AVAGO ACPM-7332 High efficiency at max output power Datasheet

ACPM-7332
UMTS Band2 (1850-1910MHz) 4x4mm Power Amplifier Module
Data Sheet
Description
Features
The ACPM-7332 is
��� a�� fully
������ matched
�������� 10-pin
������� ��������
surface ������
mount
module developed for UMTS Band2. This power amplifier
module operates in the 1850-1910MHz bandwidth. The
ACPM-7332 meets
������ stringent
���������������
UMTS linearity
���������� requirements
�������������
up ���������
to 2�����
9����
dBm output
������� power�
������ (Rel99)������
�������������
. The ��������
4�������
mmx����
4���
mm �����
form
factor pa������
��������
ckage is
��� self
����� contained,
����������� incorporating
��������������������
50ohm
input and output matching networks.
•�����
Thin ��������
Package �������
(0.9mm ����
typ)
The ACPM-7332 features 5
�th generation of ��������
CoolPAM ��������
circuit
technology ���������������
which ���������
supports���
��
3 ������
power ������
modes ��–���������
��������
bypass, ����
mid
and high power modes. The CoolPAM is
��� stage
�������������
bypass
technology���������������
enhancing PAE �������������
(power added efficiency)
���������������
at
low and medium power range. Active bypass feature is
added to 5th generation to enhance PAE further at low
output� range.
������������
This helps
������ to
����������
extend talk
����� time.
�����
The power ����������
amplifier� is
��� manufactured
������������� on
��� an
��� advanced
���������
InGaP HBT (hetero-junction Bipolar Transistor) MMIC
(microwave monolithic integrated circuit) technology
offering state-of-the-art reliability��
�������������, temperature
����������������������
stability
and ruggedness.
•����������
Excellent ����������
Linearity
•�������
3-mode ������
power �������������
control with ��������
Vbp and �����
Vmode
– Bypass / Mid Power Mode / High Power Mode
•����������������
High Efficiency ���
at ����
max �������
output �����
power
• �������
10-pin ��������
surface ���������
mounting �������
package
•���������������
Internal 50ohm ������������������
matching networks ���������
for both ���
RF ������
input
and output
•Lead-free, RoHS compliant, Green
Applications
•����������
UMTS Band2
Ordering Information�
Part Number
Number of Devices Container
ACPM-7332-TR1
1,000
178mm (7”) Tape/Reel
ACPM-7332-BLK
100
BULK
Block Diagram
Ven(5)
Vcc1(1)
Bias Circuit & Control Logic
Vmode(4)
Vbp(3)
Vcc2(10)
RF In(2)
Inter-Stage
Match
Input Match &
Power Divider
Bypass
Circuit
Output
Match
Impedence
Transformer
RF Out(8)
Absolute Maximum Ratings
No damage assuming only one parameter is set at limit at a time with all other parameters��������
set
�������
at or
�����������������������
below nominal value.
Operation of any single parameter outside these conditions with the remaining parameters set at or below nominal
values may result in permanent damage.
Description
Min.
RF Input Power (Pin)
Typ.
Max.
Unit
0
10*
dBm
DC Supply Voltage (Vcc1, Vcc2)
0
3.4
5.0
V
Enable Voltage (Ven)
0
2.6
3.3
V
Mode Control Voltage (Vmode)
0
2.6
3.3
V
Bypass Control (Vbp)
0
2.6
3.3
V
Storage Temperature (Tstg)
-55
25
+125
°C
* High Power Mode (5dBm for Bypass and Mid Power Mode)
Recommended Operating Condition
Description
Min.
Typ.
Max.
Unit
DC Supply Voltage (Vcc1, Vcc2)
3.2
3.4
4.2
V
Low
High
0
1.35
0
2.6
0.5
3.1
V
V
Low
High
0
1.35
0
2.6
0.5
3.1
V
V
Low
High
0
1.35
0
2.6
0.5
3.1
V
V
1910
MHz
85
°C
Enable Voltage (Ven)
Mode Control Voltage (Vmode)
Bypass Control Voltage (Vbp)
Operating Frequency (fo)
1850
Ambient Temperature (Ta)
-20
25
Operating Logic Table
Power Mode
Ven
Vmode
Vbp
Pout (Rel99)
Pout (HSDPA, HSUPA MPR=0dB)
High Power Mode
High
Low
Low
~ 29 dBm
~ 28 dBm
Mid Power Mode
High
High
Low
~ 17 dBm
~ 16 dBm
Bypass Mode
High
High
High
~ 8 dBm
~ 7 dBm
Shut Down Mode
Low
Low
Low
–
–
Electrical Characteristics for WCDMA Mode
– Conditions: Vcc = 3.4V, Ven = 2.6V��, ����������
T = 25°C, ����������������
Zin/Zout = 50ohm
– Signal Configuration:������
3GPP (��������
���������
DPCCH + 1DPDCH����������
����������������
)���������
Up-Link
�������� unless
������� specified
���������� otherwise.
����������
Characteristics
Condition
Min.
Typ.
Max.
Unit
1850
–
1910
MHz
High Power Mode, Pout=29dBm
25
28
dB
Mid Power Mode, Pout=17dBm
16
21
dB
Bypass Mode, Pout=8dBm
8
11
16
dB
Operating Frequency Range
Gain
GPS Band Gain relative to Tx Gain, HPM
Ggps@Pin=-15dBm – Gtx@Pout=29dBm
-4
-1
dB
Rx Band Gain relative to Tx Gain, HPM
Grx@Pin=-15dBm – Gtx@Pout=29dBm
-2
-1
dB
ISM Band Gain relative to Tx Gain, HPM
Gism@Pin=-15dBm – Gtx@Pout=29dBm
-23
-4
dB
Power Added Efficiency
High Power Mode, Pout=29dBm
36.7
40.6
%
Mid Power Mode, Pout=17dBm
14.6
19.5
%
Bypass Mode, Pout=8dBm
8.5
12.7
%
Total Supply Current
Quiescent Current
High Power Mode, Pout=29dBm
575
635
mA
Mid Power Mode, Pout=17dBm
75
100
mA
Bypass Mode, Pout=8dBm
13.5
20
mA
High Power Mode
75
100
125
mA
Mid Power Mode
15
25
35
mA
Bypass Mode
2
3
4
mA
High Power Mode
10
25
µA
Mid Power Mode
10
25
µA
Bypass Mode
10
25
µA
Mid Power Mode
5
25
µA
Bypass Mode
5
25
µA
Bypass Control Current
Bypass
5
25
µA
Total Current in Power-down mode
Ven=0V, Vmode=0V, Vbp=0V
5
µA
Adjacent Channel
Leakage Ratio
5 MHz offset
10 MHz offset
High Power Mode, Pout=29dBm
-41
-53
-37
-47
dBc
dBc
5 MHz offset
10 MHz offset
High Power Mode, Pout=28dBm
(HSDPA, HSUPA MPR=0dB)
-40
-52
-36
-47
dBc
dBc
5 MHz offset
10 MHz offset
Mid Power Mode, Pout=17dBm
-48
-61
-37
-47
dBc
dBc
5 MHz offset
10 MHz offset
Mid Power Mode, Pout=16dBm
(HSDPA, HSUPA MPR=0dB)
-47
-61
-37
-47
dBc
dBc
5 MHz offset
10 MHz offset
Bypass Mode, Pout=8dBm
-42
-54
-37
-47
dBc
dBc
5 MHz offset
10 MHz offset
Bypass Mode, Pout=7dBm
(HSDPA, HSUPA MPR=0dB)
-41
-53
-37
-47
dBc
dBc
Enable Current
Mode Control Current
Electrical Characteristics for WCDMA Mode
– Conditions: Vcc = 3.4V, Ven = 2.6V��, ����������
T = 25°C, ����������������
Zin/Zout = 50ohm
– Signal Configuration:������
3GPP (��������
���������
DPCCH + 1DPDCH����������
����������������
)���������
Up-Link
�������� unless
������� specified
���������� otherwise.
����������
Characteristics
Condition
Harmonic Suppression
Second
Third
Gain at Harmonics
Second and Third
High Power Mode, Pout=29dBm
Input VSWR
Min.
Typ.
Max.
Unit
-46
-63
-35
-40
dBc
dBc
0
dB
1.8
Stability (Spurious Output)
Load VSWR 5:1, All phase
Noise Power in Rx Band (Vcc=4.2V)
High Power Mode, Pout=29dBm
GPS Band Noise (Vcc=4.2V)
2.5:1
-60
dBc
-136.5
-135
dBm/Hz
High Power Mode, Pout=29dBm
-141
-138
dBm/Hz
ISM Band Noise (Vcc=4.2V)
High Power Mode, Pout=29dBm
-150
-144
Phase Discontinuity
HPM↔MPM, Pout=17dBm
MPM↔BPM, Pout=8dBm
12
8
45
45
deg
deg
Ruggedness
Pout<28.25dBm & Pin<5dBm, All phase,
High Power Mode
8:1
VSWR
1. HSDPA
- 3GPP TS 34.121-1
- User Equipment (UE) conformance specification; Radio transmission and reception (FDD); Part 1: Conformance specification
- Annex C (normative): Measurement channels
- C.10.1 UL reference measurement channel for HSDPA tests
- Table C.10.1.4: β values for transmitter characteristics tests with HS-DPCCH
- Sub-test 2 (CM=1.0dB, MPR=0.0dB)
2. HSUPA
- 3GPP TS 34.121-1
- User Equipment (UE) conformance specification; Radio transmission and reception (FDD); Part 1: Conformance specification
- Annex C (normative): Measurement channels
- C.11.1 UL reference measurement channel for E-DCH tests
- Table C.11.1.3: β values for transmitter characteristics tests with HS-DPCCH and E-DCH
- Sub-test 1 (CM=1.0dB, MPR=0.0dB)
Footprint
All dimensions are in millimeter
PIN Description
0.40
1.90 1.70
0.40
0.10
0.85
Pin #
Name
Description
1
Vcc1
DC Supply Voltage
2
RFin
RF Input
3
Vbp
Bypass Control
4
Vmode
Mode Control
5
Ven
PA Enable
6
GND
Ground
7
GND
Ground
8
RFout
RF Output
9
GND
Ground
10
Vcc2
DC Supply Voltage
1.90
1.20
X-Ray Top View
Package Dimensions
All dimensions are in millimeter
0.6
Pin 1 Mark
1
10
2
9
3
8
4
7
5
6
4 ± 0.1
4 ± 0.1
0.9 ± 0.1
Marking Specification
Pin 1 Mark
AVAGO
ACPM-7332
Manufacturing Part Number
PYYWW
Lot Number
P
Manufacturing info
YY
Manufacturing Year
WW
Work Week
AAAAA Assembly Lot Number
AAAAA
CoolPAM
Mode control p���
����
ins
Avago Technologies’ CoolPAM is stage-bypass PA technology which saves more power compared with conventional PA. With this technology, the ACPM-7332 has very low
quiescent current, and efficiencies at low and medium
output power ranges are high.
Vmode and Vbp are digitally controlled by baseband and
they control the operating mode of the PA. The operating
logic table is summarized on the page 2. These pins do not
require constant voltage for interface.
Incorporation of bias circuit
The ACPM-7332 has internal bias circuit, which removes
the need for external constant voltage source (LDO). PA
on/off is controlled by Ven. This is digitally control pin.
UMTS PA performance comparison
– CoolPAM 4 and CoolPAM 5
450
400
350
The ACPM-7332 supports three power modes (bypass
power mode/mid power mode/high power mode) with
two mode control pins (Vmode and Vbp). This control
scheme enables the ACPM-7332 to save power consumption more, which accordingly gives extended talk time.
Current (mA)
3-mode p���������������������������������������
����������������������������������������
ower c���������������������������������
����������������������������������
ontrol with two mode control pins
200
150
0
-10
Current (mA)
Talk time is extended�
��������� more
��������
as ��������
average ��������
current consump��������
tion� is
��� lowered.
��������
250
50
Average current & Talk time
Average current = ƒ (PDF x Current)dp
300
100
PDF (probability density function) showing distribution
of output power of mobile in real field gives motivation
for stage-bypass PA. Output power is less than 16dBm for
most of operating time (during talking), so it is important
to save power consumption at low and medium output
power ranges.
Average current consumed by PA can be calculated by
summing up current at each output power weighted with
probability. So it is expressed with integration of multiplication of current and probability at each output power.
CP5
CP4
70
65
60
55
50
45
40
35
30
25
20
15
10
5
0
-10 -8
0
10
Pout(dBm)
20
30
CP5
CP4
-6
-4
-2
0
2 4 6
Pout(dBm)
8
10 12 14 16
Icc Comparison of CP5 to CP4 (Avago CoolPAM)
The 5th generation of CoolPAM technology, ACPM-7332
can dramatically reduce Icc down to 3mA at bypass mode,
which improves overall talk time and battery usage time
of handset more compared with the CP4.
Figure 1. PDF and Current
Application on mobile phone board
PCB layout and part placement on phone board
Application example in mobile is shown below. C4 and C5
should be placed close to pin1 and pin10. Bypass cap C1,
C2 and C3 should be also placed nearby from pin5, pin4
and pin3, respectively. The length of post-PA transmission
line should be minimized to reduce line loss.
Peripheral Circuits
C5
output matching circuit
C9
TX
filter
Vcc1
IN
Vbp
Vmode
Ven
C3
C2
BB
PA_R1
PA_R0
PA_ON
Vcc2
GND
OUT
GND
GND
ACPM-7332
C1
Via hole
PCB guideline on phone board
C6
C4
1
2
4
VBATT
RF In
3
C8
C7
Coupler
L1
RF Out
Note
1. To prevent ��������������
voltage ������
drop, �����
make ���������
the bias ������
lines ���
as ��������
wide as ���������
p��������
ossible ������
(�����
P����
ink
line).
2. Use many via�������
hole��s ���
to ������
fence �������
off PA ���
RF ����������
in��������
put and �������
out����
put �������
traces ����
for
better i������������������������
solation. ��������������
O�������������
utput signal� ���
of ��������������
the PA��������
should ���
be ���������
isolated �����
from
input �����������
signal and ����
the �������������������������������������
receive signal�����������������������
. Output signal should �������
not be ����
fed
into PA input. (Green line)
3. Use via�������
hole��s ���
to ��������
connect ������
outer ground
������� plates�
������� to
��� internal
��������� ground
�������
plane��������
s�������
. �����
They �����������������
help ������������
heat spread ����
out more
������������
easily and
���� accordingly
������������ the
����
board temperature can be lowered. �����
T����
hey ����������
also �����
help� ���
to ��������
improve ���
RF
stability (���������������
Y��������������
ellow square).
4. PA which has a �������
ground������
slug
����� requires
��������� many
����� via�������
���� ������
holes�������
������
which ���
go ��������
through
all the layers
������� (����
�����
R���
ed square).
��������
Metallization
PCB Design Guidelines
The recommended PCB land pattern is shown in figures
on the left side. The substrate is coated with solder mask
between the I/O and conductive paddle to protect the
gold pads from short circuit that is caused by solder
bleeding/bridging.
on 0.6mm pitch
Ø 0.3mm
0.5
0.25
0.85
Stencil Design Guidelines
A properly designed solder screen or stencil is required
to ensure optimum amount of solder paste is deposited
onto the PCB pads.
The recommended stencil layout is shown here. Reducing
the stencil opening can potentially generate more voids.
On the other hand, stencil openings larger than 100% will
lead to excessive solder paste smear or bridging across
the I/O pads or conductive paddle to adjacent I/O pads.
Considering the fact that solder paste thickness will
directly affect the quality of the solder joint, a good choice
is to use laser cut stencil composed of 0.100mm(4mils) or
0.127mm(5mils) thick stainless steel which is capable of
producing the required fine stencil outline.
0.4
0.6
Solder Mask Opening
0.7
0.55
0.5
1.8
0.85
2.4
Solder Paste Stencil Aperture
0.6
0.5
0.4
1.6
0.85
2.0
Evaluation Board Schematic
Vcc1
RF In
C5
2.2uF
C4
1000pF
Vmode1
Vmode0
C3
100pF
Ven
C2
100pF
C1
100pF
1 Vcc1
Vcc2 10
2 RF In
GND 9
RF Out 8
3 Vbp
4 Vmode
GND 7
5 Ven
GND 6
Evaluation Board Description
C7
C5
C4
C6
AVAGO
ACPM-7332
PYYWW
AAAAA
C3
C2
C1
C5
C7
Vcc2
C6
1000pF
C7
2.2uF
RF Out
Tape and Reel Information
AVAGO
ACPM-7332
PYYWW
AAAAA
Dimension List
Annote
Millimeter
Annote
Millimeter
A0
4.40±0.10
P2
2.00±0.05
B0
4.40±0.10
P10
40.00±0.20
K0
1.70±0.10
E
1.75±0.10
D0
1.55±0.05
F
5.50±0.05
D1
1.60±0.10
W
12.00±0.30
P0
4.00±0.10
T
0.30±0.05
P1
8.00±0.10
Tape and Reel Format – 4 mm x 4 mm.
10
Reel Drawing
BACK VIEW
Shading indicates
thru slots
18.4 max.
178 +0.4
-0.2
50 min.
25
min wide (ref)
Slot for carrier tape
insertion for attachment
to reel hub (2 places 180° apart)
12.4 +2.0
-0.0
FRONT VIEW
1.5 min.
13.0 ± 0.2
21.0 ± 0.8
Plastic Reel Format (all dimensions are in millimeters)
11
NOT��S:
�. �ee� ��h���� be ���be�e�� w��h �he �����w����
�������������� ����� �� ���������.
��. �������������e��� �����e �� �����b��
b. Av���� Te�h�������e�� ����� ����be�
�. ����h����e ����e� ����be�
��. �����e ����e
e. ����������� �� �������
2. A �e��� ����e �� �����������e �� �� �� ��h����
be ������e�� ������ ������������� e���h ��h���e���
�� ��������.
3. �ee� ����� ���� be �����e w��h �� ����������
�z���e ��e��e����� ����e�������.
�. A�� ����e���������� ��� ������e�e��� ����
Handling and Storage
ESD (Electrostatic Discharge)
Electrostatic discharge occurs naturally in the environment. With the increase in voltage potential, the outlet of
neutralization or discharge will be sought. If the acquired
discharge route is through a semiconductor device, destructive damage will result.
The out of bag exposure time maximum limits are determined by the classification test describe below which
corresponds to a MSL classification level 6 to 1 according
to the JEDEC standard IPC/JEDEC J-STD-020B and J-STD033.
ESD countermeasure methods should be developed and
used to control potential ESD damage during handling in
a factory environment at each manufacturing site.
ACPM-7332 is MSL3. Thus, according to the J-STD-033
p.11 the maximum Manufacturers Exposure Time (MET)
for this part is 168 hours. After this time period, the part
would need to be removed from the reel, de-taped and
then re-baked. MSL classification reflow temperature for
the ACPM-7332 is targeted at 260°C +0/-5°C. Figure and
table on next page show typical SMT profile for maximum
temperature of 260 +0/-5°C.
MSL (Moisture Sensitivity Level)
Plastic encapsulated surface mount package is sensitive to
damage induced by absorbed moisture and temperature.
Avago Technologies follows JEDEC Standard J-STD 020B.
Each component and package type is classified for
moisture sensitivity by soaking a known dry package at
various temperatures and relative humidity, and times.
After soak, the components are subjected to three consecutive simulated reflows.
Moisture Classification Level and Floor Life
MSL Level
Floor Life (out of bag) at factory ambient = < 30°C/60% RH or as stated
1
Unlimited at = < 30°C/85% RH
2
1 year
2a
4 weeks
3
168 hours
4
72 hours
5
48 hours
5a
24 hours
6
Mandatory bake before use. After bake, must be reflowed within the time limit specified on the label
Note :
1. The MSL Level is marked on the MSL Label on each shipping bag.
12
Reflow Profile Recommendations
tp
Tp
Critical Zone
TL to Tp
Ramp-up
Temperature
TL
tL
Tsmax
Tsmin
Ramp-down
ts
Preheat
25
t 25°C to Peak
Time
Typical SMT Reflow Profile for Maximum Temperature = 260 +0/-5°C.
Typical SMT Reflow Profile for Maximum Temperature = 260 +0/-5°C
Profile Feature
Sn-Pb Solder
Pb-Free Solder
Average ramp-up rate (TL to TP)
3°C/sec max
3°C/sec max
Preheat
– Temperature Min (Tsmin)
– Temperature Max (Tsmax)
– Time (min to max) (ts)
100°C
150°C
60-120 sec
150°C
200°C
60-180 sec
Tsmax to TL
– Ramp-up Rate
3°C/sec max
Time maintained above:
– Temperature (TL)
– Time (TL)
183°C
60-150 sec
217°C
60-150 sec
Peak temperature (Tp)
240 +0/-5°C
260 +0/-5°C
Time within 5°C of actual Peak Temperature (tp)
10-30 sec
20-40 sec
Ramp-down Rate
6°C/sec max
6°C/sec max
Time 25°C to Peak Temperature
6 min max.
8 min max.
13
Storage Condition
Baking of Populated Boards
Packages described in this document must be stored
in sealed moisture barrier, antistatic bags. Shelf life in a
sealed moisture barrier bag is 12 months at <40°C and
90% relative humidity (RH) J-STD-033 p.7.
Some SMD packages and board materials are not able to
withstand long duration bakes at 125°C. Examples of this
are some FR-4 materials, which cannot withstand a 24 hr
bake at 125°C. Batteries and electrolytic capacitors are
also temperature sensitive. With component and board
temperature restrictions in mind, choose a bake temperature from Table 4-1 in J-STD 033; then determine the
appropriate bake duration based on the component to
be removed. For additional considerations see IPC-7711
andIPC-7721.
Out-of-Bag Time Duration�
After unpacking the device must be soldered to the PCB
within 168 hours as listed in the J-STD-020B p.11 with
factory conditions <30°C and 60% RH.
Baking
It is not necessary to re-bake the part if both conditions
(storage conditions and out-of bag conditions) have been
satisfied. Baking must be done if at least one of the conditions above have not been satisfied. The baking conditions are 125°C for 12 hours J-STD-033 p.8.
CAUTION
Tape and reel materials typically cannot be baked at the
temperature described above. If out-of-bag exposure
time is exceeded, parts must be baked for a longer time
at low temperatures, or the parts must be de-reeled, detaped, re-baked and then put back on tape and reel. (See
moisture sensitive warning label on each shipping bag for
information of baking).
Board Rework
Component Removal, Rework and Remount
If a component is to be removed from the board, it is
recommended that localized heating be used and the
maximum body temperatures of any surface mount
component on the board not exceed 200°C. This method
will minimize moisture related component damage. If any
component temperature exceeds 200°C, the board must
be baked dry per 4-2 prior to rework and/or component
removal. Component temperatures shall be measured at
the top center of the package body. Any SMD packages
that have not exceeded their floor life can be exposed to
a maximum body temperature as high as their specified
maximum reflow temperature.
Removal for Failure Analysis
Not following the above requirements��������������������
�������������������
may cause moisture/
reflow��������
�������
damage �����
that ������
could �������
hinder ���
or� �����������
completely ��������
prevent
the d�������������
��������������
etermination of
��� the
���� original
��������� failure�
�������� mechanism.
����������
14
Derating due to Factory Environmental Conditions
Factory floor life exposures for SMD packages removed
from the dry bags will be a function of the ambient environmental conditions. A safe, yet conservative, handling
approach is to expose the SMD packages only up to the
maximum time limits for each moisture sensitivity level
as shown in next table. This approach, however, does not
work if the factory humidity or temperature is greater
than the testing conditions of 30°C/60% RH. A solution
for addressing this problem is to derate the exposure
times based on the knowledge of moisture diffusion in
the component package materials ref. JESD22-A120).
Recommended equivalent total floor life exposures can
be estimated for a range of humidities and temperatures
based on the nominal plastic thickness for each device.
Table on next page lists equivalent derated floor lives for
humidities ranging from 20-90% RH for three temperature, 20°C, 25°C, and 30°C.
Table on next page is applicable to SMDs molded
with novolac, biphenyl or multifunctional epoxy mold
compounds. The following assumptions were used in calculating this table:
1. Activation Energy for diffusion = 0.35eV (smallest
known value).
2. For ≤60% RH, use Diffusivity = 0.121exp (-0.35eV/kT)
mm2/s (this used smallest known Diffusivity @ 30°C).
3. For >60% RH, use Diffusivity = 1.320exp (-0.35eV/kT)
mm2/s (this used largest known�������������
Diffusivity
������������ @
��������
30°C).
Recommended Equivalent Total Floor Life (days) @ 20°C, 25°C & 30°C, 35°C
For ICs with Novolac, Biphenyl and Multifunctional Epoxies (Reflow at same temperature at which the component was
classified) Maximum Percent Relative Humidity
Maximum Percent Relative Humidity
Package Type and
Moisture Sensitivity
Body Thickness
Level
Body Thickness ≥3.1 mm
Including PQFPs >84 pin,
PLCCs (square)
All MQFPs
or
All BGAs ≥1 mm
Level 2a
Level 3
Level 4
Level 5
Level 5a
Body 2.1 mm
≤ Thickness
<3.1 mm including
PLCCs (rectangular)
18-32 pin
SOICs (wide body)
SOICs ≥20 pins,
PQFPs ≤80 pins
Level 2a
Level 3
Level 4
Level 5
Level 5a
Body Thickness <2.1 mm
including SOICs <18 pin
All TQFPs, TSOPs
or
All BGAs <1 mm body
thickness
Level 2a
Level 3
Level 4
Level 5
Level 5a
15
5%
10%
20%
30%
40%
50%
60%
70%
80%
90%
∞
∞
∞
∞
∞
∞
∞
∞
∞
∞
∞
∞
∞
∞
∞
∞
∞
∞
∞
∞
∞
∞
∞
∞
∞
∞
∞
∞
∞
∞
∞
∞
∞
∞
∞
∞
∞
∞
∞
∞
∞
∞
∞
∞
∞
∞
∞
∞
∞
∞
∞
∞
∞
∞
∞
∞
∞
∞
∞
∞
∞
∞
∞
∞
∞
∞
∞
∞
3
5
6
8
2
4
5
7
1
2
3
5
∞
∞
∞
∞
∞
∞
∞
∞
5
7
9
11
3
4
5
6
1
2
2
3
∞
∞
∞
∞
∞
∞
∞
∞
∞
∞
∞
∞
∞
∞
∞
∞
7
10
13
18
94
124
167
231
8
10
13
17
3
4
5
7
2
3
5
7
1
1
2
4
∞
∞
∞
∞
12
19
25
32
4
5
7
9
2
3
4
5
1
1
2
2
∞
∞
∞
∞
∞
∞
∞
∞
∞
∞
∞
∞
7
13
18
26
2
3
5
6
44
60
78
103
7
9
11
14
3
4
5
7
2
3
4
6
1
1
2
3
∞
∞
∞
∞
9
12
15
19
3
4
5
7
2
3
3
5
1
1
2
2
∞
∞
∞
∞
∞
∞
∞
∞
7
9
12
17
3
5
6
8
1
2
3
4
32
41
53
69
6
8
10
13
2
4
5
7
2
2
4
5
1
1
2
3
58
86
148
∞
7
9
12
15
3
4
5
6
2
2
3
4
1
1
2
2
∞
∞
∞
∞
∞
∞
∞
∞
4
5
7
9
2
3
4
6
1
1
2
3
26
33
42
57
6
7
9
12
2
3
5
7
1
2
3
5
1
1
2
3
30
39
51
69
6
8
10
13
2
3
4
6
2
2
3
4
1
1
2
2
∞
∞
∞
∞
8
11
14
20
3
4
5
7
2
2
3
5
1
1
2
2
16
28
36
47
6
7
9
12
2
3
4
6
1
2
3
4
1
1
2
2
22
28
37
49
5
7
9
12
2
3
4
5
1
2
3
4
1
1
2
2
17
28
∞
∞
5
7
10
13
2
3
4
6
1
2
3
4
1
1
2
2
7
10
14
19
4
5
7
10
2
3
3
5
1
2
2
3
1
1
1
2
3
4
6
8
2
3
5
7
1
2
3
4
1
1
2
3
1
1
1
2
1
1
2
2
1
1
2
2
1
1
2
2
1
1
2
2
1
1
1
2
5
7
10
13
3
4
6
8
1
2
3
4
1
1
2
3
1
1
1
2
2
3
4
5
2
2
3
5
1
2
2
3
1
1
1
3
0.5
0.5
1
2
0.5
1
1
2
0.5
1
1
2
0.5
1
1
2
0.5
1
1
2
0.5
1
1
2
4
6
8
10
3
4
5
7
1
2
3
4
1
1
2
3
1
1
1
2
1
2
3
4
1
2
3
4
1
1
2
3
1
1
1
2
0.5
0.5
1
1
0.5
1
1
1
0.5
1
1
1
0.5
1
1
1
0.5
1
1
1
0.5
0.5
1
1
35°C
30°C
25°C
20°C
35°C
30°C
25°C
20°C
35°C
30°C
25°C
20°C
35°C
30°C
25°C
20°C
35°C
30°C
25°C
20°C
35°C
30°C
25°C
20°C
35°C
30°C
25°C
20°C
35°C
30°C
25°C
20°C
35°C
30°C
25°C
20°C
35°C
30°C
25°C
20°C
35°C
30°C
25°C
20°C
35°C
30°C
25°C
20°C
35°C
30°C
25°C
20°C
35°C
30°C
25°C
20°C
35°C
30°C
25°C
20°C
For product information and a complete list of distributors, please go to our web site:
www.avagotech.com
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries.
Data subject to change. Copyright © 2005-2009 Avago Technologies. All rights reserved.
AV02-1946EN - May 29, 2009
Similar pages