electrical Characteristics (1) for 100 cycle products (D3, D5, U3, U5)
Standard
Symbol
Parameter
Unit
Min.
Typ.
Max.
cycle
-
Program and erase endurance (3)
-
Word program time (VCC1=5.0V, Topr=25°C)
25
200
µs
-
Lock bit program time
25
200
µs
-
Block erase time
(VCC1=5.0V, Topr=25 °C)
4K bytes block
0.3
4
s
8K bytes block
0.3
4
s
32K bytes block
0.5
4
s
64K bytes block
0.8
4
s
tPS
-
Erase all unlocked blocks time
100
(2)
Flash memory circuit stabilization wait time
Data hold time (5)
4Xn
s
15
µs
10
year
Table 5.7 Flash Memory Version Electrical Characteristics (6)
for 10,000 cycle products (D7, D9, U7, U7) (Block A and Block 1 (7))
Standard
Symbol
Parameter
Min.
Typ.
Max.
Unit
-
Program and erase endurance (3, 8, 9)
-
Word program time (VCC1=5.0V, Topr=25°C)
25
µs
-
Lock bit program time
25
µs
-
Block erase time
(VCC1=5.0V, Topr=25 °C)
0.3
s
tPS
-
10,000 (4)
4K bytes block
cycle
Flash memory circuit stabilization wait time
15
10
Data hold time (5)
µs
year
NOTES :
1. Referenced to VCC1=4.5 to 5.5V, 3.0 to 3.6V at Topr = 0 to 60 °C unless otherwise specified.
2. n denotes the number of block erases.
3. Program and Erase Endurance refers to the number of times a block erase can be performed.
If the program and erase endurance is n (n=100, 1,000, or 10,000), each block can be erased n times.
For example, if a 4K bytes block A is erased after writing 1 word data 2,048 times, each to a different address, this
counts as one program and erase endurance. Data cannot be written to the same address more than once without
erasing the block. (Rewrite prohibited)
4. Maximum number of E/W cycles for which operation is guaranteed.
5. Topr = -40 to 85 °C (D3, D7, U3, U7) / -20 to 85 °C (D5, D9, U5, U9).
6. Referenced to VCC1 = 2.7 to 5.5V at Topr = -20 to 85 °C (D9, U9) / -40 to 85 °C (D7, U7) unless otherwise specified.
7. Table 5.7 applies for block A or block 1 program and erase endurance > 1,000. Otherwise, use Table 5.6.
8. To reduce the number of program and erase endurance when working with systems requiring numerous rewrites,
write to unused word addresses within the block instead of rewrite. Erase block only after all possible addresses are
used. For example, an 8-word program can be written 256 times maximum before erase becomes necessary.
Maintaining an equal number of erasure between block A and block 1 will also improve efficiency. It is important to
track the total number of times erasure is used.
9. Should erase error occur during block erase, attempt to execute clear status register command, then block erase
command at least three times until erase error disappears.
10. Customers desiring E/W failure rate information should contact their Renesas technical support representative.
Table 5.8 Flash Memory Version Program/Erase Voltage and Read Operation Voltage Characteristics
(at Topr = 0 to 60oC)
Flash program, erase voltage
VCC1 = 3.3 V ± 0.3 V or 5.0 V ± 0.5 V
Rev.2.10 Nov. 07, 2003 page 34 of 84
Flash read operation voltage
VCC1=2.7 to 5.5 V
5. Electrical Characteristics (M16C/62P)
M16C/62 Group (M16C/62P, M16C/62PT)
Table 5.9 Low Voltage Detection Circuit Electrical Characteristics (1)
Symbol
Measuring condition
Parameter
Min.
Standard
Typ.
Max.
Unit
Vdet4
Voltage down detection voltage (1)
3 .3
3 .8
4.4
V
Vdet3
Reset level detection voltage (1, 2)
2 .2
2 .8
3.6
V
Vdet3s
Low voltage reset retention voltage
Vdet3r
Low voltage reset release voltage
2 .2
2 .9
4.0
V
Vdet2
RAM retention limit detection voltage (1)
1.4
2 .0
2.7
V
VCC1=0.8 to 5.5V
(3)
V
0 .8
NOTES:
1. Vdet4 > Vdet3 > Vdet2.
2. Where reset level detection voltage is less than 2.7 V, if the supply power voltage is greater than the reset level detection voltage, the
operation at f(BCLK) ≤ 10MHz is guaranteed.
3. Vdet3r > Vdet3 is not guaranteed.
Table 5.10 Power Supply Circuit Timing Characteristics
Symbol
Measuring condition
Parameter
td(P-R)
Time for internal power supply stabilization during powering-on
td(R-S)
STOP release time
td(W-S)
Low power dissipation mode wait mode release time
td(M-L)
Time for internal power supply stabilization when main clock oscillation starts
td(S-R)
Hardware reset 2 release wait time
td(E-A)
Low voltage detection circuit operation start time
Standard
Typ.
VCC1=2.7 to 5.5V
VCC1=Vdet3r to 5.5V
VCC1=2.7 to 5.5V
Vdet3r
VCC1
td(S-R)
Interrupt for
stop mode
release
CPU clock
td(R-S)
of 84
Max.
2
NOTES:
1. When VCC1 = 5V.
Rev.2.10 Nov. 07, 2003 page 35
Min.
6 (1)
Unit
ms
150
µs
150
µs
50
µs
20
ms
20
µs
5. Electrical Characteristics (M16C/62P)
M16C/62 Group (M16C/62P, M16C/62PT)
VCC1 = VCC2 = 5V
Table 5.11 Electrical Characteristics (1)
Symbol
VOH
VOH
HIGH output P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7,
voltage
P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P14_0, P14_1
HIGH output voltage
XOUT
HIGH output voltage
VOL
VOL
XCOUT
LOW output voltage
Hysteresis
VT+-VT-
XCOUT
Max.
VCC1
VCC2
IOH=-200µA
VCC1-0.3
VCC1
IOH=-200µA (2)
VCC2-0.3
VCC2
HIGHPOWER
IOH=-1mA
VCC1-2.0
VCC1
LOWPOWER
IOH=-0.5mA
VCC1-2.0
HIGHPOWER
With no load applied
2 .5
LOWPOWER
With no load applied
1 .6
P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7,
P4_0 to P4_7, P5_0 to P5_7, P12_0 to P12_7, P13_0 to P13_7
LOW output P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_4, P8_6, P8_7,
P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P14_0, P14_1
voltage
P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7,
P4_0 to P4_7, P5_0 to P5_7, P12_0 to P12_7, P13_0 to P13_7
XOUT
Standard
Typ.
VCC2-2.0
LOW output P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_4, P8_6, P8_7,
voltage
P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P14_0, P14_1
LOW output voltage
IOH=-5mA
Min.
VCC1-2.0
P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7,
P4_0 to P4_7, P5_0 to P5_7, P12_0 to P12_7, P13_0 to P13_7
HIGH output P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7,
voltage
P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P14_0, P14_1
P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7,
P4_0 to P4_7, P5_0 to P5_7, P12_0 to P12_7, P13_0 to P13_7
VOH
VOL
Measuring condition
Parameter
Unit
V
IOH=-5mA
(2)
V
VCC1
V
V
IOL=5mA
2.0
IOL=5mA (2)
2.0
IOL=200µA
0.45
V
V
IOL=200µA
0.45
(2)
HIGHPOWER
IOL=1mA
2.0
LOWPOWER
IOL=0.5mA
2.0
HIGHPOWER
With no load applied
0
LOWPOWER
With no load applied
0
HOLD, RDY, TA0IN to TA4IN,
TB0IN to TB5IN, INT0 to INT5, NMI,
ADTRG, CTS0 to CTS2, SCL0 to SCL2,
SDA0 TO SDA2, CLK0 to CLK4,TA0OUT to TA4OUT,
KI0 to KI3, RXD0 to RXD2, SIN3, SIN4
V
V
0 .2
1.0
V
0.2
2.5
V
0.2
0.8
V
VT+-VT-
Hysteresis
VT+-VT-
Hysteresis
XIN
HIGH input
current
P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7,
P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7,
P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7,
P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1,
XIN, RESET, CNVSS, BYTE
VI=5V
5.0
µA
P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7,
P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7,
P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7,
P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1,
XIN, RESET, CNVSS, BYTE
VI=0V
-5.0
µA
IIH
LOW input
current
IIL
RPULLUP
Pull-up
resistance
RESET
P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7,
P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_2 to P7_7,
VI=0V
P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7,
P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1
RfXIN
Feedback resistance
XIN
RfXCIN
Feedback resistance
XCIN
VRAM
RAM retention voltage
30
50
1.5
15
At stop mode
2 .0
NOTES:
1. Referenced to VCC1=VCC2=4.2 to 5.5V, VSS=0V at Topr = -20 to 85 °C / -40 to 85 °C, f(BCLK)=24MHz unless otherwise specified.
2. Where the product is used at VCC1 = 5 V and VCC2 = 3 V, refer to the 3 V version value for the pin specified value on the VCC2 port side.
3. There is no external connections for port P1_0 to P1_7, P4_4 to P4_7, P7_2 to P7_5 and P9_1 in 80-pin version.
Rev.2.10 Nov. 07, 2003 page 36 of 84
170
kΩ
MΩ
MΩ
V
5. Electrical Characteristics (M16C/62P)
M16C/62 Group (M16C/62P, M16C/62PT)
VCC1 = VCC2 = 5V
Table 5.12 Electrical Characteristics (2) (1)
Symbol
Measuring condition
Parameter
In single-chip mode, the output
pins are open and other pins are
VSS
Standard
Typ.
Max.
Unit
Mask ROM
f(BCLK)=24MHz,
No division, PLL operation
No division, Ring oscillation
Flash memory
f(BCLK)=24MHz,
No division, PLL operation
Flash memory
Program
f(BCLK)=10MHz,
VCC1=5.0V
15
mA
Flash memory
Erase
f(BCLK)=10MHz,
VCC1=5.0V
25
mA
Mask ROM
f(XCIN)=32kHz,
Low power dissipation mode,
ROM (3)
25
µA
25
µA
420
µA
Ring oscillation,
Wait mode
50
µA
f(BCLK)=32kHz,
Wait mode (2),
7.5
µA
2.0
µA
No division, Ring oscillation
ICC
Min.
Power supply current
(VCC1=4.0 to 5.5V)
Flash memory
Mask ROM
Flash memory
f(BCLK)=32kHz,
Low power dissipation mode,
RAM (3)
f(BCLK)=32kHz
Low power dissipation mode,
Flash memory (3)
14
20
1
18
mA
mA
27
1 .8
mA
mA
Oscillation capacity High
f(BCLK)=32kHz,
Wait mode (2),
Oscillation capacity Low
Stop mode,
Topr=25°C
0.8
3.0
µA
Idet4
Voltage down detection dissipation current
0.7
4
µA
Idet3
Reset area detection dissipation current (4)
1.2
8
µA
Idet2
RAM retention limit detection dissipation current (4)
1.1
6
µA
(4)
NOTES:
1. Referenced to VCC1=VCC2= 4.2 to 5.5V, VSS=0V at Topr = -20 to 85 °C / -40 to 85 °C, f(BCLK)=24MHz unless otherwise specified.
2. With one timer operated using fC32.
3. This indicates the memory in which the program to be executed exists.
4. Idet is dissipation current when the following bit is set to “1” (detection circuit enabled).
Idet4: VC27 bit of VCR2 register
Idet3: VC26 bit of VCR2 register
Idet2: VC25 bit of VCR2 register
Rev.2.10 Nov. 07, 2003 page 37
of 84
5. Electrical Characteristics (M16C/62P)
M16C/62 Group (M16C/62P, M16C/62PT)
VCC1 = VCC2 = 5V
Timing Requirements
(VCC1 = VCC2 = 5V, VSS = 0V, at Topr = – 20 to 85oC / – 40 to 85oC unless otherwise specified)
Table 5.13 External Clock Input (XIN input)
Symbol
tc
tw(H)
tw(L)
tr
tf
Parameter
External clock input cycle time
External clock input HIGH pulse width
External clock input LOW pulse width
External clock rise time
External clock fall time
Standard
Min.
Max.
Unit
ns
62.5
25
25
15
15
ns
ns
ns
ns
Table 5.14 Memory Expansion Mode and Microprocessor Mode
Symbol
Parameter
tac1(RD-DB)
Data input access time (for setting with no wait)
tac2(RD-DB)
Data input access time (for setting with wait)
Data input access time (when accessing multiplex bus area)
Data input setup time
RDY input setup time
HOLD input setup time
Data input hold time
RDY input hold time
HOLD input hold time
tac3(RD-DB)
tsu(DB-RD)
tsu(RDY-BCLK )
tsu(HOLD-BCLK )
th(RD-DB)
th(BCLK -RDY)
th(BCLK-HOLD )
Standard
Min.
Max.
(Note 1)
(Note 2)
(Note 3)
40
Unit
ns
ns
ns
40
ns
ns
ns
0
ns
0
ns
0
ns
30
NOTES:
1. Calculated according to the BCLK frequency as follows:
0.5 X 109
f(BCLK)
– 45
[ns]
2. Calculated according to the BCLK frequency as follows:
(n–0.5) X 109
– 45
f(BCLK)
[ns]
n is “2” for 1-wait setting, “3” for 2-wait setting and “4” for 3-wait
setting.
3. Calculated according to the BCLK frequency as follows:
(n–0.5) X 109
– 45
f(BCLK)
[ns]
Rev.2.10 Nov. 07, 2003 page 38 of 84
n is “2” for 2-wait setting, “3” for 3-wait setting.
5. Electrical Characteristics (M16C/62P)
M16C/62 Group (M16C/62P, M16C/62PT)
VCC1 = VCC2 = 5V
Timing Requirements
(VCC1 = VCC2 = 5V, VSS = 0V, at Topr = – 20 to 85oC / – 40 to 85oC unless otherwise specified)
Table 5.15 Timer A Input (Counter Input in Event Counter Mode)
Symbol
Parameter
tc(TA)
TAiIN input cycle time
tw(TAH)
TAiIN input HIGH pulse width
tw(TAL)
TAiIN input LOW pulse width
Standard
Min.
Max.
100
40
40
Unit
ns
ns
ns
Table 5.16 Timer A Input (Gating Input in Timer Mode)
Symbol
Parameter
tc(TA)
TAiIN input cycle time
tw(TAH)
tw(TAL)
TAiIN input HIGH pulse width
TAiIN input LOW pulse width
Standard
Min.
Max.
400
200
200
Unit
ns
ns
ns
Table 5.17 Timer A Input (External Trigger Input in One-shot Timer Mode)
Symbol
tc(TA)
tw(TAH)
tw(TAL)
Parameter
Standard
Max.
Min.
Unit
TAiIN input cycle time
200
ns
TAiIN input HIGH pulse width
TAiIN input LOW pulse width
100
100
ns
ns
Table 5.18 Timer A Input (External Trigger Input in Pulse Width Modulation Mode)
Symbol
tw(TAH)
tw(TAL)
Parameter
TAiIN input HIGH pulse width
TAiIN input LOW pulse width
Standard
Max.
Min.
100
100
Unit
ns
ns
Table 5.19 Timer A Input (Counter Increment/decrement Input in Event Counter Mode)
Symbol
Parameter
tc(UP)
TAiOUT input cycle time
tw(UPH)
TAiOUT input HIGH pulse width
tw(UPL)
TAiOUT input LOW pulse width
tsu(UP-TIN)
TAiOUT input setup time
TAiOUT input hold time
th(TIN-UP)
Standard
Min.
Max.
2000
1000
Unit
ns
1000
400
ns
ns
ns
400
ns
Table 5.20 Timer A Input (Two-phase Pulse Input in Event Counter Mode)
Symbol
Parameter
tc(TA)
TAiIN input cycle time
tsu(TAIN-TAOUT)
TAiOUT input setup time
tsu(TAOUT-TAIN)
TAiIN input setup time
Rev.2.10 Nov. 07, 2003 page 39
of 84
Standard
Max.
Min.
800
200
200
Unit
ns
ns
ns
5. Electrical Characteristics (M16C/62P)
M16C/62 Group (M16C/62P, M16C/62PT)
VCC1 = VCC2 = 5V
Timing Requirements
(VCC1 = VCC2 = 5V, VSS = 0V, at Topr = – 20 to 85oC / – 40 to 85oC unless otherwise specified)
Table 5.21 Timer B Input (Counter Input in Event Counter Mode)
Symbol
Parameter
Standard
Min.
Max.
Unit
tc(TB)
TBiIN input cycle time (counted on one edge)
100
ns
tw(TBH)
TBiIN input HIGH pulse width (counted on one edge)
40
ns
tw(TBL)
TBiIN input LOW pulse width (counted on one edge)
40
200
ns
ns
tc(TB)
TBiIN input cycle time (counted on both edges)
tw(TBH)
TBiIN input HIGH pulse width (counted on both edges)
80
ns
tw(TBL)
TBiIN input LOW pulse width (counted on both edges)
80
ns
Table 5.22 Timer B Input (Pulse Period Measurement Mode)
Symbol
Parameter
Standard
Min.
Max.
Unit
tc(TB)
TBiIN input cycle time
400
ns
tw(TBH)
tw(TBL)
TBiIN input HIGH pulse width
TBiIN input LOW pulse width
200
200
ns
ns
Table 5.23 Timer B Input (Pulse Width Measurement Mode)
Symbol
Parameter
Standard
Min.
Max.
Unit
tc(TB)
TBiIN input cycle time
400
ns
tw(TBH)
TBiIN input HIGH pulse width
200
ns
tw(TBL)
TBiIN input LOW pulse width
200
ns
Table 5.24 A-D Trigger Input
Symbol
tc(AD)
tw(ADL)
Parameter
ADTRG input cycle time (trigger able minimum)
ADTRG input LOW pulse width
Standard
Min.
1000
125
Max.
Unit
ns
ns
Table 5.25 Serial I/O
Symbol
Parameter
Standard
Min.
Max.
Unit
tc(CK)
CLKi input cycle time
200
ns
tw(CKH)
CLKi input HIGH pulse width
100
ns
tw(CKL)
CLKi input LOW pulse width
100
td(C-Q)
TXDi output delay time
th(C-Q)
TXDi hold time
tsu(D-C)
RXDi input setup time
RXDi input hold time
th(C-D)
ns
80
ns
0
30
ns
90
ns
ns
_______
Table 5.26 External Interrupt INTi Input
Symbol
Parameter
Standard
Min.
Max.
Unit
tw(INH)
INTi input HIGH pulse width
250
ns
tw(INL)
INTi input LOW pulse width
250
ns
Rev.2.10 Nov. 07, 2003 page 40 of 84
5. Electrical Characteristics (M16C/62P)
M16C/62 Group (M16C/62P, M16C/62PT)
VCC1 = VCC2 = 5V
Switching Characteristics
(VCC1 = VCC2 = 5V, VSS = 0V, at Topr = – 20 to 85oC / – 40 to 85oC unless otherwise specified)
Table 5.27 Memory Expansion and Microprocessor Modes (for setting with no wait)
td(BCLK-AD)
th(BCLK-AD)
th(RD-AD)
th(WR-AD)
td(BCLK-CS)
th(BCLK-CS)
td(BCLK-ALE)
th(BCLK-ALE)
td(BCLK-RD)
th(BCLK-RD)
td(BCLK-WR)
th(BCLK-WR)
td(BCLK-DB)
th(BCLK-DB)
td(DB-WR)
th(WR-DB)
td(BCLK-HLDA)
Measuring condition
Parameter
Symbol
Address output delay time
Address output hold time (refers to BCLK)
Address output hold time (refers to RD)
Address output hold time (refers to WR)
Chip select output delay time
Chip select output hold time (refers to BCLK)
ALE signal output delay time
ALE signal output hold time
RD signal output delay time
RD signal output hold time
WR signal output delay time
WR signal output hold time
Data output delay time (refers to BCLK)
Data output hold time (refers to BCLK)(3)
Data output delay time (refers to WR)
Standard
Min.
Max.
25
4
0
(Note 2)
25
4
See Figure 5.1
Data output hold time (refers to WR)(3)
HLDA output delay time
15
–4
25
0
25
0
40
4
(Note 1)
(Note 2)
40
Unit
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
NOTES:
1. Calculated according to the BCLK frequency as follows:
0.5 X 109
f(BCLK)
– 40
[ns]
f(BCLK) is 12.5MHz or less.
2. Calculated according to the BCLK frequency as follows:
0.5 X 109
– 10
f(BCLK)
[ns]
3. This standard value shows the timing when the output is off,
and does not show hold time of data bus.
Hold time of data bus varies with capacitor volume and pull-up
(pull-down) resistance value.
Hold time of data bus is expressed in
t = –CR X ln (1 – VOL / VCC2)
by a circuit of the right figure.
For example, when VOL = 0.2VCC2, C = 30pF, R = 1kΩ, hold time
of output “L” level is
t = – 30pF X 1kΩ X ln (1 – 0.2VCC2 / VCC2)
= 6.7ns.
P0
P1
P2
P3
30pF
P4
P5
P6
P7
P8
P9
P10
P11
P12
P13
P14
Figure 5.1 Ports P0 to P14 Measurement Circuit
Rev.2.10 Nov. 07, 2003 page 41
of 84
R
DBi
C
5. Electrical Characteristics (M16C/62P)
M16C/62 Group (M16C/62P, M16C/62PT)
VCC1 = VCC2 = 5V
Switching Characteristics
(VCC1 = VCC2 = 5V, VSS = 0V, at Topr = – 20 to 85oC / – 40 to 85oC unless otherwise specified)
Table 5.28 Memory Expansion and Microprocessor Modes
(for 1- to 3-wait setting and external area access)
td(BCLK-AD)
th(BCLK-AD)
th(RD-AD)
th(WR-AD)
td(BCLK-CS)
th(BCLK-CS)
td(BCLK-ALE)
th(BCLK-ALE)
td(BCLK-RD)
th(BCLK-RD)
td(BCLK-WR)
th(BCLK-WR)
td(BCLK-DB)
th(BCLK-DB)
td(DB-WR)
th(WR-DB)
td(BCLK-HLDA)
Measuring condition
Parameter
Symbol
Address output delay time
Address output hold time (refers to BCLK)
Address output hold time (refers to RD)
Address output hold time (refers to WR)
Chip select output delay time
Chip select output hold time (refers to BCLK)
ALE signal output delay time
ALE signal output hold time
RD signal output delay time
RD signal output hold time
WR signal output delay time
WR signal output hold time
Data output delay time (refers to BCLK)
Data output hold time (refers to BCLK)(3)
Data output delay time (refers to WR)
Standard
Min.
Max.
25
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
4
0
(Note 2)
25
4
15
See Figure 5.1
Data output hold time (refers to WR)(3)
HLDA output delay time
Unit
–4
25
0
25
0
40
4
(Note 1)
(Note 2)
40
NOTES:
1. Calculated according to the BCLK frequency as follows:
(n–0.5) X 109
– 40
f(BCLK)
[ns]
n is “1” for 1-wait setting, “2” for 2-wait
setting and “3” for 3-wait setting.
When n=1, f(BCLK) is 12.5MHz or less.
2. Calculated according to the BCLK frequency as follows:
0.5 X 109
– 10
f(BCLK)
[ns]
3. This standard value shows the timing when the output is off,
and does not show hold time of data bus.
Hold time of data bus varies with capacitor volume and pull-up
(pull-down) resistance value.
Hold time of data bus is expressed in
t = –CR X ln (1 – VOL / VCC2)
by a circuit of the right figure.
For example, when VOL = 0.2VCC2, C = 30pF, R = 1kΩ, hold time
of output “L” level is
t = – 30pF X 1kΩ X ln (1 – 0.2VCC2 / VCC2)
= 6.7ns.
Rev.2.10 Nov. 07, 2003 page 42 of 84
R
DBi
C
5. Electrical Characteristics (M16C/62P)
M16C/62 Group (M16C/62P, M16C/62PT)
VCC1 = VCC2 = 5V
Switching Characteristics
(VCC1 = VCC2 = 5V, VSS = 0V, at Topr = – 20 to 85oC / – 40 to 85oC unless otherwise specified)
Table 5.29 Memory Expansion and Microprocessor Modes
(for 2- to
p 3-waitysetting, external area access and multiplex bus selection)
th(BCLK-AD)
th(RD-AD)
Address output hold time (refers to BCLK)
Address output hold time (refers to RD)
4
(Note 1)
ns
ns
th(WR-AD)
Address output hold time (refers to WR)
(Note 1)
ns
td(BCLK-CS)
th(BCLK-CS)
th(RD-CS)
th(WR-CS)
td(BCLK-RD)
th(BCLK-RD)
Chip select output delay time
Chip select output hold time (refers to BCLK)
Chip select output hold time (refers to RD)
Chip select output hold time (refers to WR)
RD signal output delay time
RD signal output hold time
td(BCLK-WR)
th(BCLK-WR)
td(BCLK-DB)
WR signal output delay time
WR signal output hold time
Data output delay time (refers to BCLK)
th(BCLK-DB)
td(DB-WR)
Data output hold time (refers to BCLK)
Data output delay time (refers to WR)
25
4
(Note 1)
(Note 1)
25
0
25
0
40
See Figure 5.1
4
(Note 2)
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
th(WR-DB)
Data output hold time (refers to WR)
td(BCLK-HLDA) HLDA output delay time
td(BCLK-ALE) ALE signal output delay time (refers to BCLK)
th(BCLK-ALE) ALE signal output hold time (refers to BCLK)
td(AD-ALE)
ALE signal output delay time (refers to Address)
(Note 1)
–4
(Note 3)
ns
ns
ns
th(ALE-AD)
td(AD-RD)
ALE signal output hold time (refers to Adderss)
RD signal output delay from the end of Adress
(Note 4)
0
ns
ns
td(AD-WR)
tdZ(RD-AD)
WR signal output delay from the end of Adress
Address output floating start time
0
40
15
8
NOTES:
1. Calculated according to the BCLK frequency as follows:
0.5 X 109
f(BCLK)
–10
[ns]
2. Calculated according to the BCLK frequency as follows:
(n–0.5) X 109
–40
f(BCLK)
[ns]
n is “2” for 2-wait setting, “3” for 3-wait setting.
3. Calculated according to the BCLK frequency as follows:
0.5 X 109
f(BCLK)
–25
[ns]
4. Calculated according to the BCLK frequency as follows:
0.5 X 109
f(BCLK)
–15
Rev.2.10 Nov. 07, 2003 page 43
of 84
[ns]
ns
ns
ns
ns
5. Electrical Characteristics (M16C/62P)
M16C/62 Group (M16C/62P, M16C/62PT)
VCC1 = VCC2 = 5V
XIN input
tf
tw(H)
tr
tw(L)
tc
tc(TA)
tw(TAH)
TAiIN input
tw(TAL)
tc(UP)
tw(UPH)
TAiOUT input
tw(UPL)
TAiOUT input
(Up/down input)
During event counter mode
TAiIN input
th(TIN–UP)
(When count on falling
edge is selected)
tsu(UP–TIN)
TAiIN input
(When count on rising
edge is selected)
Two-phase pulse input in
event counter mode
tc(TA)
TAiIN input
tsu(TAIN-TAOUT)
tsu(TAIN-TAOUT)
tsu(TAOUT-TAIN)
TAiOUT input
tsu(TAOUT-TAIN)
tc(TB)
tw(TBH)
TBiIN input
tw(TBL)
tc(AD)
tw(ADL)
ADTRG input
Figure 5.2 Timing Diagram (1)
Rev.2.10 Nov. 07, 2003 page 44
of 84
5. Electrical Characteristics (M16C/62P)
M16C/62 Group (M16C/62P, M16C/62PT)
VCC1 = VCC2 = 5V
tc(CK)
tw(CKH)
CLKi
tw(CKL)
th(C–Q)
TXDi
td(C–Q)
tsu(D–C)
RXDi
tw(INL)
INTi input
tw(INH)
Figure 5.3 Timing Diagram (2)
Rev.2.10 Nov. 07, 2003 page 45
of 84
th(C–D)
5. Electrical Characteristics (M16C/62P)
M16C/62 Group (M16C/62P, M16C/62PT)
Memory Expansion Mode, Microprocessor Mode
VCC1 = VCC2 = 5V
(Effective for setting with wait)
BCLK
RD
(Separate bus)
WR, WRL, WRH
(Separate bus)
RD
(Multiplexed bus)
WR, WRL, WRH
(Multiplexed bus)
RDY input
tsu(RDY–BCLK)
th(BCLK–RDY)
(Common to setting with wait and setting without wait)
BCLK
tsu(HOLD–BCLK)
th(BCLK–HOLD)
HOLD input
HLDA output
td(BCLK–HLDA)
td(BCLK–HLDA)
P0, P1, P2,
P3, P4,
P5_0 to P5_2 (1)
Hi–Z
NOTES:
1. These pins are set to high-impedance regardless of the input level of the
BYTE pin, PM06 bit in PM0 register and PM11 bit in PM1 register.
Measuring conditions :
• VCC1=VCC2=5V
• Input timing voltage : Determined with VIL=1.0V, VIH=4.0V
• Output timing voltage : Determined with VOL=2.5V, VOH=2.5V
Figure 5.4 Timing Diagram (3)
Rev.2.10 Nov. 07, 2003 page 46
of 84
5. Electrical Characteristics (M16C/62P)
M16C/62 Group (M16C/62P, M16C/62PT)
VCC1 = VCC2 = 5V
Memory Expansion Mode, Microprocessor Mode
(For setting with no wait)
Read timing
BCLK
td(BCLK-CS)
th(BCLK-CS)
25ns.max
4ns.min
CSi
tcyc
td(BCLK-AD)
th(BCLK-AD)
25ns.max
4ns.min
ADi
BHE
td(BCLK-ALE)
th(BCLK-ALE)
-4ns.min
25ns.max
th(RD-AD)
0ns.min
ALE
td(BCLK-RD)
25ns.max
th(BCLK-RD)
0ns.min
RD
tac1(RD-DB)
(0.5 X tcyc-45)ns.max
Hi-Z
DBi
tsu(DB-RD)
40ns.min
th(RD-DB)
0ns.min
Write timing
BCLK
td(BCLK-CS)
th(BCLK-CS)
25ns.max
4ns.min
CSi
tcyc
td(BCLK-AD)
th(BCLK-AD)
25ns.max
4ns.min
ADi
BHE
td(BCLK-ALE)
th(BCLK-ALE)
25ns.max
th(WR-AD)
-4ns.min
(0.5 X tcyc-10)ns.min
ALE
td(BCLK-WR)
25ns.max
th(BCLK-WR)
0ns.min
WR,WRL,
WRH
td(BCLK-DB)
th(BCLK-DB)
4ns.min
40ns.max
Hi-Z
DBi
td(DB-WR)
tcyc=
f(BCLK)
Measuring conditions
• VCC1=VCC2=5V
• Input timing voltage
: VIL=0.8V, VIH=2.0V
• Output timing voltage : VOL=0.4V, VOH=2.4V
Figure 5.5 Timing Diagram (4)
Rev.2.10 Nov. 07, 2003 page 47
th(WR-DB)
(0.5 X tcyc-40)ns.min (0.5 X tcyc-10)ns.min
1
of 84
5. Electrical Characteristics (M16C/62P)
M16C/62 Group (M16C/62P, M16C/62PT)
VCC1 = VCC2 = 5V
Memory Expansion Mode, Microprocessor Mode
(for 1-wait setting and external area access)
Read timing
BCLK
td(BCLK-CS)
th(BCLK-CS)
25ns.max
4ns.min
CSi
tcyc
td(BCLK-AD)
th(BCLK-AD)
25ns.max
4ns.min
ADi
BHE
td(BCLK-ALE)
th(RD-AD)
th(BCLK-ALE)
0ns.min
-4ns.min
25ns.max
ALE
td(BCLK-RD)
th(BCLK-RD)
0ns.min
25ns.max
RD
tac2(RD-DB)
(1.5 X tcyc-45)ns.max
Hi-Z
DBi
th(RD-DB)
tsu(DB-RD)
0ns.min
40ns.min
Write timing
BCLK
td(BCLK-CS)
th(BCLK-CS)
25ns.max
4ns.min
CSi
tcyc
td(BCLK-AD)
th(BCLK-AD)
25ns.max
4ns.min
ADi
BHE
td(BCLK-ALE)
th(BCLK-ALE)
th(WR-AD)
-4ns.min
25ns.max
(0.5 X tcyc-10)ns.min
ALE
td(BCLK-WR)
25ns.max
th(BCLK-WR)
0ns.min
WR,WRL,
WRH
td(BCLK-DB)
th(BCLK-DB)
4ns.min
40ns.max
Hi-Z
DBi
td(DB-WR)
tcyc=
(0.5 X tcyc-40)ns.min
1
f(BCLK)
Measuring conditions
• VCC1=VCC2=5V
• Input timing voltage
: VIL=0.8V, VIH=2.0V
• Output timing voltage : VOL=0.4V, VOH=2.4V
Figure 5.6 Timing Diagram (5)
Rev.2.10 Nov. 07, 2003 page 48
of 84
th(WR-DB)
(0.5 X tcyc-10)ns.min
5. Electrical Characteristics (M16C/62P)
M16C/62 Group (M16C/62P, M16C/62PT)
VCC1 = VCC2 = 5V
Memory Expansion Mode, Microprocessor Mode
(for 2-wait setting and external area access)
Read timing
tcyc
BCLK
th(BCLK-CS)
4ns.min
td(BCLK-CS)
25ns.max
CSi
th(BCLK-AD)
4ns.min
td(BCLK-AD)
25ns.max
ADi
BHE
td(BCLK-ALE)
25ns.max
th(RD-AD)
th(BCLK-ALE)
-4ns.min
0ns.min
ALE
th(BCLK-RD)
0ns.min
td(BCLK-RD)
25ns.max
RD
tac2(RD-DB)
(2.5 X tcyc-45)ns.max
DBi
Hi-Z
tSU(DB-RD)
40ns.min
th(RD-DB)
0ns.min
Write timing
tcyc
BCLK
td(BCLK-CS)
25ns.max
th(BCLK-CS)
td(BCLK-AD)
25ns.max
th(BCLK-AD)
4ns.min
CSi
4ns.min
ADi
BHE
td(BCLK-ALE)
th(WR-AD)
(0.5 X tcyc-10)ns.min
th(BCLK-ALE)
25ns.max
-4ns.min
ALE
td(BCLK-WR)
25ns.max
th(BCLK-WR)
0ns.min
WR, WRL
WRH
td(BCLK-DB)
40ns.max
DBi
Hi-Z
td(DB-WR)
(1.5 X tcyc-40)ns.min
tcyc=
th(BCLK-DB)
4ns.min
1
f(BCLK)
Measuring conditions
• VCC1=VCC2=5V
• Input timing voltage
: VIL=0.8V, VIH=2.0V
• Output timing voltage : VOL=0.4V, VOH=2.4V
Figure 5.7 Timing Diagram (6)
Rev.2.10 Nov. 07, 2003 page 49
of 84
th(WR-DB)
(0.5 X tcyc-10)ns.min
5. Electrical Characteristics (M16C/62P)
M16C/62 Group (M16C/62P, M16C/62PT)
VCC1 = VCC2 = 5V
Memory Expansion Mode, Microprocessor Mode
(for 3-wait setting and external area access)
Read timing
tcyc
BCLK
th(BCLK-CS)
4ns.min
td(BCLK-CS)
25ns.max
CSi
th(BCLK-AD)
td(BCLK-AD)
25ns.max
4ns.min
ADi
BHE
td(BCLK-ALE)
th(RD-AD)
0ns.min
th(BCLK-ALE)
25ns.max
-4ns.min
ALE
th(BCLK-RD)
td(BCLK-RD)
25ns.max
0ns.min
RD
tac2(RD-DB)
(3.5 X tcyc-45)ns.max
DBi
Hi-Z
tsu(DB-RD)
th(RD-DB)
40ns.min
0ns.min
Write timing
tcyc
BCLK
td(BCLK-CS)
25ns.max
th(BCLK-CS)
4ns.min
td(BCLK-AD)
th(BCLK-AD)
4ns.min
CSi
25ns.max
ADi
BHE
td(BCLK-ALE)
25ns.max
th(WR-AD)
(0.5 X tcyc-10)ns.min
th(BCLK-ALE)
-4ns.min
ALE
td(BCLK-WR)
25ns.max
th(BCLK-WR)
0ns.min
WR, WRL
WRH
td(BCLK-DB)
th(BCLK-DB)
40ns.max
4ns.min
Hi-Z
DBi
td(DB-WR)
(2.5 X tcyc-40)ns.min
tcyc=
1
f(BCLK)
Measuring conditions
• VCC1=VCC2=5V
• Input timing voltage
: VIL=0.8V, VIH=2.0V
• Output timing voltage : VOL=0.4V, VOH=2.4V
Figure 5.8 Timing Diagram (7)
Rev.2.10 Nov. 07, 2003 page 50
of 84
th(WR-DB)
(0.5 X tcyc-10)ns.min
5. Electrical Characteristics (M16C/62P)
M16C/62 Group (M16C/62P, M16C/62PT)
VCC1 = VCC2 = 5V
Memory Expansion Mode, Microprocessor Mode
(For 1- or 2-wait setting, external area access and multiplex bus selection)
Read timing
BCLK
td(BCLK-CS)
th(RD-CS)
(0.5 X tcyc-10)ns.min
tcyc
25ns.max
th(BCLK-CS)
4ns.min
CSi
td(AD-ALE)
(0.5 X tcyc-25)ns.min
th(ALE-AD)
(0.5 X tcyc-15)ns.min
ADi
/DBi
Address
8ns.max
Address
Data input
tdZ(RD-AD)
tac3(RD-DB)
tsu(DB-RD)
(1.5 X tcyc-45)ns.max
40ns.min
th(RD-DB)
0ns.min
td(AD-RD)
0ns.min
td(BCLK-AD)
th(BCLK-AD)
4ns.min
25ns.max
ADi
BHE
td(BCLK-ALE)
th(BCLK-ALE)
25ns.max
th(RD-AD)
(0.5 X tcyc-10)ns.min
-4ns.min
ALE
td(BCLK-RD)
th(BCLK-RD)
0ns.min
25ns.max
RD
Write timing
BCLK
td(BCLK-CS)
tcyc
th(BCLK-CS)
th(WR-CS)
25ns.max
4ns.min
(0.5 X tcyc-10)ns.min
CSi
th(BCLK-DB)
td(BCLK-DB)
4ns.min
40ns.max
ADi
/DBi
Address
Data output
td(DB-WR)
td(AD-ALE)
(1.5 X tcyc-40)ns.min
(0.5 X tcyc-25)ns.min
Address
th(WR-DB)
(0.5 X tcyc-10)ns.min
td(BCLK-AD)
th(BCLK-AD)
25ns.max
4ns.min
ADi
BHE
td(BCLK-ALE)
th(BCLK-ALE)
td(AD-WR)
-4ns.min
0ns.min
25ns.max
th(WR-AD)
(0.5 X tcyc-10)ns.min
ALE
td(BCLK-WR)
25ns.max
WR,WRL,
WRH
tcyc=
1
f(BCLK)
Measuring conditions
• VCC1=VCC2=5V
• Input timing voltage : VIL=0.8V, VIH=2.0V
• Output timing voltage : VOL=0.4V, VOH=2.4V
Figure 5.9 Timing Diagram (8)
Rev.2.10 Nov. 07, 2003 page 51
of 84
th(BCLK-WR)
0ns.min
5. Electrical Characteristics (M16C/62P)
M16C/62 Group (M16C/62P, M16C/62PT)
VCC1 = VCC2 = 5V
Memory Expansion Mode, Microprocessor Mode
(For 3-wait setting, external area access and multiplex bus selection)
Read timing
tcyc
BCLK
th(RD-CS)
(0.5 X tcyc-10)ns.min
td(BCLK-CS)
th(BCLK-CS)
4ns.min
25ns.max
CSi
td(AD-ALE)
(0.5 X tcyc-25)ns.min
th(ALE-AD)
(0.5 X tcyc-15)ns.min
ADi
/DBi
Address
td(BCLK-AD)
td(AD-RD)
25ns.max
ADi
BHE
Data input
tdZ(RD-AD)
8ns.max
th(RD-DB)
tac3(RD-DB)
(2.5 X tcyc-45)ns.max
0ns.min
tsu(DB-RD)
0ns.min
th(BCLK-AD)
40ns.min
4ns.min
(no multiplex)
td(BCLK-ALE)
25ns.max
th(RD-AD)
th(BCLK-ALE)
(0.5 X tcyc-10)ns.min
-4ns.min
ALE
th(BCLK-RD)
td(BCLK-RD)
0ns.min
25ns.max
RD
Write timing
tcyc
BCLK
AAAA
th(WR-CS)
(0.5 X tcyc-10)ns.min
td(BCLK-CS)
25ns.max
CSi
th(BCLK-DB)
td(BCLK-DB)
40ns.max
ADi
/DBi
Address
th(BCLK-CS)
4ns.min
4ns.min
Data output
td(AD-ALE)
td(DB-WR)
(0.5 X tcyc-25)ns.min
(2.5 X tcyc-40)ns.min
th(WR-DB)
(0.5 X tcyc-10)ns.min
td(BCLK-AD)
th(BCLK-AD)
25ns.max
4ns.min
ADi
BHE
(no multiplex)
td(BCLK-ALE)
25ns.max
th(BCLK-ALE)
-4ns.min
th(WR-AD)
td(AD-WR)
td(BCLK-WR)
25ns.max
WR, WRL
WRH
tcyc=
(0.5 X tcyc-10)ns.min
0ns.min
ALE
1
f(BCLK)
Measuring conditions
• VCC1=VCC2=5V
• Input timing voltage
: VIL=0.8V, VIH=2.0V
• Output timing voltage : VOL=0.4V, VOH=2.4V
Figure 5.10 Timing Diagram (9)
Rev.2.10 Nov. 07, 2003 page 52
of 84
th(BCLK-WR)
0ns.min
M16C/62 Group (M16C/62P, M16C/62PT)
5. Electrical Characteristics (M16C/62P)
VCC1 = VCC2 = 3V
Table 5.30 Electrical Characteristics (1)
Symbol
VOH
Parameter
HIGH output P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7,
voltage
P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P14_0, P14_1
P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7,
P4_0 to P4_7, P5_0 to P5_7, P12_0 to P12_7, P13_0 to P13_7
VOH
HIGH output voltage
XOUT
HIGH output voltage
XCOUT
VOL
VOL
VT+-VT-
Hysteresis
VT+-VT-
Hysteresis
HIGH input
current
II H
LOW input
current
II L
RPULLUP
Pull-up
resistance
IOH=-1mA
VCC1-0.5
VCC1
IOH=-1mA (2)
VCC2-0.5
VCC2
IOH=-0.1mA
VCC1-0.5
VCC1
LOWPOWER
IOH=-50µA
VCC1-0.5
VCC1
HIGHPOWER
With no load applied
With no load applied
2 .5
1.6
0 .5
IOL=1mA (2)
0 .5
IOL=0.1mA
0 .5
HIGHPOWER
XCOUT
V
HIGHPOWER
IOL=50µA
With no load applied
0
LOWPOWER
With no load applied
0
LOWPOWER
HOLD, RDY, TA0IN to TA4IN,
TB0IN to TB5IN, INT0 to INT5, NMI,
ADTRG, CTS0 to CTS2, SCL0 to SCL2,
SDA0 to SDA2, CLK0 to CLK4, TA0OUT to TA4OUT,
KI0 to KI3, RXD0 to RXD2, SIN3, SIN4
0 .2
VI=3V
P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7,
P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7,
P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7,
P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1,
XIN, RESET, CNVSS, BYTE
VI=0V
P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7,
P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_2 to P7_7,
P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7,
P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1
VI=0V
Feedback resistance
XIN
Feedback resistance
XCIN
VRAM
RAM retention voltage
(0.7)
0 .2
P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7,
P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7,
P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7,
P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1,
XIN, RESET, CNVSS, BYTE
RfXCIN
0 .5
0 .2
RESET
XIN
RfXIN
50
100
3.0
25
At stop mode
2 .0
NOTES:
1. Referenced to VCC1=VCC2=2.7 to 3.3V, VSS=0V at Topr = -20 to 85 °C / -40 to 85 °C, f(BCLK)=10MHz unless otherwise specified.
2. VCC1 for the port P6 to P11 and P14, and VCC2 for the port P0 to P5 and P12 to P13.
3. There is no external connections for port P1_0 to P1_7, P4_4 to P4_7, P7_2 to P7_5 and P9_1 in 80-pin version.
Rev.2.10 Nov. 07, 2003 page 53
of 84
V
V
IOL=1mA
XOUT
Unit
V
P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7,
P4_0 to P4_7, P5_0 to P5_7, P12_0 to P12_7, P13_0 to P13_7
LOW output voltage
VT+-VT-
Standard
Max.
Typ.
P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_4, P8_6, P8_7,
P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P14_0, P14_1
LOW output voltage
Hysteresis
Min.
HIGHPOWER
LOWPOWER
LOW output
voltage
Measuring condition
V
V
0 .8
V
1 .8
V
0 .8
V
4 .0
µA
-4 . 0
µA
500
kΩ
MΩ
MΩ
V
5. Electrical Characteristics (M16C/62P)
M16C/62 Group (M16C/62P, M16C/62PT)
VCC1 = VCC2 = 3V
Table 5.31 Electrical Characteristics (2) (1)
Symbol
Measuring condition
Parameter
In single-chip mode, the output
pins are open and other pins are
VSS
Mask ROM
Flash memory
Min.
Standard
Typ.
f(BCLK)=10MHz,
No division
8
No division, Ring oscillation
1
f(BCLK)=10MHz,
No division
8
No division, Ring oscillation
ICC
Max.
11
Unit
mA
mA
13
mA
1 .8
mA
Flash memory
Program
f(BCLK)=10MHz,
Vcc1=3.0V
12
mA
Flash memory
Erase
f(BCLK)=10MHz,
Vcc1=3.0V
22
mA
Mask ROM
f(XCIN)=32kHz,
Low power dissipation mode,
ROM (3)
25
µA
25
µA
420
µA
Ring oscillation,
Wait mode
45
µA
f(BCLK)=32kHz,
Wait mode (2),
6.0
µA
1.8
µA
Power supply current
(VCC1=2.7 to 3.6V)
Flash memory
Mask ROM
Flash memory
f(BCLK)=32kHz,
Low power dissipation mode,
RAM (3)
f(BCLK)=32kHz,
Low power dissipation mode,
Flash memory (3)
Oscillation capacity High
f(BCLK)=32kHz,
Wait mode (2),
Oscillation capacity Low
Stop mode,
Topr=25°C
0 .7
3.0
µA
0.6
4
µA
Reset level detection dissipation current (4)
0.4
2
µA
RAM retention limit detection dissipation current (4)
0 .9
4
µA
Idet4
Voltage down detection dissipation current
Idet3
Idet2
(4)
NOTES:
1. Referenced to VCC1=VCC2=2.7 to 3.3V, VSS=0V at Topr = -20 to 85 °C / -40 to 85 °C, f(BCLK)=10MHz unless otherwise specified.
2. With one timer operated using fC32.
3. This indicates the memory in which the program to be executed exists.
4. Idet is dissipation current when the following bit is set to “1” (detection circuit enabled).
Idet4: VC27 bit of VCR2 register
Idet3: VC26 bit of VCR2 register
Idet2: VC25 bit of VCR2 register
Rev.2.10 Nov. 07, 2003 page 54
of 84
5. Electrical Characteristics (M16C/62P)
M16C/62 Group (M16C/62P, M16C/62PT)
VCC1 = VCC2 = 3V
Timing Requirements
(VCC1 = VCC2 = 3V, VSS = 0V, at Topr = – 20 to 85oC / – 40 to 85oC unless otherwise specified)
Table 5.32 External Clock Input (XIN input)
Symbol
tc
tw(H)
tw(L)
tr
tf
Parameter
External clock input cycle time
External clock input HIGH pulse width
External clock input LOW pulse width
External clock rise time
External clock fall time
Standard
Min.
Max.
Unit
ns
100
40
40
18
18
ns
ns
ns
ns
Table 5.33 Memory Expansion and Microprocessor Modes
Symbol
Parameter
tac1(RD-DB)
Data input access time (for setting with no wait)
tac2(RD-DB)
Data input access time (for setting with wait)
Data input access time (when accessing multiplex bus area)
Data input setup time
RDY input setup time
HOLD input setup time
Data input hold time
RDY input hold time
HOLD input hold time
tac3(RD-DB)
tsu(DB-RD)
tsu(RDY-BCLK )
tsu(HOLD-BCLK )
th(RD-DB)
th(BCLK -RDY)
th(BCLK-HOLD )
Standard
Min.
Max.
(Note 1)
(Note 2)
(Note 3)
50
Unit
ns
ns
ns
50
ns
ns
ns
0
ns
0
ns
0
ns
40
NOTES:
1. Calculated according to the BCLK frequency as follows:
0.5 X 109
f(BCLK)
– 60
[ns]
2. Calculated according to the BCLK frequency as follows:
(n–0.5) X 109
– 60
f(BCLK)
[ns]
n is “2” for 1-wait setting, “3” for 2-wait setting and “4” for 3-wait
setting.
3. Calculated according to the BCLK frequency as follows:
(n–0.5) X 109
– 60
f(BCLK)
Rev.2.10 Nov. 07, 2003 page 55
[ns]
of 84
n is “2” for 2-wait setting, “3” for 3-wait setting.
5. Electrical Characteristics (M16C/62P)
M16C/62 Group (M16C/62P, M16C/62PT)
VCC1 = VCC2 = 3V
Timing Requirements
(VCC1 = VCC2 = 3V, VSS = 0V, at Topr = – 20 to 85oC / – 40 to 85oC unless otherwise specified)
Table 5.34 Timer A Input (Counter Input in Event Counter Mode)
Symbol
Parameter
tc(TA)
TAiIN input cycle time
tw(TAH)
TAiIN input HIGH pulse width
tw(TAL)
TAiIN input LOW pulse width
Standard
Max.
Min.
150
60
Unit
ns
ns
ns
60
Table 5.35 Timer A Input (Gating Input in Timer Mode)
Symbol
Parameter
tc(TA)
TAiIN input cycle time
tw(TAH)
tw(TAL)
TAiIN input HIGH pulse width
TAiIN input LOW pulse width
Standard
Min.
Max.
600
300
300
Unit
ns
ns
ns
Table 5.36 Timer A Input (External Trigger Input in One-shot Timer Mode)
Symbol
Parameter
Standard
Max.
Min.
Unit
tc(TA)
TAiIN input cycle time
300
ns
tw(TAH)
tw(TAL)
TAiIN input HIGH pulse width
TAiIN input LOW pulse width
150
150
ns
ns
Table 5.37 Timer A Input (External Trigger Input in Pulse Width Modulation Mode)
Symbol
tw(TAH)
tw(TAL)
Parameter
TAiIN input HIGH pulse width
TAiIN input LOW pulse width
Standard
Min.
Max.
150
150
Unit
ns
ns
Table 5.38 Timer A Input (Counter Increment/decrement Input in Event Counter Mode)
tc(UP)
TAiOUT input cycle time
Standard
Min.
Max.
3000
tw(UPH)
tw(UPL)
tsu(UP-TIN)
th(TIN-UP)
TAiOUT input HIGH pulse width
1500
TAiOUT input LOW pulse width
TAiOUT input setup time
TAiOUT input hold time
1500
600
Symbol
Parameter
600
Unit
ns
ns
ns
ns
ns
Table 5.39 Timer A Input (Two-phase Pulse Input in Event Counter Mode)
Symbol
Parameter
tc(TA)
TAiIN input cycle time
tsu(TAIN-TAOUT)
TAiOUT input setup time
tsu(TAOUT-TAIN)
TAiIN input setup time
Rev.2.10 Nov. 07, 2003 page 56
of 84
Standard
Min.
Max.
2
500
500
Unit
µs
ns
ns
5. Electrical Characteristics (M16C/62P)
M16C/62 Group (M16C/62P, M16C/62PT)
VCC1 = VCC2 = 3V
Timing Requirements
(VCC1 = VCC2 = 3V, VSS = 0V, at Topr = – 20 to 85oC / – 40 to 85oC unless otherwise specified)
Table 5.40 Timer B Input (Counter Input in Event Counter Mode)
Symbol
Parameter
Standard
Min.
Max.
Unit
tc(TB)
TBiIN input cycle time (counted on one edge)
150
ns
tw(TBH)
TBiIN input HIGH pulse width (counted on one edge)
60
ns
tw(TBL)
TBiIN input LOW pulse width (counted on one edge)
TBiIN input cycle time (counted on both edges)
60
300
ns
tc(TB)
tw(TBH)
TBiIN input HIGH pulse width (counted on both edges)
120
ns
tw(TBL)
TBiIN input LOW pulse width (counted on both edges)
120
ns
ns
Table 5.41 Timer B Input (Pulse Period Measurement Mode)
Symbol
Parameter
Standard
Min.
Max.
Unit
tc(TB)
TBiIN input cycle time
600
ns
tw(TBH)
tw(TBL)
TBiIN input HIGH pulse width
TBiIN input LOW pulse width
300
300
ns
ns
Table 5.42 Timer B Input (Pulse Width Measurement Mode)
Symbol
Parameter
Standard
Min.
Max.
Unit
tc(TB)
TBiIN input cycle time
600
tw(TBH)
TBiIN input HIGH pulse width
300
ns
300
ns
tw(TBL)
TBiIN input LOW pulse width
ns
Table 5.43 A-D Trigger Input
Symbol
tc(AD)
tw(ADL)
Parameter
ADTRG input cycle time (trigger able minimum)
ADTRG input LOW pulse width
Standard
Min.
1500
200
Max.
Unit
ns
ns
Table 5.44 Serial I/O
Symbol
Parameter
Standard
Min.
Max.
Unit
tc(CK)
CLKi input cycle time
300
ns
tw(CKH)
CLKi input HIGH pulse width
150
ns
tw(CKL)
CLKi input LOW pulse width
150
td(C-Q)
TXDi output delay time
th(C-Q)
TXDi hold time
tsu(D-C)
RXDi input setup time
RXDi input hold time
th(C-D)
ns
160
ns
0
50
ns
90
ns
ns
_______
Table 5.45 External Interrupt INTi Input
Symbol
Parameter
tw(INH)
INTi input HIGH pulse width
tw(INL)
INTi input LOW pulse width
Rev.2.10 Nov. 07, 2003 page 57
of 84
Standard
Min.
380
380
Max.
Unit
ns
ns
5. Electrical Characteristics (M16C/62P)
M16C/62 Group (M16C/62P, M16C/62PT)
VCC1 = VCC2 = 3V
Switching Characteristics
(VCC1 = VCC2 = 3V, VSS = 0V, at Topr = – 20 to 85oC / – 40 to 85oC unless otherwise specified)
Table 5.46 Memory Expansion, Microprocessor Modes (for setting with no wait)
Symbol
td(BCLK-AD)
th(BCLK-AD)
th(RD-AD)
th(WR-AD)
td(BCLK-CS)
th(BCLK-CS)
td(BCLK-ALE)
th(BCLK-ALE)
td(BCLK-RD)
th(BCLK-RD)
td(BCLK-WR)
th(BCLK-WR)
td(BCLK-DB)
th(BCLK-DB)
td(DB-WR)
th(WR-DB)
td(BCLK-HLDA)
Measuring condition
Parameter
Address output delay time
Address output hold time (refers to BCLK)
Address output hold time (refers to RD)
Address output hold time (refers to WR)
Chip select output delay time
Chip select output hold time (refers to BCLK)
ALE signal output delay time
ALE signal output hold time
RD signal output delay time
RD signal output hold time
WR signal output delay time
WR signal output hold time
Data output delay time (refers to BCLK)
Data output hold time (refers to BCLK)(3)
Data output delay time (refers to WR)
Standard
Min.
Max.
30
4
0
(Note 2)
30
4
25
See Figure 5.11
Data output hold time (refers to WR)(3)
HLDA output delay time
–4
30
0
30
0
40
4
(Note 1)
(Note 2)
40
Unit
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
NOTES:
1. Calculated according to the BCLK frequency as follows:
0.5 X 109
f(BCLK)
– 40
[ns]
f(BCLK) is 12.5MHz or less.
2. Calculated according to the BCLK frequency as follows:
0.5 X 109
f(BCLK)
– 10
[ns]
3. This standard value shows the timing when the output is off,
and does not show hold time of data bus.
Hold time of data bus varies with capacitor volume and pull-up
(pull-down) resistance value.
Hold time of data bus is expressed in
t = –CR X ln (1 – VOL / VCC2)
by a circuit of the right figure.
For example, when VOL = 0.2VCC2, C = 30pF, R = 1kΩ, hold time
of output “L” level is
t = – 30pF X 1kΩ X ln (1 – 0.2VCC2 / VCC2)
= 6.7ns.
P0
P1
P2
P3
30pF
P4
P5
P6
P7
P8
P9
P10
P11
P12
P13
P14
Figure 5.11 Ports P0 to P14 Measurement Circuit
Rev.2.10 Nov. 07, 2003 page 58
of 84
R
DBi
C
5. Electrical Characteristics (M16C/62P)
M16C/62 Group (M16C/62P, M16C/62PT)
VCC1 = VCC2 = 3V
Switching Characteristics
(VCC1 = VCC2 = 3V, VSS = 0V, at Topr = – 20 to 85oC / – 40 to 85oC unless otherwise specified)
Table 5.47 Memory expansion and Microprocessor Modes
(for 1- to 3-wait setting and external area access)
Symbol
td(BCLK-AD)
th(BCLK-AD)
th(RD-AD)
th(WR-AD)
td(BCLK-CS)
th(BCLK-CS)
td(BCLK-ALE)
th(BCLK-ALE)
td(BCLK-RD)
th(BCLK-RD)
td(BCLK-WR)
th(BCLK-WR)
td(BCLK-DB)
th(BCLK-DB)
td(DB-WR)
th(WR-DB)
td(BCLK-HLDA)
Measuring condition
Parameter
Address output delay time
Address output hold time (refers to BCLK)
Address output hold time (refers to RD)
Address output hold time (refers to WR)
Chip select output delay time
Chip select output hold time (refers to BCLK)
ALE signal output delay time
ALE signal output hold time
RD signal output delay time
RD signal output hold time
WR signal output delay time
WR signal output hold time
Data output delay time (refers to BCLK)
Data output hold time (refers to BCLK)(3)
Data output delay time (refers to WR)
Standard
Min.
Max.
30
4
0
(Note 2)
30
4
25
See Figure 5.11
Data output hold time (refers to WR)(3)
HLDA output delay time
–4
30
0
30
0
40
4
(Note 1)
(Note 2)
40
Unit
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
NOTES:
1. Calculated according to the BCLK frequency as follows:
(n–0.5) X 109
– 40
f(BCLK)
[ns]
n is “1” for 1-wait setting, “2” for 2-wait setting
and “3” for 3-wait setting.
When n=1, f(BCLK) is 12.5MHz or less.
2. Calculated according to the BCLK frequency as follows:
0.5 X 109
– 10
f(BCLK)
[ns]
3. This standard value shows the timing when the output is off,
and does not show hold time of data bus.
Hold time of data bus varies with capacitor volume and pull-up
(pull-down) resistance value.
Hold time of data bus is expressed in
t = –CR X ln (1 – VOL / VCC2)
by a circuit of the right figure.
For example, when VOL = 0.2VCC2, C = 30pF, R = 1kΩ, hold time
of output “L” level is
t = – 30pF X 1kΩ X ln (1 – 0.2VCC2 / VCC2)
= 6.7ns.
Rev.2.10 Nov. 07, 2003 page 59
of 84
R
DBi
C
5. Electrical Characteristics (M16C/62P)
M16C/62 Group (M16C/62P, M16C/62PT)
VCC1 = VCC2 = 3V
Switching Characteristics
(VCC1 = VCC2 = 3V, VSS = 0V, at Topr = – 20 to 85oC / – 40 to 85oC, unless otherwise specified)
Table 5.48 Memory expansion and Microprocessor Modes
(for 2- to 3-wait setting, external area access and multiplex bus selection)
Measuring condition
Parameter
Symbol
td(BCLK-AD)
th(BCLK-AD)
Address output delay time
Address output hold time (refers to BCLK)
th(RD-AD)
Address output hold time (refers to RD)
th(WR-AD)
td(BCLK-CS)
th(BCLK-CS)
th(RD-CS)
Address output hold time (refers to WR)
Chip select output delay time
Chip select output hold time (refers to BCLK)
Chip select output hold time (refers to RD)
th(WR-CS)
Chip select output hold time (refers to WR)
td(BCLK-RD)
th(BCLK-RD)
td(BCLK-WR)
th(BCLK-WR)
td(BCLK-DB)
th(BCLK-DB)
td(DB-WR)
RD signal output delay time
RD signal output hold time
WR signal output delay time
WR signal output hold time
Data output delay time (refers to BCLK)
Data output hold time (refers to BCLK)
Data output delay time (refers to WR)
50
4
50
4
(Note 1)
(Note 1)
See Figure 5.11
RD signal output delay from the end of Address
WR signal output delay from the end of Address
Address output floating start time
–10
40
0
40
0
50
4
(Note 2)
(Note 1)
40
25
–4
(Note 3)
(Note 4)
0
0
8
[ns]
2. Calculated according to the BCLK frequency as follows:
(n–0.5) X 10 9
f(BCLK)
–50
n is “2” for 2-wait setting, “3” for 3-wait setting.
[ns]
3. Calculated according to the BCLK frequency as follows:
0.5 X 10 9
f(BCLK)
–40
[ns]
4. Calculated according to the BCLK frequency as follows:
0.5 X 10 9
f(BCLK)
–15
Rev.2.10 Nov. 07, 2003 page 60
[ns]
of 84
ns
ns
ns
ns
ns
ns
ns
NOTES:
1. Calculated according to the BCLK frequency as follows:
0.5 X 10 9
f(BCLK)
Unit
ns
(Note 1)
(Note 1)
th(WR-DB)
Data output hold time (refers to WR)
td(BCLK-HLDA) HLDA output delay time
td(BCLK-ALE) ALE signal output delay time (refers to BCLK)
th(BCLK-ALE) ALE signal output hold time (refers to BCLK)
td(AD-ALE)
ALE signal output delay time (refers to Address)
th(ALE-AD)
ALE signal output hold time (refers to Adderss)
td(AD-RD)
td(AD-WR)
tdZ(RD-AD)
Standard
Min.
Max.
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
5. Electrical Characteristics (M16C/62P)
M16C/62 Group (M16C/62P, M16C/62PT)
VCC1 = VCC2 = 3V
XIN input
tf
tw(H)
tr
tw(L)
tc
tc(TA)
tw(TAH)
TAiIN input
tw(TAL)
tc(UP)
tw(UPH)
TAiOUT input
tw(UPL)
TAiOUT input
(Up/down input)
During event counter mode
TAiIN input
(When count on falling
edge is selected)
th(TIN–UP)
tsu(UP–TIN)
TAiIN input
(When count on rising
edge is selected)
Two-phase pulse input in
event counter mode
tc(TA)
TAiIN input
tsu(TAIN-TAOUT)
tsu(TAIN-TAOUT)
tsu(TAOUT-TAIN)
TAiOUT input
tsu(TAOUT-TAIN)
tc(TB)
tw(TBH)
TBiIN input
tw(TBL)
tc(AD)
tw(ADL)
ADTRG input
Figure 5.12 Timing Diagram (1)
Rev.2.10 Nov. 07, 2003 page 61
of 84
5. Electrical Characteristics (M16C/62P)
M16C/62 Group (M16C/62P, M16C/62PT)
VCC1 = VCC2 = 3V
tc(CK)
tw(CKH)
CLKi
tw(CKL)
th(C–Q)
TXDi
td(C–Q)
tsu(D–C)
RXDi
tw(INL)
INTi input
Figure 5.13 Timing Diagram (2)
Rev.2.10 Nov. 07, 2003 page 62 of 84
tw(INH)
th(C–D)
5. Electrical Characteristics (M16C/62P)
M16C/62 Group (M16C/62P, M16C/62PT)
VCC1 = VCC2 = 3V
Memory Expansion Mode, Microprocessor Mode
(Effective for setting with wait)
BCLK
RD
(Separate bus)
WR, WRL, WRH
(Separate bus)
RD
(Multiplexed bus)
WR, WRL, WRH
(Multiplexed bus)
RDY input
tsu(RDY–BCLK)
th(BCLK–RDY)
(Common to setting with wait and setting without wait)
BCLK
tsu(HOLD–BCLK)
th(BCLK–HOLD)
HOLD input
HLDA output
td(BCLK–HLDA)
td(BCLK–HLDA)
P0, P1, P2,
P3, P4,
P5_0 to P5_2 (1)
Hi–Z
NOTES:
1. These pins are set to high-impedance regardless of the input level of the
BYTE pin, PM06 bit in PM0 register and PM11 bit in PM1 register.
Measuring conditions :
• VCC1=VCC2=3V
• Input timing voltage : Determined with VIL=0.6V, VIH=2.4V
• Output timing voltage : Determined with VOL=1.5V, VOH=1.5V
Figure 5.14 Timing Diagram (3)
Rev.2.10 Nov. 07, 2003 page 63
of 84
5. Electrical Characteristics (M16C/62P)
M16C/62 Group (M16C/62P, M16C/62PT)
VCC1 = VCC2 = 3V
Memory Expansion Mode, Microprocessor Mode
(For setting with no wait)
Read timing
BCLK
td(BCLK-CS)
th(BCLK-CS)
30ns.max
4ns.min
CSi
tcyc
td(BCLK-AD)
th(BCLK-AD)
30ns.max
4ns.min
ADi
BHE
th(BCLK-ALE)
td(BCLK-ALE)
-4ns.min
30ns.max
th(RD-AD)
0ns.min
ALE
td(BCLK-RD)
30ns.max
th(BCLK-RD)
0ns.min
RD
tac1(RD-DB)
(0.5 X tcyc-60)ns.max
Hi-Z
DBi
tsu(DB-RD)
50ns.min
th(RD-DB)
0ns.min
Write timing
BCLK
td(BCLK-CS)
th(BCLK-CS)
30ns.max
4ns.min
CSi
tcyc
td(BCLK-AD)
th(BCLK-AD)
30ns.max
4ns.min
ADi
BHE
td(BCLK-ALE)
th(BCLK-ALE)
30ns.max
th(WR-AD)
(0.5 X tcyc-10)ns.min
-4ns.min
ALE
td(BCLK-WR)
30ns.max
th(BCLK-WR)
0ns.min
WR,WRL,
WRH
td(BCLK-DB)
th(BCLK-DB)
4ns.min
40ns.max
Hi-Z
DBi
td(DB-WR)
1
(0.5 X tcyc-40)ns.min
tcyc= f(BCLK)
Measuring conditions
• VCC1=VCC2=3V
• Input timing voltage
: VIL=0.6V, VIH=2.4V
• Output timing voltage : VOL=1.5V, VOH=1.5V
Figure 5.15 Timing Diagram (4)
Rev.2.10 Nov. 07, 2003 page 64 of 84
th(WR-DB)
(0.5 X tcyc-10)ns.min
5. Electrical Characteristics (M16C/62P)
M16C/62 Group (M16C/62P, M16C/62PT)
VCC1 = VCC2 = 3V
Memory Expansion Mode, Microprocessor Mode
(for 1-wait setting and external area access)
Read timing
BCLK
td(BCLK-CS)
th(BCLK-CS)
30ns.max
4ns.min
CSi
tcyc
td(BCLK-AD)
th(BCLK-AD)
30ns.max
4ns.min
ADi
BHE
td(BCLK-ALE)
th(RD-AD)
th(BCLK-ALE)
0ns.min
-4ns.min
30ns.max
ALE
td(BCLK-RD)
th(BCLK-RD)
0ns.min
30ns.max
RD
tac2(RD-DB)
(1.5 X tcyc-60)ns.max
Hi-Z
DBi
th(RD-DB)
tsu(DB-RD)
0ns.min
50ns.min
Write timing
BCLK
td(BCLK-CS)
th(BCLK-CS)
30ns.max
4ns.min
CSi
tcyc
td(BCLK-AD)
th(BCLK-AD)
30ns.max
4ns.min
ADi
BHE
td(BCLK-ALE)
th(BCLK-ALE)
th(WR-AD)
(0.5 X tcyc-10)ns.min
-4ns.min
30ns.max
ALE
td(BCLK-WR)
30ns.max
th(BCLK-WR)
0ns.min
WR,WRL,
WRH
td(BCLK-DB)
th(BCLK-DB)
40ns.max
4ns.min
Hi-Z
DBi
td(DB-WR)
(0.5 X tcyc-40)ns.min
tcyc=
1
f(BCLK)
Measuring conditions
• VCC1=VCC2=3V
• Input timing voltage
: VIL=0.6V, VIH=2.4V
• Output timing voltage : VOL=1.5V, VOH=1.5V
Figure 5.16 Timing Diagram (5)
Rev.2.10 Nov. 07, 2003 page 65
of 84
th(WR-DB)
(0.5 X tcyc-10)ns.min
5. Electrical Characteristics (M16C/62P)
M16C/62 Group (M16C/62P, M16C/62PT)
VCC1 = VCC2 = 3V
Memory Expansion Mode, Microprocessor Mode
(for 2-wait setting and external area access)
Read timing
tcyc
BCLK
th(BCLK-CS)
4ns.min
td(BCLK-CS)
30ns.max
CSi
th(BCLK-AD)
4ns.min
td(BCLK-AD)
30ns.max
ADi
BHE
td(BCLK-ALE)
30ns.max
th(RD-AD)
th(BCLK-ALE)
-4ns.min
0ns.min
ALE
th(BCLK-RD)
0ns.min
td(BCLK-RD)
30ns.max
RD
tac2(RD-DB)
(2.5 X tcyc-60)ns.max
DBi
Hi-Z
tsu(DB-RD)
50ns.min
th(RD-DB)
0ns.min
Write timing
tcyc
BCLK
td(BCLK-CS)
30ns.max
th(BCLK-CS)
td(BCLK-AD)
30ns.max
th(BCLK-AD)
4ns.min
CSi
4ns.min
ADi
BHE
td(BCLK-ALE)
30ns.max
th(WR-AD)
(0.5 X tcyc-10)ns.min
th(BCLK-ALE)
-4ns.min
ALE
td(BCLK-WR)
30ns.max
th(BCLK-WR)
0ns.min
WR, WRL
WRH
td(BCLK-DB)
40ns.max
DBi
Hi-Z
td(DB-WR)
(1.5 X tcyc-40)ns.min
tcyc=
th(BCLK-DB)
4ns.min
1
f(BCLK)
Measuring conditions
• VCC1=VCC2=3V
• Input timing voltage
: VIL=0.6V, VIH=2.4V
• Output timing voltage : VOL=1.5V, VOH=1.5V
Figure 5.17 Timing Diagram (6)
Rev.2.10 Nov. 07, 2003 page 66 of 84
th(WR-DB)
(0.5 X tcyc-10)ns.min
5. Electrical Characteristics (M16C/62P)
M16C/62 Group (M16C/62P, M16C/62PT)
VCC1 = VCC2 = 3V
Memory Expansion Mode, Microprocessor Mode
(for 3-wait setting and external area access)
Read timing
tcyc
BCLK
th(BCLK-CS)
4ns.min
td(BCLK-CS)
30ns.max
CSi
th(BCLK-AD)
td(BCLK-AD)
30ns.max
4ns.min
ADi
BHE
td(BCLK-ALE)
th(RD-AD)
0ns.min
th(BCLK-ALE)
30ns.max
-4ns.min
ALE
th(BCLK-RD)
td(BCLK-RD)
30ns.max
0ns.min
RD
tac2(RD-DB)
(3.5 X tcyc-60)ns.max
DBi
Hi-Z
tsu(DB-RD)
th(RD-DB)
50ns.min
0ns.min
Write timing
tcyc
BCLK
td(BCLK-CS)
30ns.max
th(BCLK-CS)
4ns.min
td(BCLK-AD)
th(BCLK-AD)
4ns.min
CSi
30ns.max
ADi
BHE
td(BCLK-ALE)
30ns.max
th(WR-AD)
th(BCLK-ALE)
(0.5 X tcyc-10)ns.min
-4ns.min
ALE
th(BCLK-WR)
0ns.min
td(BCLK-WR)
30ns.max
WR, WRL
WRH
DBi
td(BCLK-DB)
th(BCLK-DB)
40ns.max
4ns.min
Hi-Z
td(DB-WR)
(2.5 X tcyc-40)ns.min
1
tcyc= f(BCLK)
Measuring conditions
• VCC1=VCC2=3V
• Input timing voltage
: VIL=0.6V, VIH=2.4V
• Output timing voltage : VOL=1.5V, VOH=1.5V
Figure 5.18 Timing Diagram (7)
Rev.2.10 Nov. 07, 2003 page 67
of 84
th(WR-DB)
(0.5 X tcyc-10)ns.min
5. Electrical Characteristics (M16C/62P)
M16C/62 Group (M16C/62P, M16C/62PT)
VCC1 = VCC2 = 3V
Memory Expansion Mode, Microprocessor Mode
(For 2-wait setting, external area access and multiplex bus selection)
Read timing
BCLK
td(BCLK-CS)
th(BCLK-CS)
th(RD-CS)
(0.5 X tcyc-10)ns.min
tcyc
40ns.max
4ns.min
CSi
td(AD-ALE)
(0.5 X tcyc-40)ns.min
th(ALE-AD)
(0.5 X tcyc-15)ns.min
ADi
/DBi
Address
8ns.max
Address
Data input
tdZ(RD-AD)
tac3(RD-DB)
(1.5 X tcyc-60)ns.max
tSU(DB-RD)
th(RD-DB)
0ns.min
50ns.min
td(AD-RD)
th(BCLK-AD)
0ns.min
td(BCLK-AD)
4ns.min
40ns.max
ADi
BHE
td(BCLK-ALE)
th(BCLK-ALE)
40ns.max
th(RD-AD)
(0.5 X tcyc-10)ns.min
-4ns.min
ALE
td(BCLK-RD)
th(BCLK-RD)
40ns.max
0ns.min
RD
Write timing
BCLK
tcyc
td(BCLK-CS)
th(BCLK-CS)
th(WR-CS)
40ns.max
4ns.min
(0.5 X tcyc-10)ns.min
CSi
th(BCLK-DB)
td(BCLK-DB)
4ns.min
50ns.max
ADi
/DBi
Address
Data output
td(DB-WR)
td(AD-ALE)
(1.5 X tcyc-50)ns.min
(0.5 X tcyc-40)ns.min
Address
th(WR-DB)
(0.5 X tcyc-10)ns.min
td(BCLK-AD)
th(BCLK-AD)
40ns.max
ADi
BHE
td(BCLK-ALE)
40ns.max
4ns.min
th(BCLK-ALE)
td(AD-WR)
-4ns.min
0ns.min
th(WR-AD)
(0.5 X tcyc-10)ns.min
ALE
td(BCLK-WR)
40ns.max
WR,WRL,
WRH
tcyc=
1
f(BCLK)
Measuring conditions
• VCC1=VCC2=3V
• Input timing voltage
: VIL=0.6V, VIH=2.4V
• Output timing voltage : VOL=1.5V, VOH=1.5V
Figure 5.19 Timing Diagram (8)
Rev.2.10 Nov. 07, 2003 page 68 of 84
th(BCLK-WR)
0ns.min
5. Electrical Characteristics (M16C/62P)
M16C/62 Group (M16C/62P, M16C/62PT)
VCC1 = VCC2 = 3V
Memory Expansion Mode, Microprocessor Mode
(For 3-wait setting, external area access and multiplex bus selection)
Read timing
tcyc
BCLK
th(RD-CS)
(0.5 X tcyc-10)ns.min
td(BCLK-CS)
th(BCLK-CS)
6ns.min
40ns.max
CSi
td(AD-ALE)
th(ALE-AD)
(0.5 X tcyc-15)ns.min
(0.5 X tcyc-40)ns.min
ADi
/DBi
Address
td(BCLK-AD)
40ns.max
ADi
BHE
Data input
tdZ(RD-AD)
td(AD-RD)
8ns.max
th(RD-DB)
tac3(RD-DB)
(2.5 X tcyc-60)ns.max
0ns.min
tsu(DB-RD)
0ns.min
th(BCLK-AD)
50ns.min
4ns.min
(No multiplex)
td(BCLK-ALE)
40ns.max
th(RD-AD)
th(BCLK-ALE)
(0.5 X tcyc-10)ns.min
-4ns.min
ALE
th(BCLK-RD)
td(BCLK-RD)
0ns.min
40ns.max
RD
Write timing
tcyc
BCLK
th(WR-CS)
td(BCLK-CS)
(0.5 X tcyc-10)ns.min
40ns.max
th(BCLK-CS)
4ns.min
CSi
th(BCLK-DB)
td(BCLK-DB)
50ns.max
ADi
/DBi
Address
4ns.min
Data output
td(AD-ALE)
td(DB-WR)
(0.5 X tcyc-40)ns.min
(2.5 X tcyc-50)ns.min
th(WR-DB)
(0.5 X tcyc-10)ns.min
td(BCLK-AD)
40ns.max
th(BCLK-AD)
4ns.min
ADi
BHE
(No multiplex)
td(BCLK-ALE)
40ns.max
th(BCLK-ALE)
-4ns.min
th(WR-AD)
td(AD-WR)
td(BCLK-WR)
WR, WRL
WRH
tcyc=
(0.5 X tcyc-10)ns.min
0ns.min
ALE
40ns.max
1
f(BCLK)
Measuring conditions
• VCC1=VCC2=3V
• Input timing voltage
: VIL=0.6V, VIH=2.4V
• Output timing voltage : VOL=1.5V, VOH=1.5V
Figure 5.20 Timing Diagram (9)
Rev.2.10 Nov. 07, 2003 page 69
of 84
th(BCLK-WR)
0ns.min
M16C/62 Group (M16C/62P, M16C/62PT)
5. Electrical Characteristics (M16C/62PT)
5.2 Electrical Characteristics (M16C/62PT)
Table 5.49 Absolute Maximum Ratings
Condition
Rated value
VCC1, VCC2
Symbol
Supply voltage
Parameter
VCC1=AVCC
-0.3 to 6.5
V
VCC2
Supply voltage
VCC2
-0.3 to VCC1+0.1
V
AVCC
Analog supply voltage
VCC1=AVCC
Input
voltage
VI
-0.3 to 6.5
V
RESET, CNVSS, BYTE,
P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_7,
P9_0 to P9_7, P10_0 to P10_7,
P11_0 to P11_7, P14_0, P14_1,
VREF, XIN
-0.3 to VCC1+0.3 (1)
V
P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7,
P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7,
P12_0 to P12_7, P13_0 to P13_7
-0.3 to VCC2+0.3 (1)
V
-0.3 to 6.5
V
-0.3 to VCC1+0.3 (1)
V
-0.3 to VCC2+0.3 (1)
V
-0.3 to 6.5
V
P7_0, P7_1
Output
voltage
Unit
P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_4,
P8_6, P8_7, P9_0 to P9_7,
P10_0 to P10_7, P11 0 to P11_7,
P14_0, P14_1,
XOUT
VO
P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7,
P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7,
P12_0 to P12_7, P13_0 to P13_7
P7_0, P7_1
Pd
Topr
Power dissipation
Operating ambient
temperature
When the microcomputer is
operating
Flash program erase
Tstg
Storage temperature
-40 º C < Topr ≤ 85 ° C
300
-40 º C < Topr ≤ 125 ° C
200
-40 to 85 / -40 to 125 (2)
°C
0 to 60
-65 to 150
NOTES :
1. There is no external connections for port P1_0 to P1_7, P4_4 to P4_7, P7_2 to P7_5 and P9_1 in 80-pin version.
2. T version = -40 to 85 ° C, V version = -40 to 125 ° C.
Rev.2.10 Nov. 07, 2003 page 70 of 84
mW
°C
5. Electrical Characteristics (M16C/62PT)
M16C/62 Group (M16C/62P, M16C/62PT)
Table 5.50 Recommended Operating Conditions (1)
Parameter
Symbol
Min.
VCC1, VCC2 Supply voltage(VCC1=VCC2)
AVcc
Analog supply voltage
Vss
Supply voltage
AVss
4.0
VIH
5.0
VCC1
0
5.5
Unit
V
V
V
0
Analog supply voltage
HIGH input
voltage
Standard
Typ.
Max.
V
P3_1 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P12_0 to P12_7, P13_0 to P13_7
0.8VCC2
VCC2
V
P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 (during single-chip mode)
0.8VCC2
VCC2
V
P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_7, P9_0 to P9_7,
P10_0 to P10_7, P11_0 to P11_7, P14_0, P14_1,
0.8VCC1
VCC1
V
XIN, RESET, CNVSS, BYTE
0.8VCC1
6.5
V
P3_1 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P12_0 to P12_7, P13_0 to P13_7
0
0.2VCC2
V
P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 (during single-chip mode)
0
0.2VCC2
V
P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7,
P11_0 to P11_7, P14_0, P14_1,
0
0.2VCC1
V
P7_0 , P7_1
LOW input
voltage
VIL
XIN, RESET, CNVSS, BYTE
IOH (peak)
HIGH peak output
current
P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7,
P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_2 to P7_7,
P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7,
P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1
-10.0
mA
IOH (avg)
HIGH average
output current
P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7,
P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_2 to P7_7,
P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7,
P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1
-5.0
mA
10.0
mA
5.0
mA
16
MHz
IOL (peak)
LOW peak output
current
P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7,
P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7,
P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7,
P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1
IOL (avg)
LOW average
output current
P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7,
P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7,
P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7,
P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1
f (XIN)
Main clock input oscillation frequency
f (XCIN)
Sub-clock oscillation frequency
f (Ring)
Ring oscillation frequency
f (PLL)
PLL clock oscillation frequency (4)
f (BCLK)
CPU operation clock
tSU(PLL)
PLL frequency synthesizer stabilization wait time
VCC1=4.0 to 5.5V
0
0.5
VCC1=4.0 to 5.5V
VCC1=5.0V
32.768
50
kHz
1
2
MHz
10
24
MHz
0
24
MHz
20
ms
NOTES:
1. Referenced to VCC1 = VCC2 = 4.7 to 5.5V at Topr = -40 to 85 °C / -40 to 125 °C unless otherwise specified.
T version = -40 to 85 °C, V version = -40 to 125 °C.
2. The mean output current is the mean value within 100ms.
3. The total IOL(peak) for ports P0, P1, P2, P8_6, P8_7, P9, P10, P11, P14_0 and P14_1 must be 80mA max. The total IOL(peak)
for ports P3, P4, P5, P6, P7, P8_0 to P8_4, P12, and P13 must be 80mA max. The total IOH(peak) for ports P0, P1, and P2
must be -40mA max. The total IOH(peak) for ports P3, P4, P5, P12, and P13 must be -40mA max. The total IOH(peak) for ports
P6, P7, and P8_0 to P8_4 must be -40mA max. The total IOH(peak) for ports P8_6, P8_7, P9, P10, P11, P14_0, and P14_1
must be -40mA max.
As for 80-pin version, the total IOL(peak) for all ports and IOH(peak) must be 80mA. max. due to one VCC and one VSS.
4. There is no external connections for port P1_0 to P1_7, P4_4 to P4_7, P7_2 to P7_5 and P9_1 in 80-pin version.
Rev.2.10 Nov. 07, 2003 page 71
of 84
5. Electrical Characteristics (M16C/62PT)
M16C/62 Group (M16C/62P, M16C/62PT)
Table 5.51 A-D Conversion Characteristics (1)
Symbol
–
Parameter
Resolution
Integral
nonlinearity
error
INL
Absolute
accuracy
Standard
Unit
Min. Typ. Max.
VREF =VCC1
VREF=
VCC1=
5V
10 bit
8 bit
–
Measuring condition
10 bit
10
Bits
AN0 to AN7 input
AN0_0 to AN0_7 input
AN2_0 to AN2_7 input
ANEX0, ANEX1 input
±3
LSB
External operation amp
connection mode
±7
LSB
±2
LSB
±3
LSB
±7
LSB
±2
LSB
±1
±3
±3
40
kΩ
LSB
LSB
LSB
kΩ
VREF =VCC1=3.3V
VREF= AN0 to AN7 input
VCC1= AN0_0 to AN0_7 input
AN2_0 to AN2_7 input
5V
ANEX0, ANEX1 input
External operation amp
connection mode
8 bit
–
DNL
–
–
RLADDER
tCONV
Tolerance level impedance
Differential non-linearity error
Offset error
Gain error
Ladder resistance
Conversion time(10bit), Sample & hold
function available
tCONV
Conversion time(8bit), Sample & hold
function available
tSAMP
VREF
Sampling time
Reference voltage
VI A
Analog input voltage
VREF =VCC1=3.3V
3
VREF =VCC1
VREF =VCC1=5V, øAD=12MHz
10
2.75
VREF =VCC1=5V, øAD=12MHz
2.33
µs
0.25
2.0
VCC1
µs
V
0
VREF
V
µs
NOTES:
1. Referenced to VCC1=AVCC=VREF=4.0 to 5.5V, VSS=AVSS=0V at Topr = -40 to 85 °C / -40 to 125 °C unless otherwise
specified. T version = -40 to 85 °C, V version = -40 to 125 °C.
2. AD operation clock frequency (øAD frequency) must be 12 MHz or less.
3. A case without sample & hold function turn øAD frequency into 250 kHz or more in addition to a limit of Note 2.
A case with sample & hold function turn øAD frequency into 1MHz or more in addition to a limit of Note 2.
Table 5.52 D-A Conversion Characteristics (1)
Symbol
Parameter
–
–
Resolution
Absolute accuracy
Setup time
Output resistance
Reference power supply input current
tsu
RO
IVREF
Measuring condition
Standard
Min. Typ. Max.
4
(Note 2)
10
Unit
8
1.0
3
20
Bits
%
µs
kΩ
1.5
mA
NOTES :
1. Referenced to VCC1=VREF=4.0 to 5.5V, VSS=AVSS=0V at Topr = -40 to 85 °C / -40 to 125 °C unless otherwise specified.
T version=-40 to 85 °C, V version=-40 to 125 °C
2. This applies when using one D-A converter, with the D-A register for the unused D-A converter set to “00h”. The A-D
converter’s ladder resistance is not included. Also, when D-A register contents are not “00h”, the current IVREF always
flows even though Vref may have been set to be unconnected by the A-D control register.
Rev.2.10 Nov. 07, 2003 page 72 of 84
5. Electrical Characteristics (M16C/62PT)
M16C/62 Group (M16C/62P, M16C/62PT)
Table 5.53 Flash Memory Version Electrical Characteristics (1) for 100 cycle products
Symbol
Parameter
Min.
Standard
Typ.
Max.
Unit
cycle
-
Program and erase endurance (3)
-
Word program time (VCC1=5.0V, Topr=25°C)
25
200
µs
-
Lock bit program time
25
200
µs
-
Block erase time
(VCC1=5.0V, Topr=25 °C)
4K bytes block
0.3
4
s
-
Erase all unlocked blocks time
tPS
-
100
8K bytes block
0.3
4
s
32K bytes block
0.5
4
s
64K bytes block
0.8
4
s
(2)
Flash memory circuit stabilization wait time
4Xn
s
15
µs
10
Data hold time (5)
year
Table 5.54 Flash Memory Version Electrical Characteristics (6)
for 10,000 cycle products (Block A and Block 1 (7))
Symbol
Parameter
Min.
Standard
Typ.
Max.
Unit
-
Program and erase endurance (3, 8, 9)
-
Word program time (VCC1=5.0V, Topr=25°C)
25
µs
-
Lock bit program time
25
µs
-
Block erase time
(VCC1=5.0V, Topr=25 °C)
0.3
s
tPS
-
10,000 (4)
4K bytes block
Flash memory circuit stabilization wait time
Data hold time
15
10
(5)
cycle
µs
year
NOTES :
1. Referenced to VCC1=4.5 to 5.5V at Topr = 0 to 60 °C unless otherwise specified.
2. n denotes the number of block erases.
3. Program and Erase Endurance refers to the number of times a block erase can be performed.
If the program and erase endurance is n (n=100, 1,000, or 10,000), each block can be erased n times.
For example, if a 4K bytes block A is erased after writing 1 word data 2,048 times, each to a different address, this
counts as one program and erase endurance. Data cannot be written to the same address more than once without
erasing the block. (Rewrite prohibited)
4. Maximum number of E/W cycles for which operation is guaranteed.
5. Topr = -40 to 85 °C (T version) / -40 to 125 °C (V version).
6. Referenced to VCC1 = 4.0 to 5.5V at Topr = -40 to 85 °C (T version) / -40 to 125 °C (V version) unless otherwise specified.
7. Table 5.55 applies for block A or block 1 program and erase endurance > 1,000. Otherwise, use Table 5.54.
8. To reduce the number of program and erase endurance when working with systems requiring numerous rewrites,
write to unused word addresses within the block instead of rewrite. Erase block only after all possible addresses are
used. For example, an 8-word program can be written 256 times maximum before erase becomes necessary.
Maintaining an equal number of erasure between block A and block 1 will also improve efficiency. It is important to
track the total number of times erasure is used.
9. Should erase error occur during block erase, attempt to execute clear status register command, then block erase
command at least three times until erase error disappears.
10. Customers desiring E/W failure rate information should contact their Renesas technical support representative.
Table 5.55 Flash Memory Version Program/Erase Voltage and Read Operation Voltage Characteristics
(at Topr = 0 to 60oC)
Flash program, erase voltage
VCC1=5.0 ± 0.5 V
Rev.2.10 Nov. 07, 2003 page 73
Flash read operation voltage
VCC1=4.0 to 5.5 V
of 84
5. Electrical Characteristics (M16C/62PT)
M16C/62 Group (M16C/62P, M16C/62PT)
Table 5.56 Power Supply Circuit Timing Characteristics
Symbol
Parameter
td(P-R)
Time for internal power supply stabilization during powering-on
td(R-S)
STOP release time
td(W-S)
Low power dissipation mode wait mode release time
td(M-L)
Time for internal power supply stabilization when main clock oscillation starts
Measuring condition
Standard
Typ.
Max.
2
VCC1=4.0 to 5.5V
Interrupt for
stop mode
release
CPU clock
td(R-S)
Rev.2.10 Nov. 07, 2003 page 74 of 84
Min.
Unit
ms
150
µs
150
µs
50
µs
M16C/62 Group (M16C/62P, M16C/62PT)
5. Electrical Characteristics (M16C/62PT)
VCC1 = VCC2 = 5V
Table 5.57 Electrical Characteristics (1)
Symbol
VOH
VOH
Parameter
HIGH output
voltage
HIGH output
voltage
P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7,
P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P14_0, P14_1
P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7,
P4_0 to P4_7, P5_0 to P5_7, P12_0 to P12_7, P13_0 to P13_7
P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7,
P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P14_0, P14_1
P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7,
P4_0 to P4_7, P5_0 to P5_7, P12_0 to P12_7, P13_0 to P13_7
HIGH output voltage
HIGH output voltage
XCOUT
VOL
VOL
IOH=-5mA (2)
VCC2-2.0
VCC2
IOH=-200µA
VCC1-0.3
VCC1
IOH=-200µA (2)
VCC2-0.3
VCC2
HIGHPOWER
IOH=-1mA
VCC1-2.0
VCC1
LOWPOWER
IOH=-0.5mA
VCC1-2.0
VCC1
HIGHPOWER
With no load applied
With no load applied
P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_4, P8_6, P8_7,
P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P14_0, P14_1
LOW output
voltage
P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7,
P4_0 to P4_7, P5_0 to P5_7, P12_0 to P12_7, P13_0 to P13_7
P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_4, P8_6, P8_7,
P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7, P14_0, P14_1
P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7,
P4_0 to P4_7, P5_0 to P5_7, P12_0 to P12_7, P13_0 to P13_7
LOW output voltage
Hysteresis
VT+-VT-
XOUT
XCOUT
Max.
VCC1
LOW output
voltage
LOW output voltage
Standard
Typ.
VCC1-2.0
LOWPOWER
VOL
Min.
IOH=-5mA
XOUT
VOH
Measuring condition
Unit
V
V
2.5
1.6
V
V
IOL=5mA
2 .0
IOL=5mA (2)
2 .0
IOL=200µA
0.45
V
V
IOL=200µA
0.45
(2)
HIGHPOWER
IOL=1mA
LOWPOWER
IOL=0.5mA
HIGHPOWER
With no load applied
0
LOWPOWER
With no load applied
0
2 .0
2 .0
V
V
HOLD, RDY, TA0IN to TA4IN,
TB0IN to TB5IN, INT0 to INT5, NMI,
ADTRG, CTS0 to CTS2, SCL0 to SCL2,
SDA0 TO SDA2, CLK0 to CLK4, TA0OUT to TA4OUT,
KI0 to KI3, RXD0 to RXD2, SIN3, SIN4
0.2
1 .0
V
VT+-VT-
Hysteresis
RESET
0.2
2.5
V
VT+-VT-
Hysteresis
XIN
0.2
0 .8
V
HIGH input
current
P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7,
P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7,
P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7,
P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1,
XIN, RESET, CNVSS, BYTE
VI=5V
5 .0
µA
P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7,
P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7,
P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7, P11_0 to P11_7,
P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1,
XIN, RESET, CNVSS, BYTE
VI=0V
-5.0
µA
P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7,
P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_2 to P7_7,
P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7,
P11_0 to P11_7, P12_0 to P12_7, P13_0 to P13_7, P14_0, P14_1
VI=0V
II H
LOW input
current
II L
RPULLUP
Pull-up
resistance
RfXIN
Feedback resistance
XIN
RfXCIN
Feedback resistance
XCIN
VRAM
RAM retention voltage
30
50
1.5
15
At stop mode
2 .0
NOTES:
1. Referenced to VCC1=VCC2=4.0 to 5.5V, VSS=0V at Topr = -40 to 85 °C / -40 to 125 °C, f(BCLK)=24MHz unless otherwise specified.
T version is -40 = 85 °C, V version = -40 to 125 °C.
2. There is no external connections for port P1_0 to P1_7, P4_4 to P4_7, P7_2 to P7_5 and P9_1 in 80-pin version.
Rev.2.10 Nov. 07, 2003 page 75
of 84
170
kΩ
MΩ
MΩ
V
5. Electrical Characteristics (M16C/62PT)
M16C/62 Group (M16C/62P, M16C/62PT)
VCC1 = VCC2 = 5V
Table 5.58 Electrical Characteristics (2) (1)
Symbol
In single-chip mode, the output
pins are open and other pins are
VSS
ICC
Measuring condition
Parameter
Mask ROM
f(BCLK)=24MHz,
No division, PLL operation
No division, Ring oscillation
Flash memory
f(BCLK)=24MHz,
No division, PLL operation
Min.
Standard
Typ.
14
Max.
20
1
18
Unit
mA
mA
27
mA
No division, Ring oscillation
1 .8
mA
Flash memory
Program
f(BCLK)=10MHz,
VCC1=5.0V
15
mA
Flash memory
Erase
f(BCLK)=10MHz,
VCC1=5.0V
25
mA
Mask ROM
f(XCIN)=32kHz,
Low power dissipation mode,
ROM (3)
25
µA
f(BCLK)=32kHz,
Low power dissipation mode,
RAM (3)
25
µA
f(BCLK)=32kHz
Low power dissipation mode,
Flash memory (3)
420
µA
50
µA
7 .5
µA
2 .0
µA
Power supply current
(VCC1=4.0 to 5.5V)
Flash memory
Ring oscillation,
Wait mode
f(BCLK)=32kHz,
Wait mode (2),
Mask ROM
Flash memory
Oscillation capacity High
f(BCLK)=32kHz,
Wait mode (2),
Oscillation capacity Low
Stop mode,
Topr=25°C
0 .8
3 .0
µA
Idet4
Voltage down detection dissipation current (4)
0.7
4
µA
Idet3
Reset area detection dissipation current (4)
1.2
8
µA
Idet2
RAM retention limit detection dissipation current (4)
1 .1
6
µA
NOTES:
1. Referenced to VCC1=VCC2= 4.0 to 5.5V, VSS=0V at Topr = -20 to 85 °C / -40 to 85 °C, f(BCLK)=24MHz unless otherwise specified.
T version = -40 to 85 °C, V version = -40 to 125 °C
2. With one timer operated using fC32.
3. This indicates the memory in which the program to be executed exists.
4. Idet is dissipation current when the following bit is set to “1” (detection circuit enabled).
Idet4: VC27 bit of VCR2 register
Idet3: VC26 bit of VCR2 register
Idet2: VC25 bit of VCR2 register
Rev.2.10 Nov. 07, 2003 page 76 of 84
M16C/62 Group (M16C/62P, M16C/62PT)
5. Electrical Characteristics (M16C/62PT)
VCC1 = VCC2 = 5V
Timing Requirements
(VCC1 = VCC2 = 5V, VSS = 0V, at Topr = – 40 to 85oC (T version) / – 40 to 125oC (V version) unless
otherwise specified)
Table 5.59 External Clock Input (XIN input)
Symbol
tc
tw(H)
tw(L)
tr
tf
Parameter
External clock input cycle time
External clock input HIGH pulse width
External clock input LOW pulse width
External clock rise time
External clock fall time
Rev.2.10 Nov. 07, 2003 page 77
of 84
Standard
Min.
Max.
Unit
ns
62.5
25
25
15
15
ns
ns
ns
ns
5. Electrical Characteristics (M16C/62PT)
M16C/62 Group (M16C/62P, M16C/62PT)
VCC1 = VCC2 = 5V
Timing Requirements
(VCC1 = VCC2 = 5V, VSS = 0V, at Topr = – 40 to 85oC (T version) / – 40 to 125oC (V version) unless
otherwise specified)
Table 5.60 Timer A Input (Counter Input in Event Counter Mode)
Symbol
tc(TA)
Parameter
TAiIN input cycle time
tw(TAH)
TAiIN input HIGH pulse width
tw(TAL)
TAiIN input LOW pulse width
Standard
Min.
Max.
100
40
40
Unit
ns
ns
ns
Table 5.61 Timer A Input (Gating Input in Timer Mode)
Symbol
tc(TA)
Parameter
TAiIN input cycle time
tw(TAH)
TAiIN input HIGH pulse width
tw(TAL)
TAiIN input LOW pulse width
Standard
Min.
Max.
400
200
200
Unit
ns
ns
ns
Table 5.62 Timer A Input (External Trigger Input in One-shot Timer Mode)
Symbol
Parameter
tc(TA)
tw(TAH)
TAiIN input cycle time
TAiIN input HIGH pulse width
tw(TAL)
TAiIN input LOW pulse width
Standard
Max.
Min.
Unit
200
ns
100
100
ns
ns
Table 5.63 Timer A Input (External Trigger Input in Pulse Width Modulation Mode)
Symbol
tw(TAH)
tw(TAL)
Parameter
TAiIN input HIGH pulse width
TAiIN input LOW pulse width
Standard
Max.
Min.
100
100
Unit
ns
ns
Table 5.64 Timer A Input (Counter Increment/decrement Input in Event Counter Mode)
TAiOUT input HIGH pulse width
Standard
Min.
Max.
2000
1000
TAiOUT input LOW pulse width
TAiOUT input setup time
TAiOUT input hold time
1000
400
400
Symbol
tc(UP)
tw(UPH)
tw(UPL)
tsu(UP-TIN)
th(TIN-UP)
Parameter
TAiOUT input cycle time
Unit
ns
ns
ns
ns
ns
Table 5.65 Timer A Input (Two-phase Pulse Input in Event Counter Mode)
Symbol
tc(TA)
Parameter
TAiIN input cycle time
tsu(TAIN-TAOUT)
TAiOUT input setup time
tsu(TAOUT-TAIN)
TAiIN input setup time
Rev.2.10 Nov. 07, 2003 page 78 of 84
Standard
Max.
Min.
800
200
200
Unit
ns
ns
ns
M16C/62 Group (M16C/62P, M16C/62PT)
5. Electrical Characteristics (M16C/62PT)
VCC1 = VCC2 = 5V
Timing Requirements
(VCC1 = VCC2 = 5V, VSS = 0V, at Topr = – 40 to 85oC (T version) / – 40 to 125oC (V version) unless
otherwise specified)
Table 5.66 Timer B Input (Counter Input in Event Counter Mode)
Symbol
Parameter
tc(TB)
TBiIN input cycle time (counted on one edge)
tw(TBH)
tw(TBL)
tc(TB)
TBiIN input cycle time (counted on both edges)
tw(TBH)
tw(TBL)
Standard
Min.
Max.
Unit
100
ns
TBiIN input HIGH pulse width (counted on one edge)
40
ns
TBiIN input LOW pulse width (counted on one edge)
40
200
ns
TBiIN input HIGH pulse width (counted on both edges)
80
ns
TBiIN input LOW pulse width (counted on both edges)
80
ns
ns
Table 5.67 Timer B Input (Pulse Period Measurement Mode)
Symbol
Parameter
Standard
Min.
Max.
Unit
tc(TB)
TBiIN input cycle time
400
ns
tw(TBH)
tw(TBL)
TBiIN input HIGH pulse width
TBiIN input LOW pulse width
200
200
ns
ns
Table 5.68 Timer B Input (Pulse Width Measurement Mode)
Symbol
Parameter
Standard
Min.
Max.
Unit
tc(TB)
TBiIN input cycle time
400
tw(TBH)
TBiIN input HIGH pulse width
200
ns
200
ns
tw(TBL)
TBiIN input LOW pulse width
ns
Table 5.69 A-D Trigger Input
Symbol
tc(AD)
tw(ADL)
Parameter
ADTRG input cycle time (trigger able minimum)
ADTRG input LOW pulse width
Standard
Min.
1000
125
Max.
Unit
ns
ns
Table 5.70 Serial I/O
Symbol
Parameter
Standard
Min.
Max.
Unit
tc(CK)
CLKi input cycle time
200
ns
tw(CKH)
CLKi input HIGH pulse width
100
ns
tw(CKL)
CLKi input LOW pulse width
100
ns
td(C-Q)
TXDi output delay time
th(C-Q)
TXDi hold time
tsu(D-C)
RXDi input setup time
RXDi input hold time
th(C-D)
80
ns
0
30
ns
90
ns
ns
_______
Table 5.71 External Interrupt INTi Input
Symbol
Parameter
tw(INH)
INTi input HIGH pulse width
tw(INL)
INTi input LOW pulse width
Rev.2.10 Nov. 07, 2003 page 79
of 84
Standard
Min.
250
250
Max.
Unit
ns
ns
5. Electrical Characteristics (M16C/62PT)
M16C/62 Group (M16C/62P, M16C/62PT)
VCC1 = VCC2 = 5V
Switching Characteristics
(VCC1 = VCC2 = 5V, VSS = 0V, at Topr = – 40 to 85oC (T version) / – 40 to 125oC (V version) unless
otherwise specified)
P0
P1
P2
P3
P4
P5
P6
P7
P8
P9
P10
Figure 5.21 Ports P0 to P10 Measurement Circuit
Rev.2.10 Nov. 07, 2003 page 80 of 84
30pF
5. Electrical Characteristics (M16C/62PT)
M16C/62 Group (M16C/62P, M16C/62PT)
VCC1 = VCC2 = 5V
XIN input
tf
tw(H)
tr
tw(L)
tc
tc(TA)
tw(TAH)
TAiIN input
tw(TAL)
tc(UP)
tw(UPH)
TAiOUT input
tw(UPL)
TAiOUT input
(Up/down input)
During event counter mode
TAiIN input
th(TIN–UP)
(When count on falling
edge is selected)
tsu(UP–TIN)
TAiIN input
(When count on rising
edge is selected)
Two-phase pulse input in
event counter mode
tc(TA)
TAiIN input
tsu(TAIN-TAOUT)
tsu(TAIN-TAOUT)
tsu(TAOUT-TAIN)
TAiOUT input
tsu(TAOUT-TAIN)
tc(TB)
tw(TBH)
TBiIN input
tw(TBL)
tc(AD)
tw(ADL)
ADTRG input
Figure 5.22 Timing Diagram (1)
Rev.2.10 Nov. 07, 2003 page 81
of 84
5. Electrical Characteristics (M16C/62PT)
M16C/62 Group (M16C/62P, M16C/62PT)
VCC1 = VCC2 = 5V
tc(CK)
tw(CKH)
CLKi
tw(CKL)
th(C–Q)
TXDi
td(C–Q)
tsu(D–C)
RXDi
tw(INL)
INTi input
tw(INH)
Figure 5.23 Timing Diagram (2)
Rev.2.10 Nov. 07, 2003 page 82
of 84
th(C–D)
Package Dimensions
M16C/62 Group (M16C/62P, M16C/62PT)
Package Dimensions
MMP
80P6S-A
EIAJ Package Code
QFP80-P-1414-0.65
Plastic 80pin 14✕14mm body QFP
Weight(g)
1.11
Lead Material
Alloy 42
MD
e
JEDEC Code
HD
61
b2
80
ME
D
1
60
I2
Symbol
HE
E
Recommended Mount Pad
41
20
21
A
40
c
F
A2
L1
b
e
x
M
A1
y
b2
I2
MD
ME
L
Detail F
100P6S-A
MMP
EIAJ Package Code
QFP100-P-1420-0.65
A
A1
A2
b
c
D
E
e
HD
HE
L
L1
x
y
Dimension in Millimeters
Min
Nom
Max
–
–
3.05
0.1
0.2
0
–
–
2.8
0.25
0.3
0.4
0.13
0.15
0.2
13.8
14.0
14.2
13.8
14.0
14.2
–
0.65
–
16.5
16.8
17.1
16.5
16.8
17.1
0.4
0.6
0.8
1.4
–
–
–
–
0.13
–
–
0.1
–
0°
10°
–
–
0.35
1.3
–
–
14.6
–
–
–
–
14.6
Plastic 100pin 14✕20mm body QFP
Weight(g)
1.58
Lead Material
Alloy 42
MD
e
JEDEC Code
–
81
1
b2
100
ME
HD
D
80
I2
Recommended Mount Pad
E
30
HE
Symbol
51
50
A
L1
c
A2
31
A
A1
A2
b
c
D
E
e
HD
HE
L
L1
x
y
b
x
y
Rev.2.10 Nov. 07, 2003 page 83
of 84
M
A1
F
e
L
Detail F
b2
I2
MD
ME
Dimension in Millimeters
Min
Nom
Max
3.05
–
–
0.1
0.2
0
2.8
–
–
0.25
0.3
0.4
0.13
0.15
0.2
13.8
14.0
14.2
19.8
20.0
20.2
0.65
–
–
16.5
16.8
17.1
22.5
22.8
23.1
0.4
0.6
0.8
1.4
–
–
–
–
0.13
0.1
–
–
0°
10°
–
0.35
–
–
1.3
–
–
14.6
–
–
20.6
–
–
Package Dimensions
M16C/62 Group (M16C/62P, M16C/62PT)
MMP
Plastic 100pin 14✕14mm body LQFP
Weight(g)
0.63
JEDEC Code
–
Lead Material
Cu Alloy
MD
b2
HD
ME
EIAJ Package Code
LQFP100-P-1414-0.50
e
100P6Q-A
D
76
100
l2
Recommended Mount Pad
75
1
A
A1
A2
b
c
D
E
e
HD
HE
L
L1
Lp
HE
E
Symbol
51
25
26
50
A
L1
F
A3
y
M
L
Detail F
x
y
c
x
A1
b
A3
A2
e
b2
I2
MD
ME
Lp
MMP
EIAJ Package Code
LQFP128-P-1420-0.50
Plastic 128pin 14✕20mm body LQFP
Weight(g)
–
JEDEC Code
–
Lead Material
Cu Alloy
MD
e
128P6Q-A
Dimension in Millimeters
Min
Nom
Max
1.7
–
–
0.1
0.2
0
1.4
–
–
0.13
0.18
0.28
0.105
0.125
0.175
13.9
14.0
14.1
13.9
14.0
14.1
–
0.5
–
15.8
16.0
16.2
15.8
16.0
16.2
0.3
0.5
0.7
1.0
–
–
0.45
0.6
0.75
–
0.25
–
–
–
0.08
–
–
0.1
–
0°
10°
–
–
0.225
0.9
–
–
14.4
–
–
–
–
14.4
b2
D
128
ME
HD
103
1
102
l2
Recommended Mount Pad
Symbol
E
HE
A
A1
A2
b
c
D
E
e
HD
HE
L
L1
Lp
65
38
39
64
L1
A
y
b
Rev.2.10 Nov. 07, 2003 page 84
x
of 84
M
L
Detail F
Lp
A3
x
y
c
A1
A2
e
A3
F
b2
I2
MD
ME
Dimension in Millimeters
Min
Nom
Max
1.7
1.4
1.5
0.125
0.2
0.05
1.4
–
–
0.17
0.22
0.27
0.105
0.125
0.175
13.9
14.0
14.1
19.9
20.0
20.1
0.5
–
–
15.8
16.0
16.2
21.8
22.0
22.2
0.35
0.5
0.65
1.0
–
–
0.45
0.6
0.75
–
0.25
–
–
–
0.08
0.1
–
–
0°
8°
–
0.225
–
–
–
1.0
–
14.4
–
–
20.4
–
–
REVISION HISTORY
Rev.
M16C/62 Group (M16C/62P, M16C/62PT) Data Sheet
Date
Description
Summary
Page
1.10 May/28/Y03
(Continued)
2
4-5
14-19
22
23
24
30
31
30-31
32
30-32
36-39
40-41
42
47
48
47-48
49
47-49
53-56
57-58
2.00 Oct./29/Y03
2-4
6
7-9
11
12-15
17,19
18,20
30
31-32
33
34,74
36
38,55
41
41-43,
58-60
44
Table 1.1.1 is partly revised.
Table 1.1.2 and 1.1.3 is partly revised.
SFR is partly revised.
“Note 1” is partly revised.
Table 1.5.3 is partly revised.
Table 1.5.5 is partly revised.
Table 1.5.6 is added.
Table 1.5.9 is partly revised.
Notes 1 and 2 in Table 1.5.26 is partly revised.
Notes 1 in Table 1.5.27 is partly revised.
Note 3 is added to “Data output hold time (refers to BCLK)” in Table 1.5.26 and
1.5.27.
Note 4 is added to “th(ALE-AD)” in Table 1.5.28.
Switching Characteristics is partly revised.
th(WR-AD) and th(WR-DB) in Figure 1.5.5 to 1.5.8 is partly revised.
th(ALE-AD), th(WR-CS), th(WR-DB) and th(WR-AD) in Figure 1.5.9 to 1.5.10 is
partly revised.
Note 2 is added to Table 1.5.29.
Notes 1 and 2 in Table 1.5.45 is partly revised.
Notes 1 in Table 1.5.46 is partly revised.
Note 3 is added to “Data output hold time (refers to BCLK)” in Table 1.5.45 and
1.5.46.
Note 4 is added to “th(ALE-AD)” in Table 1.5.47.
Switching Characteristics is partly revised.
th(WR-AD) and th(WR-DB) in Figure 1.5.15 to 1.5.18 is partly revised.
th(ALE-AD), th(WR-CS), th(WR-DB) and th(WR-AD) in Figure 1.5.19 to 1.5.20 is
partly revised.
Since high reliability version is added, a group name is revised.
M16C/62 Group (M16C/62P) Æ M16C/62 Group (M16C/62P, M16C/62PT)
Table 1.1 to 1.3 are revised.
Note 3 is partly revised.
Figure 1.2 Note5 is deleted.
Table 1.4 to 1.7 Product List is partly revised.
Table 1.8 and Figure 1.4 are added.
Figure 1.5 to 1.9 ZP is added.
Table 1.10 and 1.12 ZP is added to timer A.
Table 1.11 and 1.13 VCC1 is added to VREF.
Table 5.1 is revised.
Table 5.2 and 5.3 are revised.
Table 5.4 A-D Conversion Characteristics is revised.
Table 5.5 D-A Conversion Characteristics revised.
Table 5.6 to 5.7 and table 5.54 to 5.55 are revised.
Table 5.11 is revised.
Table 5.14 and 5.33 HLDA output deley time is deleted.
Figure 5.1 is partly revised.
Table 5.27 to 5.29 and table 5.46 to 48 HLDA output deley time is added.
Figure 5.2 Timing Diagram (1)
A-1
XIN input is added.
REVISION HISTORY
Rev.
Date
2.10 Nov./07/Y03
Page
47-48
49-50
52
53
58
61
64-65
66-67
69
70-85
8-9
23
71
72
M16C/62 Group (M16C/62P, M16C/62PT) Data Sheet
Description
Summary
Figure 5.5 to 5.6 Read timing DB --> DBi
Figure 5.7 to 5.8 Write timing DB --> DBi
Figure 5.10 DB --> DBi
Table 5.30 is revised.
Figure 5.11 is partly revised.
Figure 5.12 Timing Diagram (1) XIN input is added.
Figure 5.15 to 5.16 Read timing DB --> DBi
Figure 5.17 to 5.18 Write timing DB --> DBi
Figure 5.20 DB --> DBi
Electrical Characteristics (M16C/62PT) is added.
Table 1.5 to 1.7 Product List is partly revised. Note 1 is deleted.
Table 3.1 is revised.
Table 5.50 is revised.
Table 5.51 is deleted.
A-2
Sales Strategic Planning Div.
Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
Keep safety first in your circuit designs!
1. Renesas Technology Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with
them. Trouble with semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of
nonflammable material or (iii) prevention against any malfunction or mishap.
Notes regarding these materials
1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corporation product best suited to the customer’s application; they
do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corporation or a third party.
2. Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any third-party’s rights, originating in the use of any product data, diagrams, charts,
programs, algorithms, or circuit application examples contained in these materials.
3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these
materials, and are subject to change by Renesas Technology Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers
contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor for the latest product information before purchasing a product listed
herein.
The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corporation by various means, including the Renesas Technology Corporation Semiconductor home page
(http://www.renesas.com).
4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information
as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corporation assumes no responsibility for any damage,
liability or other loss resulting from the information contained herein.
5. Renesas Technology Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially
at stake. Please contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor when considering the use of a product contained
herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
6. The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in whole or in part these materials.
7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be
imported into a country other than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
8. Please contact Renesas Technology Corporation for further details on these materials or the products contained therein.
http://www.renesas.com
© 2003. Renesas Technology Corp., All rights reserved. Printed in Japan.
Similar pages