ATMEL ATTINY261 8-bit microcontroller with 2/4/8k bytes in-system programmable flash Datasheet

Features
• High Performance, Low Power AVR® 8-Bit Microcontroller
• Advanced RISC Architecture
•
•
•
•
•
•
•
•
– 123 Powerful Instructions – Most Single Clock Cycle Execution
– 32 x 8 General Purpose Working Registers
– Fully Static Operation
Non-volatile Program and Data Memories
– 2/4/8K Byte of In-System Programmable Program Memory Flash
(ATtiny261/461/861)
Endurance: 10,000 Write/Erase Cycles
– 128/256/512 Bytes In-System Programmable EEPROM (ATtiny261/461/861)
Endurance: 100,000 Write/Erase Cycles
– 128/256/512 Bytes Internal SRAM (ATtiny261/461/861)
– Programming Lock for Self-Programming Flash Program and EEPROM Data
Security
Peripheral Features
– 8/16-bit Timer/Counter with Prescaler and Two PWM Channels
– 8/10-bit High Speed Timer/Counter with Separate Prescaler
3 High Frequency PWM Outputs with Separate Output Compare Registers
Programmable Dead Time Generator
– Universal Serial Interface with Start Condition Detector
– 10-bit ADC
11 Single Ended Channels
16 Differential ADC Channel Pairs
15 Differential ADC Channel Pairs with Programmable Gain (1x, 8x, 20x, 32x)
– Programmable Watchdog Timer with Separate On-chip Oscillator
– On-chip Analog Comparator
Special Microcontroller Features
– debugWIRE On-chip Debug System
– In-System Programmable via SPI Port
– External and Internal Interrupt Sources
– Low Power Idle, ADC Noise Reduction, and Power-down Modes
– Enhanced Power-on Reset Circuit
– Programmable Brown-out Detection Circuit
– Internal Calibrated Oscillator
I/O and Packages
– 16 Programmable I/O Lines
– 20-pin PDIP, 20-pin SOIC and 32-pad MLF
Operating Voltage:
– 1.8 - 5.5V for ATtiny261V/461V/861V
– 2.7 - 5.5V for ATtiny261/461/861
Speed Grade:
– ATtiny261V/461V/861V: 0 - 4 MHz @ 1.8 - 5.5V, 0 - 10 MHz @ 2.7 - 5.5V
– ATtiny261/461/861: 0 - 10 MHz @ 2.7 - 5.5V, 0 - 20 MHz @ 4.5 - 5.5V
Industrial Temperature Range
Low Power Consumption
– Active Mode: 1 MHz, 1.8V: 380μA
– Power-down Mode: 0.1μA at 1.8V
8-bit
Microcontroller
with 2/4/8K
Bytes In-System
Programmable
Flash
ATtiny261/V
ATtiny461/V
ATtiny861/V
Preliminary
Summary
2588BS–AVR–11/06
1. Pin Configurations
Figure 1-1.
Pinout ATtiny261/461/861
PDIP/SOIC
1
2
3
4
5
6
7
8
9
10
20
19
18
17
16
15
14
13
12
11
PA0 (ADC0/DI/SDA/PCINT0)
PA1 (ADC1/DO/PCINT1)
PA2 (ADC2/INT1/USCK/SCL/PCINT2)
PA3 (AREF/PCINT3)
AGND
AVCC
PA4 (ADC3/ICP0/PCINT4)
PA5 (ADC4/AIN2/PCINT5)
PA6 (ADC5/AIN0/PCINT6)
PA7 (ADC6/AIN1/PCINT7)
32
31
30
29
28
27
26
25
PB2 (SCK/USCK/SCL/OC1B/PCINT10)
PB1 (MISO/DO/OC1A/PCINT9)
PB0 (MOSI/DI/SDA/OC1A/PCINT8)
NC
NC
NC
PA0 (ADC0/DI/SDA/PCINT0)
PA1 (ADC1/DO/PCINT1)
(MOSI/DI/SDA/OC1A/PCINT8) PB0
(MISO/DO/OC1A/PCINT9) PB1
(SCK/USCK/SCL/OC1B/PCINT10) PB2
(OC1B/PCINT11) PB3
VCC
GND
(ADC7/OC1D/CLKI/XTAL1/PCINT12) PB4
(ADC8/OC1D/CLKO/XTAL2/PCINT13) PB5
(ADC9/INT0/T0/PCINT14) PB6
(ADC10/RESET/PCINT15) PB7
1
2
3
4
5
6
7
8
QFN/MLF
24
23
22
21
20
19
18
17
NC
PA2 (ADC2/INT1/USCK/SCL/PCINT2)
PA3 (AREF/PCINT3)
AGND
NC
NC
AVCC
PA4 (ADC3/ICP0/PCINT4)
NC
(ADC9/INT0/T0/PCINT14) PB6
(ADC10/RESET/PCINT15) PB7
NC
(ADC6/AIN1/PCINT7) PA7
(ADC5/AIN0/PCINT6) PA6
(ADC4/AIN2/PCINT5) PA5
NC
9
10
11
12
13
14
15
16
NC
(OC1B/PCINT11) PB3
NC
VCC
GND
NC
(ADC7/OC1D/CLKI/XTAL1/PCINT12) PB4
(ADC8/OC1D/CLKO/XTAL2/PCINT13) PB5
Note:
The large center pad underneath the QFN/MLF package should be soldered to ground on the board to ensure good mechanical
stability.
1.1
Disclaimer
Typical values contained in this data sheet are based on simulations and characterization of other AVR microcontrollers
manufactured on the same process technology. Min and Max values will be available after the device is characterized.
2
ATtiny261/461/861
2588BS–AVR–11/06
ATtiny261/461/861
2. Overview
The ATtiny261/461/861 is a low-power CMOS 8-bit microcontroller based on the AVR enhanced
RISC architecture. By executing powerful instructions in a single clock cycle, the
ATtiny261/461/861 achieves throughputs approaching 1 MIPS per MHz allowing the system
designer to optimize power consumption versus processing speed.
Block Diagram
Block Diagram
GND
Figure 2-1.
VCC
2.1
Watchdog
Timer
Watchdog
Oscillator
Oscillator
Circuits /
Clock
Generation
Power
Supervision
POR / BOD &
RESET
debugWIRE
Flash
SRAM
PROGRAM
LOGIC
CPU
EEPROM
AVCC
AGND
AREF
Timer/Counter1
A/D Conv.
USI
Analog Comp.
Internal
Bandgap
DATABUS
Timer/Counter0
3
PORT B (8)
11
PORT A (8)
RESET
XTAL[1..2]
PB[0..7]
PA[0..7]
3
2588BS–AVR–11/06
The AVR core combines a rich instruction set with 32 general purpose working registers. All the
32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent
registers to be accessed in one single instruction executed in one clock cycle. The resulting
architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers.
The ATtiny261/461/861 provides the following features: 2/4/8K byte of In-System Programmable
Flash, 128/256/512 bytes EEPROM, 128/256/512 bytes SRAM, 6 general purpose I/O lines, 32
general purpose working registers, one 8-bit Timer/Counter with compare modes, one 8-bit high
speed Timer/Counter, Universal Serial Interface, Internal and External Interrupts, a 4-channel,
10-bit ADC, a programmable Watchdog Timer with internal Oscillator, and three software selectable power saving modes. The Idle mode stops the CPU while allowing the SRAM,
Timer/Counter, ADC, Analog Comparator, and Interrupt system to continue functioning. The
Power-down mode saves the register contents, disabling all chip functions until the next Interrupt or Hardware Reset. The ADC Noise Reduction mode stops the CPU and all I/O modules
except ADC, to minimize switching noise during ADC conversions.
The device is manufactured using Atmel’s high density non-volatile memory technology. The
On-chip ISP Flash allows the Program memory to be re-programmed In-System through an SPI
serial interface, by a conventional non-volatile memory programmer or by an On-chip boot code
running on the AVR core.
The ATtiny261/461/861 AVR is supported with a full suite of program and system development
tools including: C Compilers, Macro Assemblers, Program Debugger/Simulators, In-Circuit Emulators, and Evaluation kits.
2.2
2.2.1
Pin Descriptions
VCC
Supply voltage.
2.2.2
GND
Ground.
2.2.3
AVCC
Analog supply voltage.
2.2.4
AGND
Analog ground.
2.2.5
Port A (PA7..PA0)
Port A is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port A output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port A pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port A pins are tri-stated when a reset condition becomes active,
even if the clock is not running.
Port A also serves the functions of various special features of the ATtiny261/461/861 as listed
on page 65.
4
ATtiny261/461/861
2588BS–AVR–11/06
ATtiny261/461/861
2.2.6
Port B (PB7..PB0)
Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port B output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port B pins are tri-stated when a reset condition becomes active,
even if the clock is not running.
Port B also serves the functions of various special features of the ATtiny261/461/861 as listed
on page 61.
2.2.7
RESET
Reset input. A low level on this pin for longer than the minimum pulse length will generate a
reset, even if the clock is not running. The minimum pulse length is given in Table 23-3 on page
189. Shorter pulses are not guaranteed to generate a reset.
5
2588BS–AVR–11/06
3. Resources
A comprehensive set of development tools, application notes and datasheets are available for
download on http://www.atmel.com/avr.
6
ATtiny261/461/861
2588BS–AVR–11/06
ATtiny261/461/861
4. Register Summary
Address
Name
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
0x3F (0x5F)
SREG
I
T
H
S
V
N
Z
C
Page
page 9
0x3E (0x5E)
SPH
–
–
–
–
–
SP10
SP9
SP8
page 12
0x3D (0x5D)
SPL
SP7
SP6
SP5
SP4
SP3
SP2
SP1
SP0
page 12
0x3C (0x5C)
Reserved
0x3B (0x5B)
GIMSK
INT1
INT0
PCIE1
PCIE0
–
–
–
–
page 51
0x3A (0x5A)
GIFR
INTF1
INTF0
PCIF
–
–
–
–
–
page 51
0x39 (0x59)
TIMSK
OCIE1D
OCIE1A
OCIE1B
OCIE0A
OCIE0B
TOIE1
TOIE0
TICIE0
page 86, page 123
0x38 (0x58)
TIFR
OCF1D
OCF1A
OCF1B
OCF0A
OCF0B
TOV1
TOV0
ICF0
page 87, page 124
0x37 (0x57)
SPMCSR
–
–
–
CTPB
RFLB
PGWRT
PGERS
SPMEN
page 166
0x36 (0x56)
PRR
PRTIM1
PRTIM0
PRUSI
PRADC
page 35
0x35 (0x55)
MCUCR
–
PUD
SE
SM1
SM0
–
ISC01
ISC00
page 37, page 68, page 50
0x34 (0x54)
MCUSR
–
–
–
–
WDRF
BORF
EXTRF
PORF
page 44,
0x33 (0x53)
TCCR0B
–
–
–
TSM
PSR0
CS02
CS01
CS00
page 70
0x32 (0x52)
TCNT0L
Timer/Counter0 Counter Register Low Byte
0x31 (0x51)
OSCCAL
Oscillator Calibration Register
0x30 (0x50)
TCCR1A
COM1A1
COM1A0
COM1B1
PWM1X
PSR1
DTPS11
–
page 85
page 32
COM1B0
FOC1A
FOC1B
PWM1A
PWM1B
page 113
DTPS10
CS13
CS12
CS11
CS10
page 166
0x2F (0x4F)
TCCR1B
0x2E (0x4E)
TCNT1
Timer/Counter1 Counter Register
page 121
0x2D (0x4D)
OCR1A
Timer/Counter1 Output Compare Register A
page 121
0x2C (0x4C)
OCR1B
Timer/Counter1 Output Compare Register B
page 122
0x2B (0x4B)
OCR1C
Timer/Counter1 Output Compare Register C
page 122
0x2A (0x4A)
OCR1D
Timer/Counter1 Output Compare Register D
0x29 (0x49)
PLLCSR
LSM
0x28 (0x48)
CLKPR
CLKPCE
0x27 (0x47)
TCCR1C
COM1A1S
COM1A0S
COM1B1S
0x26 (0x46)
TCCR1D
FPIE1
FPEN1
FPNC1
0x25 (0x45)
TC1H
0x24 (0x44)
DT1
0x23 (0x43)
PCMSK0
PCINT7
PCINT6
PCINT5
PCINT4
0x22 (0x42)
PCMSK1
PCINT15
PCINT14
PCINT13
PCINT12
0x21 (0x41)
WDTCR
WDIF
WDIE
WDP3
WDCE
WDE
0x20 (0x40)
DWDR
0x1F (0x3F)
EEARH
0x1E (0x3E)
EEARL
0x1D (0x3D)
EEDR
0x1C (0x3C)
EECR
–
–
EEPM1
EEPM0
0x1B (0x3B)
PORTA
PORTA7
PORTA6
PORTA5
0x1A (0x3A)
DDRA
DDA7
DDA6
DDA5
0x19 (0x39)
PINA
PINA7
PINA6
0x18 (0x38)
PORTB
PORTB7
0x17 (0x37)
DDRB
0x16 (0x36)
DT1H3
DT1H2
DT1H1
page 123
PCKE
PLLE
PLOCK
CLKPS3
CLKPS2
CLKPS1
CLKPS0
page 32
COM1B0S
COM1D1
COM1D0
FOC1D
PWM1D
page 117
FPES1
FPAC1
FPF1
WGM11
WGM10
page 119
TC19
TC18
page 121
DT1L2
DT1L1
DT1L0
page 124
PCINT3
PCINT2
PCINT1
PCINT0
page 52
PCINT11
PCINT10
PCINT9
PCINT8
page 52
WDP2
WDP1
WDP0
page 44
DT1H0
DT1L3
DWDR[7:0]
EEAR7
EEAR6
EEAR5
EEAR4
EEAR3
page 89
page 35
EEAR8
page 21
EEAR2
EEAR1
EEAR0
page 21
EERIE
EEMPE
EEPE
EERE
page 22
PORTA4
PORTA3
PORTA2
PORTA1
PORTA0
page 68
DDA4
DDA3
DDA2
DDA1
DDA0
page 68
PINA5
PINA4
PINA3
PINA2
PINA1
PINA0
page 68
PORTB6
PORTB5
PORTB4
PORTB3
PORTB2
PORTB1
PORTB0
page 68
DDB7
DDB6
DDB5
DDB4
DDB3
DDB2
DDB1
DDB0
page 68
PINB
PINB7
PINB6
PINB5
PINB4
PINB3
PINB2
PINB1
PINB0
page 68
0x15 (0x35)
TCCR0A
TCW0
ICEN0
ICNC0
ICES0
ACIC0
WGM00
page 84
0x14 (0x34)
TCNT0H
Timer/Counter0 Counter Register High Byte
page 85
0x13 (0x33)
OCR0A
Timer/Counter0 Output Compare Register A
page 85
0x12 (0x32)
OCR0B
Timer/Counter0 Output Compare Register B
0x11 (0x31)
USIPP
EEPROM Data Register
page 22
page 85
USIPOS
page 137
0x10 (0x30)
USIBR
USI Buffer Register
0x0F (0x2F)
USIDR
USI Data Register
0x0E (0x2E)
USISR
USISIF
USIOIF
USIPF
USIDC
USICNT3
USICNT2
USICNT1
USICNT0
page 134
0x0D (0x2D)
USICR
USISIE
USIOIE
USIWM1
USIWM0
USICS1
USICS0
USICLK
USITC
page 135
0x0C (0x2C)
GPIOR2
General Purpose I/O Register 2
page 23
0x0B (0x2B)
GPIOR1
General Purpose I/O Register 1
page 23
0x0A (0x2A)
GPIOR0
General Purpose I/O Register 0
0x09 (0x29)
ACSRB
HSEL
HLEV
page 134
page 133
page 23
ACM2
ACM1
ACM0
page 141
0x08 (0x28)
ACSRA
ACD
ACBG
ACO
ACI
ACIE
ACME
ACIS1
ACIS0
page 138
0x07 (0x27)
ADMUX
REFS1
REFS0
ADLAR
MUX4
MUX3
MUX2
MUX1
MUX0
page 154
0x06 (0x26)
ADCSRA
ADEN
ADSC
ADATE
ADIF
ADIE
ADPS2
ADPS1
ADPS0
page 157
0x05 (0x25)
ADCH
ADC Data Register High Byte
0x04 (0x24)
ADCL
ADC Data Register Low Byte
0x03 (0x23)
ADCSRB
BIN
GSEL
0x02 (0x22)
DIDR1
ADC10D
ADC9D
0x01 (0x21)
DIDR0
ADC6D
ADC5D
ADC4D
ADC3D
AREFD
ADC2D
ADC1D
ADC0D
page 160
0x00 (0x20)
TCCR1E
–
-
OC1OE5
OC1OE4
OC1OE3
OC1OE2
OC1OE1
OC1OE0
page 120
REFS2
ADC8D
MUX5
page 158
page 158
ADTS2
ADTS1
ADTS0
ADC7D
page 158
page 160
7
2588BS–AVR–11/06
Note:
1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses
should never be written.
2. I/O Registers within the address range 0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. In these
registers, the value of single bits can be checked by using the SBIS and SBIC instructions.
3. Some of the Status Flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and SBI
instructions will only operation the specified bit, and can therefore be used on registers containing such Status Flags. The
CBI and SBI instructions work with registers 0x00 to 0x1F only.
8
ATtiny261/461/861
2588BS–AVR–11/06
ATtiny261/461/861
5. Instruction Set Summary
Mnemonics
Operands
Description
Operation
Flags
#Clocks
ARITHMETIC AND LOGIC INSTRUCTIONS
ADD
Rd, Rr
Add two Registers
Rd ← Rd + Rr
Z,C,N,V,H
ADC
Rd, Rr
Add with Carry two Registers
Rd ← Rd + Rr + C
Z,C,N,V,H
1
ADIW
Rdl,K
Add Immediate to Word
Rdh:Rdl ← Rdh:Rdl + K
Z,C,N,V,S
2
SUB
Rd, Rr
Subtract two Registers
Rd ← Rd - Rr
Z,C,N,V,H
1
SUBI
Rd, K
Subtract Constant from Register
Rd ← Rd - K
Z,C,N,V,H
1
SBC
Rd, Rr
Subtract with Carry two Registers
Rd ← Rd - Rr - C
Z,C,N,V,H
1
SBCI
Rd, K
Subtract with Carry Constant from Reg.
Rd ← Rd - K - C
Z,C,N,V,H
1
SBIW
Rdl,K
Subtract Immediate from Word
Rdh:Rdl ← Rdh:Rdl - K
Z,C,N,V,S
2
AND
Rd, Rr
Logical AND Registers
Rd ← Rd • Rr
Z,N,V
1
ANDI
Rd, K
Logical AND Register and Constant
Rd ← Rd • K
Z,N,V
1
OR
Rd, Rr
Logical OR Registers
Rd ← Rd v Rr
Z,N,V
1
ORI
Rd, K
Logical OR Register and Constant
Rd ← Rd v K
Z,N,V
1
EOR
Rd, Rr
Exclusive OR Registers
Rd ← Rd ⊕ Rr
Z,N,V
1
1
COM
Rd
One’s Complement
Rd ← 0xFF − Rd
Z,C,N,V
1
NEG
Rd
Two’s Complement
Rd ← 0x00 − Rd
Z,C,N,V,H
1
SBR
Rd,K
Set Bit(s) in Register
Rd ← Rd v K
Z,N,V
1
CBR
Rd,K
Clear Bit(s) in Register
Rd ← Rd • (0xFF - K)
Z,N,V
1
INC
Rd
Increment
Rd ← Rd + 1
Z,N,V
1
DEC
Rd
Decrement
Rd ← Rd − 1
Z,N,V
1
TST
Rd
Test for Zero or Minus
Rd ← Rd • Rd
Z,N,V
1
CLR
Rd
Clear Register
Rd ← Rd ⊕ Rd
Z,N,V
1
SER
Rd
Set Register
Rd ← 0xFF
None
1
2
BRANCH INSTRUCTIONS
RJMP
k
IJMP
RCALL
k
Relative Jump
PC ← PC + k + 1
None
Indirect Jump to (Z)
PC ← Z
None
2
Relative Subroutine Call
PC ← PC + k + 1
None
3
3
ICALL
Indirect Call to (Z)
PC ← Z
None
RET
Subroutine Return
PC ← STACK
None
4
RETI
Interrupt Return
PC ← STACK
I
4
CPSE
Rd,Rr
Compare, Skip if Equal
if (Rd = Rr) PC ← PC + 2 or 3
None
CP
Rd,Rr
Compare
Rd − Rr
Z, N,V,C,H
1
CPC
Rd,Rr
Compare with Carry
Rd − Rr − C
Z, N,V,C,H
1
CPI
Rd,K
Compare Register with Immediate
Rd − K
Z, N,V,C,H
SBRC
Rr, b
Skip if Bit in Register Cleared
if (Rr(b)=0) PC ← PC + 2 or 3
None
1/2/3
1/2/3
1
SBRS
Rr, b
Skip if Bit in Register is Set
if (Rr(b)=1) PC ← PC + 2 or 3
None
1/2/3
SBIC
P, b
Skip if Bit in I/O Register Cleared
if (P(b)=0) PC ← PC + 2 or 3
None
1/2/3
SBIS
P, b
Skip if Bit in I/O Register is Set
if (P(b)=1) PC ← PC + 2 or 3
None
1/2/3
BRBS
s, k
Branch if Status Flag Set
if (SREG(s) = 1) then PC←PC+k + 1
None
1/2
BRBC
s, k
Branch if Status Flag Cleared
if (SREG(s) = 0) then PC←PC+k + 1
None
1/2
BREQ
k
Branch if Equal
if (Z = 1) then PC ← PC + k + 1
None
1/2
BRNE
k
Branch if Not Equal
if (Z = 0) then PC ← PC + k + 1
None
1/2
BRCS
k
Branch if Carry Set
if (C = 1) then PC ← PC + k + 1
None
1/2
BRCC
k
Branch if Carry Cleared
if (C = 0) then PC ← PC + k + 1
None
1/2
BRSH
k
Branch if Same or Higher
if (C = 0) then PC ← PC + k + 1
None
1/2
BRLO
k
Branch if Lower
if (C = 1) then PC ← PC + k + 1
None
1/2
BRMI
k
Branch if Minus
if (N = 1) then PC ← PC + k + 1
None
1/2
BRPL
k
Branch if Plus
if (N = 0) then PC ← PC + k + 1
None
1/2
BRGE
k
Branch if Greater or Equal, Signed
if (N ⊕ V= 0) then PC ← PC + k + 1
None
1/2
BRLT
k
Branch if Less Than Zero, Signed
if (N ⊕ V= 1) then PC ← PC + k + 1
None
1/2
BRHS
k
Branch if Half Carry Flag Set
if (H = 1) then PC ← PC + k + 1
None
1/2
BRHC
k
Branch if Half Carry Flag Cleared
if (H = 0) then PC ← PC + k + 1
None
1/2
BRTS
k
Branch if T Flag Set
if (T = 1) then PC ← PC + k + 1
None
1/2
BRTC
k
Branch if T Flag Cleared
if (T = 0) then PC ← PC + k + 1
None
1/2
BRVS
k
Branch if Overflow Flag is Set
if (V = 1) then PC ← PC + k + 1
None
1/2
BRVC
k
Branch if Overflow Flag is Cleared
if (V = 0) then PC ← PC + k + 1
None
1/2
BRIE
k
Branch if Interrupt Enabled
if ( I = 1) then PC ← PC + k + 1
None
1/2
BRID
k
Branch if Interrupt Disabled
if ( I = 0) then PC ← PC + k + 1
None
1/2
BIT AND BIT-TEST INSTRUCTIONS
SBI
P,b
Set Bit in I/O Register
I/O(P,b) ← 1
None
2
CBI
P,b
Clear Bit in I/O Register
I/O(P,b) ← 0
None
2
LSL
Rd
Logical Shift Left
Rd(n+1) ← Rd(n), Rd(0) ← 0
Z,C,N,V
1
LSR
Rd
Logical Shift Right
Rd(n) ← Rd(n+1), Rd(7) ← 0
Z,C,N,V
1
ROL
Rd
Rotate Left Through Carry
Rd(0)←C,Rd(n+1)← Rd(n),C←Rd(7)
Z,C,N,V
1
9
2588BS–AVR–11/06
Mnemonics
Operands
Description
Operation
Flags
#Clocks
ROR
Rd
Rotate Right Through Carry
Rd(7)←C,Rd(n)← Rd(n+1),C←Rd(0)
Z,C,N,V
1
ASR
Rd
Arithmetic Shift Right
Rd(n) ← Rd(n+1), n=0..6
Z,C,N,V
1
SWAP
Rd
Swap Nibbles
Rd(3..0)←Rd(7..4),Rd(7..4)←Rd(3..0)
None
1
BSET
s
Flag Set
SREG(s) ← 1
SREG(s)
1
BCLR
s
Flag Clear
SREG(s) ← 0
SREG(s)
1
BST
Rr, b
Bit Store from Register to T
T ← Rr(b)
T
1
BLD
Rd, b
Bit load from T to Register
Rd(b) ← T
None
1
SEC
Set Carry
C←1
C
1
CLC
Clear Carry
C←0
C
1
SEN
Set Negative Flag
N←1
N
1
CLN
Clear Negative Flag
N←0
N
1
SEZ
Set Zero Flag
Z←1
Z
1
CLZ
Clear Zero Flag
Z←0
Z
1
SEI
Global Interrupt Enable
I←1
I
1
CLI
Global Interrupt Disable
I←0
I
1
SES
Set Signed Test Flag
S←1
S
1
CLS
Clear Signed Test Flag
S←0
S
1
SEV
Set Twos Complement Overflow.
V←1
V
1
CLV
Clear Twos Complement Overflow
V←0
V
1
SET
Set T in SREG
T←1
T
1
CLT
Clear T in SREG
T←0
T
1
SEH
CLH
Set Half Carry Flag in SREG
Clear Half Carry Flag in SREG
H←1
H←0
H
H
1
Rd ← Rr
Rd+1:Rd ← Rr+1:Rr
None
1
None
1
1
1
DATA TRANSFER INSTRUCTIONS
MOV
Rd, Rr
Move Between Registers
MOVW
Rd, Rr
Copy Register Word
LDI
Rd, K
Load Immediate
Rd ← K
None
LD
Rd, X
Load Indirect
Rd ← (X)
None
2
LD
Rd, X+
Load Indirect and Post-Inc.
Rd ← (X), X ← X + 1
None
2
2
LD
Rd, - X
Load Indirect and Pre-Dec.
X ← X - 1, Rd ← (X)
None
LD
Rd, Y
Load Indirect
Rd ← (Y)
None
2
LD
Rd, Y+
Load Indirect and Post-Inc.
Rd ← (Y), Y ← Y + 1
None
2
2
LD
Rd, - Y
Load Indirect and Pre-Dec.
Y ← Y - 1, Rd ← (Y)
None
LDD
Rd,Y+q
Load Indirect with Displacement
Rd ← (Y + q)
None
2
LD
Rd, Z
Load Indirect
Rd ← (Z)
None
2
LD
Rd, Z+
Load Indirect and Post-Inc.
Rd ← (Z), Z ← Z+1
None
2
LD
Rd, -Z
Load Indirect and Pre-Dec.
Z ← Z - 1, Rd ← (Z)
None
2
LDD
Rd, Z+q
Load Indirect with Displacement
Rd ← (Z + q)
None
2
LDS
Rd, k
Load Direct from SRAM
Rd ← (k)
None
2
ST
X, Rr
Store Indirect
(X) ← Rr
None
2
ST
X+, Rr
Store Indirect and Post-Inc.
(X) ← Rr, X ← X + 1
None
2
ST
- X, Rr
Store Indirect and Pre-Dec.
X ← X - 1, (X) ← Rr
None
2
ST
Y, Rr
Store Indirect
(Y) ← Rr
None
2
ST
Y+, Rr
Store Indirect and Post-Inc.
(Y) ← Rr, Y ← Y + 1
None
2
ST
- Y, Rr
Store Indirect and Pre-Dec.
Y ← Y - 1, (Y) ← Rr
None
2
STD
Y+q,Rr
Store Indirect with Displacement
(Y + q) ← Rr
None
2
ST
Z, Rr
Store Indirect
(Z) ← Rr
None
2
ST
Z+, Rr
Store Indirect and Post-Inc.
(Z) ← Rr, Z ← Z + 1
None
2
ST
-Z, Rr
Store Indirect and Pre-Dec.
Z ← Z - 1, (Z) ← Rr
None
2
STD
Z+q,Rr
Store Indirect with Displacement
(Z + q) ← Rr
None
2
STS
k, Rr
Store Direct to SRAM
(k) ← Rr
None
2
Load Program Memory
R0 ← (Z)
None
3
LPM
LPM
Rd, Z
Load Program Memory
Rd ← (Z)
None
3
LPM
Rd, Z+
Load Program Memory and Post-Inc
Rd ← (Z), Z ← Z+1
None
3
Store Program Memory
(z) ← R1:R0
None
IN
Rd, P
In Port
Rd ← P
None
OUT
P, Rr
Out Port
P ← Rr
None
1
PUSH
Rr
Push Register on Stack
STACK ← Rr
None
2
POP
Rd
Pop Register from Stack
Rd ← STACK
None
2
SPM
1
MCU CONTROL INSTRUCTIONS
NOP
No Operation
None
1
SLEEP
Sleep
(see specific descr. for Sleep function)
None
1
WDR
BREAK
Watchdog Reset
Break
(see specific descr. for WDR/Timer)
For On-chip Debug Only
None
None
1
N/A
10
ATtiny261/461/861
2588BS–AVR–11/06
ATtiny261/461/861
6. Ordering Information
6.1
ATtiny261
Speed (MHz)(3)
10
20
Notes:
Power Supply
Ordering Code(2)
Package(1)
1.8 - 5.5V
ATtiny261V-10MU
ATtiny261V-10PU
ATtiny261V-10SU
32M1-A
20P3
20S2
Industrial
(-40°C to 85°C)
2.7 - 5.5V
ATtiny261-20MU
ATtiny261-20PU
ATtiny261-20SU
32M1-A
20P3
20S2
Industrial
(-40°C to 85°C)
Operational Range
1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information
and minimum quantities.
2. Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also
Halide free and fully Green.
3. For Speed vs. VCC,see Figure 23.3 on page 187
Package Type
32M1-A
32-pad, 5 x 5 x 1.0 mm Body, Lead Pitch 0.50 mm, Micro Lead Frame Package (MLF)
20P3
20-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)
20S2
20-lead, 0.300" Wide, Plastic Gull Wing Small Outline Package (SOIC)
11
2588BS–AVR–11/06
6.2
ATtiny461
Speed (MHz)(3)
Power Supply
Ordering Code(2)
Package(1)
10
1.8 - 5.5V
ATtiny461V-10MU
ATtiny461V-10PU
ATtiny461V-10SU
32M1-A
20P3
20S2
Industrial
(-40°C to 85°C)
20
2.7 - 5.5V
ATtiny461-20MU
ATtiny461-20PU
ATtiny461-20SU
32M1-A
20P3
20S2
Industrial
(-40°C to 85°C)
Notes:
Operational Range
1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information
and minimum quantities.
2. Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also
Halide free and fully Green.
3. For Speed vs. VCC,see Figure 23.3 on page 187
Package Type
32M1-A
32-pad, 5 x 5 x 1.0 mm Body, Lead Pitch 0.50 mm, Micro Lead Frame Package (MLF)
20P3
20-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)
20S2
20-lead, 0.300" Wide, Plastic Gull Wing Small Outline Package (SOIC)
12
ATtiny261/461/861
2588BS–AVR–11/06
ATtiny261/461/861
6.3
ATtiny861
Speed (MHz)(3)
Power Supply
Ordering Code(2)
Package(1)
10
1.8 - 5.5V
ATtiny861V-10MU
ATtiny861V-10PU
ATtiny861V-10SU
32M1-A
20P3
20S2
Industrial
(-40°C to 85°C)
20
2.7 - 5.5V
ATtiny861-20MU
ATtiny861-20PU
ATtiny861-20SU
32M1-A
20P3
20S2
Industrial
(-40°C to 85°C)
Notes:
Operational Range
1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information
and minimum quantities.
2. Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also
Halide free and fully Green.
3. For Speed vs. VCC,see Figure 23.3 on page 187
Package Type
32M1-A
32-pad, 5 x 5 x 1.0 mm Body, Lead Pitch 0.50 mm, Micro Lead Frame Package (MLF)
20P3
20-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)
20S2
20-lead, 0.300" Wide, Plastic Gull Wing Small Outline Package (SOIC)
13
2588BS–AVR–11/06
7. Packaging Information
7.1
32M1-A
D
D1
1
2
3
0
Pin 1 ID
E1
SIDE VIEW
E
TOP VIEW
A3
A2
A1
A
K
0.08 C
P
D2
1
2
3
P
Pin #1 Notch
(0.20 R)
COMMON DIMENSIONS
(Unit of Measure = mm)
SYMBOL
MIN
NOM
MAX
A
0.80
0.90
1.00
A1
–
0.02
0.05
A2
–
0.65
1.00
A3
E2
b
K
0.20 REF
0.18
e
L
BOTTOM VIEW
D1
4.75 BSC
2.95
E1
E2
3.10
3.25
5.00 BSC
4.75BSC
2.95
e
Note: JEDEC Standard MO-220, Fig. 2 (Anvil Singulation), VHHD-2.
0.30
5.00 BSC
E
b
0.23
D
D2
NOTE
3.10
3.25
0.50 BSC
L
0.30
0.40
0.50
P
–
–
0.60
o
12
0
–
K
0.20
–
–
–
8/19/04
R
14
2325 Orchard Parkway
San Jose, CA 95131
TITLE
32M1-A, 32-pad, 5 x 5 x 1.0 mm Body, Lead Pitch 0.50 mm,
3.10 mm Exposed Pad, Micro Lead Frame Package (MLF)
DRAWING NO.
32M1-A
REV.
D
ATtiny261/461/861
2588BS–AVR–11/06
ATtiny261/461/861
7.2
20P3
D
PIN
1
E1
A
SEATING PLANE
A1
L
B
B1
e
E
COMMON DIMENSIONS
(Unit of Measure = mm)
C
eC
eB
Notes:
1. This package conforms to JEDEC reference MS-001, Variation AD.
2. Dimensions D and E1 do not include mold Flash or Protrusion.
Mold Flash or Protrusion shall not exceed 0.25 mm (0.010").
SYMBOL
MIN
NOM
MAX
A
–
–
5.334
A1
0.381
–
–
D
25.493
–
25.984
E
7.620
–
8.255
E1
6.096
–
7.112
B
0.356
–
0.559
B1
1.270
–
1.551
L
2.921
–
3.810
C
0.203
–
0.356
eB
–
–
10.922
eC
0.000
–
1.524
e
NOTE
Note 2
Note 2
2.540 TYP
1/12/04
R
2325 Orchard Parkway
San Jose, CA 95131
TITLE
20P3, 20-lead (0.300"/7.62 mm Wide) Plastic Dual
Inline Package (PDIP)
DRAWING NO.
20P3
REV.
C
15
2588BS–AVR–11/06
7.3
16
20S2
ATtiny261/461/861
2588BS–AVR–11/06
ATtiny261/461/861
8. Errata
8.1
Errata ATtiny261
The revision letter in this section refers to the revision of the ATtiny261 device.
8.1.1
Rev A
No known errata.
8.2
Errata ATtiny461
The revision letter in this section refers to the revision of the ATtiny461 device.
8.2.1
Rev B
Yield improvement. No known errata.
8.2.2
Rev A
No known errata.
8.3
Errata ATtiny861
The revision letter in this section refers to the revision of the ATtiny861 device.
8.3.1
Rev B
No known errata.
8.3.2
Rev A
Not sampled.
17
2588BS–AVR–11/06
9. Datasheet Revision History
9.1
Rev. 2588A – 11/06
1.
2.
9.2
Rev. 2588A – 10/06
1.
18
Updated ”Ordering Information” on page 222.
Updated ”Packaging Information” on page 225.
Initial Revision.
ATtiny261/461/861
2588BS–AVR–11/06
Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600
Regional Headquarters
Europe
Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500
Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369
Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581
Atmel Operations
Memory
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314
RF/Automotive
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
Tel: (49) 71-31-67-0
Fax: (49) 71-31-67-2340
Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314
La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18
Fax: (33) 2-40-18-19-60
ASIC/ASSP/Smart Cards
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759
Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom
Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00
Fax: (33) 4-76-58-34-80
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759
Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
Tel: (44) 1355-803-000
Fax: (44) 1355-242-743
Literature Requests
www.atmel.com/literature
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT
OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Atmel’s products are not
intended, authorized, or warranted for use as components in applications intended to support or sustain life.
© 2006 Atmel Corporation. All rights reserved. ATMEL ®, logo and combinations thereof, Everywhere You Are ®, AVR ®, AVR Studio ®, and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.
2588BS–AVR–11/06
Similar pages