Renesas HA17901A Quadruple comparator Datasheet

HA17901A Series
Quadruple Comparators
REJ03D0806-0100
Rev.1.00
Mar 10, 2006
Description
The HA17901A series products are comparators designed for general purpose, especially for power control systems.
These ICs operate from a single power-supply voltage over a wide range of voltages, and feature a reduced powersupply current since the supply current is independent of the supply voltage.
These comparators have the merit which ground is included in the common-mode input voltage range at a singlevoltage power supply operation. These products have a wide range of applications, including limit comparators, simple
A/D converters, pulse/square-wave/time delay generators, wide range VCO circuits, MOS clock timers, multivibrators,
and high-voltage logic gates.
Features
•
•
•
•
•
•
•
Wide power-supply voltage range : 2 to 36 V
Very low supply current
: 0.8 mA Typ.
Low input bias current
: 25 nA Typ.
Low input offset current
: 5 nA Typ.
Low input offset voltage
: 2 mV Typ.
The common-mode input voltage range includes ground
Output voltages compatible with CMOS logic systems
Rev.1.00 Mar 10, 2006 page 1 of 15
HA17901A Series
• Low electro-magnetic susceptibility
Measurement Condition
Vcc
1k
1k
Vin
1V
−
5.0
5.1 kΩ
+
4.0
Vout
0.01 µF
Vout (V)
Vcc = 5 V
HA17901A Vout vs. Vin
6.0
−10 dBm
RF signal source
(for quasi-RF noise)
3.0
2.0
1.0
HA17901A (0 Hz)
HA17901A (10 MHz)
HA17901A (100 MHz)
0.0
−1.0
0.85
0.90
0.95
1.00
Vin (V)
1.05
1.10
1.15
HA17901 Vout vs. Vin
6.0
5.0
Vout (V)
4.0
3.0
2.0
1.0
HA17901 (0 Hz)
HA17901 (10 MHz)
HA17901 (100 MHz)
0.0
−1.0
0.85
0.90
0.95
1.00
Vin (V)
1.05
1.10
1.15
Ordering Information
Type No.
HA17901AP
HA17901AFP
HA17901ARP
HA17901AT
Application
Industry use
Rev.1.00 Mar 10, 2006 page 2 of 15
Package Name
DIP-14 pin
SOP-14 pin (JEITA)
SOP-14 pin (JEDEC)
TSSOP-14 pin
Package Code
PRDP0014AB-B
PRSP0014DF-B
PRSP0014DE-A
PTSP0014JA-B
HA17901A Series
Pin Arrangement
Vout2
1
14 Vout3
Vout1
2
13 Vout4
VCC
3
Vin(−)1
4
11 Vin(+)4
Vin(+)1
5
10 Vin(−)4
Vin(−)2
6
Vin(+)2
1
7
−
+
12 GND
4
− +
− +
+
2
3−
9
Vin(+)3
8
Vin(−)3
(Top view)
Circuit Structure (1/4)
VCC
Q3
Q2
Vin(+)
Q4
Q1
Vout
Q8
Vin(−)
Q7
Q5
Q6
Note: If Input/Output terminals voltage over the absolute maximum ratings, there is possibility of mis-operation,
characteristics deterioration and destruction, because of the current’s flowing to parasitic diode in IC.
The Input/Output terminals are recommended to be protected with the clamp circuit which using the diode with
low forward voltage (like schottky barrier diode) when there is a possibility for the Input/Output terminals
voltage exceeds the absolute maximum ratings.
Rev.1.00 Mar 10, 2006 page 3 of 15
HA17901A Series
Absolute Maximum Ratings
(Ta = 25°C)
Item
Power supply voltage
Differential input voltage
Input voltage
Output pin voltage
Output current
Allowable power dissipation
Symbol
DIP
SOP
TSSOP
Operating temperature
Storage temperature
Ratings
36
±VCC
−0.3 to +VCC
−0.3 to +36
20
625 *2
625 *3
400 *4
−40 to +85
−55 to +125
VCC
Vin(diff)
Vin
Vout
Iout *1
PT
Topr
Tstg
Unit
V
V
V
V
mA
mW
°C
°C
Notes: 1. These products can be destroyed if the output and VCC are shorted together. The maximum output current is
the allowable value for continuous operation.
2. HA17901AP:
These are the allowable values up to Ta = 50°C. Derate by 8.3 mW/°C above that temperature.
3. HA17901AFP/ARP:
When it is mounted on glass epoxy board of 40 mm × 40 mm × 1.6 mmt with 10% wiring density, value at Ta
≤ 25°C. If Ta > 25°C, derated by 6.25 mW/°C.
When it is mounted on glass epoxy board of 40 mm × 40 mm × 1.6 mmt with 30% wiring density. If Ta >
32°C, derated by 6.70 mW/°C.
4. HA17901AT:
These are the allowable values up to Ta = 25°C. Derate by 4 mW/°C above that temperature.
Electrical Characteristics
(VCC = 5 V, Ta = 25°C)
Item
Input offset voltage
Symbol
VIO
Min

Typ
2
Max
7
Unit
mV
Input offset current
Input bias current
Common-mode input voltage *1
Supply current
Voltage Gain *3
Response time *2,3
Output sink current
Output saturation voltage
IIO
IIB
VCM
ICC
AV
tR
IO(sink)
VO(sat)


0



6

5
25

0.8
(200)
(1.3)
16
200
50
250
VCC−1.5
2



400
nA
nA
V
mA
V/mV
µs
mA
mV
Output leakage current *3
ILO

(0.1)

nA
Test Conditions
Output switching point:
when VO = 1.4V, RS = 0Ω
 IIN(+) − IIN(−) 
IIN(+) or IIN(−)
RL = ∞
RL = 15kΩ
VRL = 5V, RL = 5.1kΩ
VIN(−) = 1V, VIN(+) = 0, VO ≤ 1.5V
VIN(−) = 1V, VIN(+) = 0, Iosink = 3mA
VIN(+) = 1V, VIN(−) = 0, VO = 5V
Notes: 1. Voltages more negative than −0.3 V are not allowed for the common-mode input voltage or for either one of
the input signal voltages.
2. The stipulated response time is the value for a 100 mV input step voltage that has a 5 mV overdrive.
3. Design spec.
Rev.1.00 Mar 10, 2006 page 4 of 15
HA17901A Series
Test Circuits
1. Input offset voltage (VIO), input offset current (IIO), and Input bias current (IIB) test circuit
Rf 5k
VCC
SW1
RS 50
R 20 k
RS 50
R 20 k
RL 51k
VO
+
+
470µ
−
V
SW2
Rf 5 k
VC1
−
SW1
On
Off
On
Off
SW2
On
Off
Off
On
Vout
VO1
1
VC1 =
V
2 CC
VO2
VO3 VC2 = 1.4V
VO4
VC2
VIO =
| VO1 |
1 + Rf / RS
(mV)
IIO =
| VO2 − VO1 |
R(1 + Rf / RS)
(nA)
IIB =
| VO4 − VO3 |
2 ⋅ R(1 + Rf / RS)
(nA)
2. Output saturation voltage (VO sat) output sink current (Iosink), and common-mode input voltage (VCM) test circuit
VCC
50
SW1 1
2
VC1
5k
4.87k
1.6k
SW2
1
2
−
+
50
50
SW3
Item VC1
VOsat 2V
VC2
0V
VC3

SW1
1
Iosink 2V
VCM
2V
0V
−1 to
VCC
1.5V

1
2
VC3
VC2
3. Supply current (ICC) test circuit
+
1V
Rev.1.00 Mar 10, 2006 page 5 of 15
−
A
VCC
ICC: RL = ∞
SW2
1
SW3
Unit
1 at
V
VCC = 5V
3 at
VCC = 15V
1
2
mA
Switched 3
V
between
1 and 2
HA17901A Series
4. Voltage gain (AV) test circuit (RL = 15 kΩ)
VCC
+V
20k
Vin
10k
30k
10µ
+
−
AV = 20 log
VO1 − VO2
VIN1 − VIN2
VO
−
50
20k
50
−V
RL 15k
+
(dB)
5. Response time (tR) test circuit
VCC
−
+V Vin
VO
50
24k
RL 5.1k
+
P.G
VR
5k
30k
−V
50
120k
SW
12V
tR: RL = 5.1 kΩ, a 100 mV input step voltage that has a 5 mV overdrive
 With VIN not applied, set the switch SW to the off position and adjust VR so that VO is in the vicinity of 1.4 V.
 Apply VIN and turn the switch SW on.
90%
10%
tR
Rev.1.00 Mar 10, 2006 page 6 of 15
HA17901A Series
Characteristic Curves
Input Bias Current vs.
Ambient Temperature Characteristics
Input Bias Current vs.
Power-Supply Voltage Characteristics
90
60
VCC = 5 V
Ta = 25°C
Input Bias Current IIB (nA)
Input Bias Current IIB (nA)
80
70
60
50
40
30
20
50
40
30
20
10
10
0
−55 −35 −15
5
25
45
65
0
85 105 125
20
30
40
Ambient Temperature Ta (°C)
Power-Supply Voltage VCC (V)
Supply Current vs.
Ambient Temperature Characteristics
Supply Current vs.
Power-Supply Voltage Characteristics
1.8
1.6
VCC = 5 V
RL = ∞
Supply Current ICC (mA)
1.6
Supply Current ICC (mA)
10
1.4
1.2
1.0
0.8
0.6
0.4
Ta = 25°C
RL = ∞
1.4
1.2
1.0
0.8
0.6
0.2
0
−55 −35 −15
5
25
45
65
85 105 125
Ambient Temperature Ta (°C)
Rev.1.00 Mar 10, 2006 page 7 of 15
0
10
20
30
Power-Supply Voltage VCC (V)
40
HA17901A Series
Output Sink Current vs.
Ambient Temperature Characteristics
Output Sink Current vs.
Power-Supply Voltage Characteristics
VCC = 5 V
Vin(−) = 1 V
Vin(+) = 0
Vout = 1.5 V
40
35
30
25
20
15
10
5
0
−55 −35 −15
5
25
45
65
30
Output Sink Current Iosink (mA)
Output Sink Current Iosink (mA)
45
20
15
10
5
0
85 105 125
0
10
20
30
40
Ambient Temperature Ta (°C)
Power-Supply Voltage VCC (V)
Voltage Gain vs.
Ambient Temperature Characteristics
Voltage Gain vs.
Power-Supply Voltage Characteristics
130
130
VCC = 5 V
RL = 15 kΩ
125
Ta = 25°C
RL = 15 kΩ
120
120
Voltage Gain AV (dB)
Voltage Gain AV (dB)
25
115
110
105
100
95
110
100
90
80
90
85
−55 −35 −15
70
5
25
45
65
85 105 125
Ambient Temperature Ta (°C)
Rev.1.00 Mar 10, 2006 page 8 of 15
0
10
20
30
Power-Supply Voltage VCC (V)
40
HA17901A Series
HA17901A Application Examples
The HA17901A houses four independent comparators in a single package, and operates over a wide voltage range at
low power from a single-voltage power supply. Since the common-mode input voltage range starts at the ground
potential, the HA17901A is particularly suited for single-voltage power supply applications. This section presents
several sample HA17901A applications.
1. Square-Wave Oscillator
The circuit shown in figure 1 has the same structure as a single-voltage power supply astable multivibrator. Figure
2 shows the waveforms generated by this circuit.
100 k
75 pF
C
VCC
VCC
4.3 k
VCC R
−
HA17901A
Vout
+
100 k
100 k
100 k
Figure 1 Square-Wave Oscillator
(1)
Horizontal: 2 V/div, Vertical: 5 µs/div, VCC = 5 V
(2)
Horizontal: 5 V/div, Vertical: 5 µs/div, VCC = 15 V
Figure 2 Operating Waveforms
Rev.1.00 Mar 10, 2006 page 9 of 15
HA17901A Series
2. Pulse Generator
The charge and discharge circuits in the circuit from figure 1 are separated by diodes in this circuit. (See figure 3.)
This allows the pulse width and the duty cycle to be set independently. Figure 4 shows the waveforms generated by
this circuit.
VCC
R1 1 M
D1 IS2076
R2 100 k D2 IS2076
C
80 pF
VCC
−
VCC
HA17901A
Vout
+
1M
1M
1M
Figure 3 Pulse Generator
Horizontal: 2 V/div, Vertical: 20 µs/div, VCC = 5 V
Horizontal: 5 V/div, Vertical: 20 µs/div, VCC = 15 V
Figure 4 Operating Waveforms
Rev.1.00 Mar 10, 2006 page 10 of 15
HA17901A Series
3. Voltage Controlled Oscillator
In the circuit in figure 5, comparator A1 operates as an integrator, A2 operates as a comparator with hysteresis, and
A3 operates as the switch that controls the oscillator frequency. If the output Vout1 is at the low level, the A3 output
will go to the low level and the A1 inverting input will become a lower level than the A1 noninverting input. The
A1 output will integrate this state and its output will increase towards the high level. When the output of the
integrator A1 exceeds the level on the comparator A2 inverting input, A2 inverts to the high level and both the output
Vout1 and the A3 output go to the high level. This causes the integrator to integrate a negative state, resulting in its
output decreasing towards the low level. Then, when the A1 output level becomes lower than the level on the A2
noninverting input, the output Vout1 is once again inverted to the low level. This operation generates a square wave
on Vout1 and a triangular wave on Vout2.
VCC
100 k
−
+VC
Frequency
control
voltage
input
0.1 µ
20 k
10
100 k
VCC
500 p
A1
VCC
3k
5.1 k
HA17901A
3k
+
0.01 µ
+
VCC
HA17901A
VCC/2
20 k
A2
Output 1
−
VCC
50 k
A3
−
Output 2
VCC/2
HA17901A
VCC = 30 V
+250 mV < +VC < +50 V
700 Hz < / < 100 kHz
+
Figure 5 Voltage Controlled Oscillator
4. Basic Comparator
The circuit shown in figure 6 is a basic comparator. When the input voltage VIN exceeds the reference voltage VREF,
the output goes to the high level.
VCC
Vin
+
VREF
−
3 kΩ
HA17901A
Figure 6 Basic Comparator
Rev.1.00 Mar 10, 2006 page 11 of 15
HA17901A Series
5. Noninverting Comparator (with Hysteresis)
Assuming +VIN is 0 V, when VREF is applied to the inverting input, the output will go to the low level
(approximately 0 V). If the voltage applied to +VIN is gradually increased, the output will go high when the value of
the noninverting input, +VIN × R2/(R1 + R2), exceeds +VREF. Next, if +VIN is gradually lowered, Vout will be
inverted to the low level once again when the value of the noninverting input, (Vout – VIN) × R1/(R1 + R2), becomes
lower than VREF. With the circuit constants shown in figure 7, assuming VCC = 15 V and +VREF = 6 V, the following
formula can be derived, i.e. +VIN × 10 M/(5.1 M + 10 M) > 6 V, and Vout will invert from low to high when +VIN is
> 9.06 V.
(Vout − VIN) ×
R1
+ VIN < 6V
R1 + R 2
(Assuming Vout = 15V)
When +VIN is lowered, the output will invert from high to low when +VIN < 1.41 V. Therefore this circuit has a
hysteresis of 7.65 V. Figure 8 shows the input characteristics.
VCC
−
+VREF
+Vin
VCC
3k
Vout
HA17901A
R1
+
5.1 M
10 M
R2
Figure 7 Noninverting Comparator
Output Voltage Vout (V)
20
VCC = 15 V, +VREF = 6 V
+Vin = 0 to 10 V
16
12
8
4
0
0
5
10
15
Input Voltage VIN (V)
Figure 8 Noninverting Comparator I/O Transfer Characteristics
Rev.1.00 Mar 10, 2006 page 12 of 15
HA17901A Series
6. Inverting Comparator (with Hysteresis)
In this circuit, the output Vout inverts from high to low when +VIN > (VCC + Vout)/3. Similarly, the output Vout
inverts from low to high when +VIN < VCC/3. With the circuit constants shown in figure 9, assuming VCC = 15 V
and Vout = 15 V, this circuit will have a 5 V hysteresis. Figure 10 shows the I/O characteristics for the circuit in
figure 9.
VCC
VCC
−
+Vin
1M
VCC
3k
Vout
HA17901A
+
1M
1M
Figure 9 Inverting Comparator
Output Voltage Vout (V)
20
VCC = 15 V
16
12
8
4
0
0
5
10
15
Input Voltage VIN (V)
Figure 10 Inverting Comparator I/O Transfer Characteristics
7. Zero-Cross Detector (Single-Voltage Power Supply)
In this circuit, the noninverting input will essentially beheld at the potential determined by dividing VCC with 100
kΩ and 10 kΩ resistors. When VIN is 0 V or higher, the output will be low, and when VIN is negative, Vout will
invert to the high level. (See figure 11.)
VCC
Vin
5.1 k
1S2076
100 k
5.1 k
100 k VCC
−
HA17339A
+
10 k 20 M
Figure 11 Zero-Cross Detector
Rev.1.00 Mar 10, 2006 page 13 of 15
5.1 k
Vout
HA17901A Series
Package Dimensions
JEITA Package Code
P-DIP14-6.3x19.2-2.54
RENESAS Code
PRDP0014AB-B
Previous Code
DP-14AV
MASS[Typ.]
0.97g
D
8
E
14
7
1
b3
A
Z
A1
Reference
Symbol
L
e1
D
E
A
A1
bp
b3
c
θ
e
Z
L
θ
bp
e
c
e1
( Ni/Pd/Au plating )
JEITA Package Code
P-SOP14-5.5x10.06-1.27
RENESAS Code
PRSP0014DF-B
*1
Previous Code
FP-14DAV
Dimension in Millimeters
Min
Nom Max
7.62
19.2 20.32
6.3 7.4
5.06
0.51
0.40 0.48 0.56
1.30
0.19 0.25 0.31
0°
15°
2.29 2.54 2.79
2.39
2.54
MASS[Typ.]
0.23g
D
F
14
NOTE)
1. DIMENSIONS"*1 (Nom)"AND"*2"
DO NOT INCLUDE MOLD FLASH.
2. DIMENSION"*3"DOES NOT
INCLUDE TRIM OFFSET.
8
c
HE
*2
E
bp
Index mark
Terminal cross section
( Ni/Pd/Au plating )
1
Z
7
e
*3
bp
x
Reference Dimension in Millimeters
Symbol
M
A
L1
A1
θ
y
L
Detail F
Rev.1.00 Mar 10, 2006 page 14 of 15
D
E
A2
A1
A
bp
b1
c
c1
θ
HE
e
x
y
Z
L
L1
Min Nom Max
10.06 10.5
5.50
0.00 0.10 0.20
2.20
0.34 0.40 0.46
0.15 0.20 0.25
0°
8°
7.50 7.80 8.00
1.27
0.12
0.15
1.42
0.50 0.70 0.90
1.15
HA17901A Series
JEITA Package Code
P-SOP14-3.95x8.65-1.27
RENESAS Code
PRSP0014DE-A
*1
Previous Code
FP-14DNV
MASS[Typ.]
0.13g
NOTE)
1. DIMENSIONS"*1 (Nom)"AND"*2"
DO NOT INCLUDE MOLD FLASH.
2. DIMENSION"*3"DOES NOT
INCLUDE TRIM OFFSET.
F
D
14
8
c
*2
Index mark
HE
E
bp
Terminal cross section
( Ni/Pd/Au plating )
Reference Dimension in Millimeters
Symbol
Min
1
7
*3
e
Z
bp
x
M
A
L1
A1
θ
L
y
Detail F
JEITA Package Code
P-TSSOP14-4.4x5-0.65
RENESAS Code
PTSP0014JA-B
*1
Previous Code
TTP-14DV
D
E
A2
A1
A
bp
b1
c
c1
θ
HE
e
x
y
Z
L
L1
Nom Max
8.65 9.05
3.95
0.10 0.14 0.25
1.75
0.34 0.40 0.46
0.15 0.20 0.25
0°
8°
5.80 6.10 6.20
1.27
0.25
0.15
0.635
0.40 0.60 1.27
1.08
MASS[Typ.]
0.05g
D
F
14
8
NOTE)
1. DIMENSIONS"*1 (Nom)"AND"*2"
DO NOT INCLUDE MOLD FLASH.
2. DIMENSION"*3"DOES NOT
INCLUDE TRIM OFFSET.
HE
c
*2
E
bp
Index mark
Terminal cross section
( Ni/Pd/Au plating )
Reference Dimension in Millimeters
Symbol
7
1
*3
Z
bp
x
M
L1
A
e
A1
θ
L
y
Detail F
Rev.1.00 Mar 10, 2006 page 15 of 15
D
E
A2
A1
A
bp
b1
c
c1
θ
HE
e
x
y
Z
L
L1
Min Nom Max
5.00 5.30
4.40
0.03 0.07 0.10
1.10
0.15 0.20 0.25
0.10 0.15 0.20
0°
8°
6.20 6.40 6.60
0.65
0.13
0.10
0.83
0.4 0.5 0.6
1.0
Sales Strategic Planning Div.
Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
Keep safety first in your circuit designs!
1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble
may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary
circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.
Notes regarding these materials
1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's
application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.
2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data,
diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of
publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is
therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product
information before purchasing a product listed herein.
The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor
home page (http://www.renesas.com).
4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to
evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes
no responsibility for any damage, liability or other loss resulting from the information contained herein.
5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life
is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a
product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater
use.
6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials.
7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and
cannot be imported into a country other than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.
http://www.renesas.com
RENESAS SALES OFFICES
Refer to "http://www.renesas.com/en/network" for the latest and detailed information.
Renesas Technology America, Inc.
450 Holger Way, San Jose, CA 95134-1368, U.S.A
Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501
Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900
Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120
Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7898
Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong
Tel: <852> 2265-6688, Fax: <852> 2730-6071
Renesas Technology Taiwan Co., Ltd.
10th Floor, No.99, Fushing North Road, Taipei, Taiwan
Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999
Renesas Technology Singapore Pte. Ltd.
1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632
Tel: <65> 6213-0200, Fax: <65> 6278-8001
Renesas Technology Korea Co., Ltd.
Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea
Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145
Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: <603> 7955-9390, Fax: <603> 7955-9510
© 2006. Renesas Technology Corp., All rights reserved. Printed in Japan.
Colophon .6.0
Similar pages